
Laurent Series Yield Fourier Series

A difficult thing to understand and/or motivate is the fact that arbitrary periodic functions have
Fourier series representations. In this short note we show that for periodic functions which are
analytic the representation follows from basic facts about Laurent series.

§1. Fourier series of analytic periodic functions.

A function f(z) is periodic with period 2π if whenever z belongs to its domain so do the points
z + 2πn with n ∈ Z and one has for all n,

f(z + 2πn) = f(z) (1)

We are interested in functions that are analytic and defined on an open subset of C containing
the real axis. The complement of the domain of f is then closed and disjoint from the compact
interval [0, 2π] in the real axis. Choose a > 0 so that these two closed sets are at distance ≥ a from
each other. It follows that the domain of f contains a full strip

{z : |Im z| < a} , a > 0 . (2)

Exercise. Prove the last assertion.

Examples of periodic analytic functions. The elementary functions sinnz, cosnz, and e±inz

are the building blocks. Any linear combination of the above. Nonlinear functions too, for example

1

1 + sin2 z

is analytic in any strip on which sin z 6= ±i. An entire function h =
∑∞

0 an z
n yields the entire

example

h(eiz) =
∞∑
0

an e
inz .

These examples can be modified to yield the general case as follows. Consider the mapping

w = eiz . (3)

It maps the strip (2) in the complex z plane to the annulus

{w : e−a < |w| < ea} (4)

in the w plane. It maps the real axis in the z plane infinitely often around the unit circle in the w
plane, the preimages of a point w = eiθ are the points z = θ+2πn with n ∈ Z. Since the derivative
dw/dz is nowhere zero it follows that the mapping is locally invertible with analytic inverse. The
local inverses are branches of the function z = (lnw)/i.

Theorem. The correspondence
f(z) = g(eiz) (5)
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establishes a one to one correspondence between the 2π periodic analytic functions f(z) in the
strip (2) and the analytic functions g(w) on the annulus (4).

Proof. That each such g yields an analytic periodic f on the strip and that distinct functions g
yield distinct f is clear. What needs to be shown is that every periodic analytic function on the
strip has such a representation.

Suppose that f is analytic and periodic in the strip (2). For each point w in the annulus (4) the
preimages z under the map (3) lie in the strip and differ by integer multiples of 2π. Thus, the
function f has the same value at all the preimages. It follows that a function g on the annulus is
well defined by the formula g(w) = f(z) since it does not matter which pre image z one takes.

For any w choose a preimage z. The Inverse Function Theorem implies that w has a local inverse
z = F (w) analytic on a neighborhood of w and satisfying F (w) = z. Near w, g(w) = f(F (w))
is therefore analytic. This shows that g is analytic at every w so that g provides the desired
representation of f .

Theorem. If f(z) is a 2π periodic analytic function in the strip (2) then f has a Fourier series
representation

f(z) =
∞∑

n=−∞
cn e

inz , (6)

with coefficients given by the formulas

cn =
1

2π

∫ 2π

0

f(θ) e−inθ dθ . (8)

Proof. Choose g so that (5) holds. Then use the Laurent expansion of g

g(w) =
∞∑
−∞

cn w
n , cn =

1

2πi

∮
|w|=1

g(w)

wn+1
dw . (9)

Since f(z) = g(eiz), one has

f(z) =
∞∑
−∞

cn (eiz)n .

This is formula (6).

Parameterizing the curve |w| = 1 by w = eiθ with 0 ≤ θ ≤ 2π, one has dw = i w dθ and the formula
for cn becomes

cn =
1

2πi

∫ 2π

0

g(eiθ)

wn+1
i w dθ =

1

2π

∫ 2π

0

f(θ)

wn
dθ =

1

2π

∫ 2π

0

f(θ) e−inθ dθ, ,

proving (8).

This is not the way Fourier series were discovered. It shows that there is a deep connection between
Fourier series and the theory of analytic functions.

§2. Fourier series of smooth periodic functions using convolution.
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To derive the Fourier representation of smooth periodic and L2 periodic functions the next result
suffices. The key step uses the Fourier expansion of an approximating analytic periodic function.

Theorem. If f(θ) is a smooth 2π periodic function whose Fourier coefficients all vanish, then
f = 0.

Proof. Choose normalizing coefficients Cε so that Cεe
−x2/ε2 → δ as ε→ 0. Define

fε(z) := Cε

∫ ∞
−∞

e−(z−θ)
2/ε2 f(θ) dθ .

Then f is entire analytic in z and 2π periodic.

The Fourier coefficients of fε vanish since,∫ 2π

0

e−inθ fε(θ) dθ = Cε

∫ 2π

0

e−inφ e−(φ−θ)
2/ε2 f(θ) dθ dφ .

Change variable from θ to ξ = φ− θ to show that the integral is equal to,∫ 2π

0

e−inφ e−ξ
2/ε2 f(ξ + φ) dφ dξ .

The change of variable η = ξ + φ shows that the dφ integral is equal to,∫ 2π

0

e−inφ f(ξ + φ) dφ =

∫ ξ+2π

ξ

e−in(η−ξ) f(η) dη = einξ
∫ ξ+2π

ξ

e−inξ f(ξ) dξ = 0,

since the Fourier coefficients of f vanish.

The Laurent expansion of analytic periodic functions then implies that fε = 0.

On the other hand, as ε→ 0, the restriction of fε to the real axis converges uniformly to f proving
that f = 0.
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