
Image of Circles by Invertible 2× 2 Matrices

1 Characterization of circle preserving matrices

Theorem 1.1. The image of the unit circle in R
2 by an invertible 2 × 2

matrix is an ellipse with center at the origin. It is a circle if and only if the

rows of the matrix are orthogonal vectors of equal length.

Proof. Denote the invertible matrix by

M =

(

a b

c d

)

, ad− bc 6= 0 . (1.1)

Then

M−1 =
1

ad− bc

(

d −b

−c a

)

.

M maps the unit circle to

{(

u

v

)

= M

(

x

y

)

: x2 + y2 = 1

}

.

The equation of this set in u, v space is

∥

∥

∥

∥

M−1

(

u

v

)∥

∥

∥

∥

2

= 1 .

Plugging in the formula for M−1 yields the equation

1

(ad− bc)2

∥

∥

∥

(

du− bv , −cu+ av
)
∥

∥

∥

2

= 1 .

Expanding yields

1

(ad− bc)2

(

(du− bv)2 + (−cu+ av)2
)

= 1 .

Simplify to find

(d2 + c2)u2 − 2(ac+ bd)uv + (a2 + b2)v2 = (ad− bc)2 .

This quadratic equation describes the image of the unit circle so is a bounded
closed curve. As a quadric curve it is a conic section or a degenerate section.
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That is an ellipse, hyperbola, parabola or degenerate form, a line, two lines,
a point, or empty. Since the set contains an infinite number of points (M is
one to one and the circle is infinite) and is compact (M is continuous and
the circle is compact) the only candidate is an ellipse.

If (u, v) is a solution, then so is (−u,−v) so the center of the ellipse must
be the origin.

Write the equation as

Au2 +Buv + Cv2 = D > 0 . (1.2)

This describes a circle centered at the origin exactly when A = C > 0 and
B = 0. Since A and C are the lengths of the rows of M and B is the
scalar product of the rows this proves that the condition announced in the
Theorem is necessary and sufficient.

Remark. The condition on the rows is equivalent to the analogous condition
that the columns of the matrix are orthogonal vectors of equal length. One
condition says that MM t is a constant multiple of the identity. The other
says that M tM has this property. Each condition follows from the other on
taking transpose.

Example. For the Jacobian matrix from class,

J =

(

2 1
2 −1

)

,

the rows are of equal length but not orthogonal. The columns are orthogonal
but are not of equal length. Either way one sees that the image of circles
are ellipses that are not circles.

A typical Jacobian will neither have rows of equal length nor rows that are

orthogonal. Most of the time, Jacobians map circles to ellipses that are not

circles.

2 Matrix of multiplication by a complex number

Theorem 2.1. If M is linear and invertible from R
2 to itself then the fol-

lowing are equivalent.

1. M maps circles to circles and has positive determinant.

2. There is a nonzero complex number w so that the the image by M of

x+ iy is equal to w(x+ iy).
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Proof. 2 ⇒ 1. Write w = α+ iβ with real α, β. Expanding

w(x+ iy) = (α+ iβ)(x+ iy) = (αx− βy) + i(βx+ αy)

shows that the matrix of the linear transformation x+ iy 7→ (α+ iβ)(x+ iy)
is equal to

(

α −β

β α

)

.

The columns are orthogonal and of equal length so circles are mapped to
circles. The determinant is α2 + β2 > 0 completing the proof of this impli-
cation.

1 ⇒ 2. Denote the entries of the Matrix M as in equation (1.1). Since the
second column of M must be orthogonal to the first column and of the same
length one must have

(c, d) = ±(−b, a) .

The determinant is equal to ±(a2 + b2). Since the determinant is positive
one must have

M =

(

a −c

c a

)

.

This is the matrix of multiplication by w = a+ic proving the implication.

3


