Open Mapping Theorem

1 Definiton and statement.

Definition 1.1. A map from an open set $\Omega \subset \mathbb{C}$ to \mathbb{C} is an open mapping when the image by f of any open subset of Ω is open.

Proposition 1.1. A map is open if and only if for each $z \in \Omega$ the image of any open set containing z contains a neighborhood of $f(z)$.

Exercise 1.1. Prove this proposition.
Examples 1.1. 1. The map $f(z)=a z+b$ with $a, b \in \mathbb{C}$ is open when $a \neq 0$ and not open when $a=0$.
2. The map

$$
x+i y \mapsto\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right) \quad(x, y)
$$

is open when the matrix M is invertible and not open otherwise. The same is true of $a \bar{z}+b$.
3. If f is analytic with $f^{\prime}(z) \neq 0$ at all z then f is locally invertible by the inverse function theorem so satisfies the criterion of Proposition 1.1.
4. The mapping $f(z)=z^{k}$ with $k \geq 1$ integer is open. To prove this it suffices to show that the image by f of a small open set about $z=0$ contains a neighborhood of 0 . For that it suffices to observe that the image by f of $\{|z|<r\}$ is exactly the disk of radius $r^{1 / k}$. Each point in the latter disk has k preimages in the former disk located at the vertices of regular k-gon.
5. The map $x+i y \mapsto x^{2}+i y$ is not open. The image of the open set \mathbb{C} is not open. The restriction of this map to any set Ω that does not meet the imaginary axis is an open mapping. The mapping is not analytic.

Proposition 1.2. The composition of open maps is open. Precisely, if g is open on Ω_{1}, f is open on Ω_{2} and $g\left(\Omega_{1}\right) \subset \Omega_{2}$ then $f(g(z))$ is open on Ω_{1}.

Exercise 1.2. Prove this proposition.
Theorem 1.3. If $f(z)$ is a nonconstant analytic on an open connected set Ω, then f is an open mapping.

2 Proof of the Open Mapping Theorem.

Proof. Verify the condition of Proposition 1.3. At $\underline{z} \in \Omega$ where $f^{\prime}(\underline{z}) \neq 0$ the map is locally invertible and the condition is automatic.
Suppose on the other hand that $\underline{z} \in \Omega$ and $f^{\prime}(\underline{z})=0$. Since f is not constant there is a smallest $k \geq 2$ so that $f^{(k)}(\underline{z}) \neq 0$. Taylor's theorem yields for z near \underline{z}

$$
f(z)-f(\underline{z})=c_{k}(z-\underline{z})^{k}+c_{k+1}(z-\underline{z})^{k+1}+\cdots \quad c_{k} \neq 0 .
$$

Factor to find

$$
f(z)=c_{k}(z-\underline{z})^{k}\left(1+a_{1}(z-\underline{z})+a_{2}(z-\underline{z})^{2}+\cdots\right):=c_{k}(z-\underline{z})^{k} h(z),
$$

with

$$
h(z):=1+a_{1}(z-\underline{z})+a_{2}(z-\underline{z})^{2}+\cdots .
$$

Then h is analytic as the sum of a convergent power series.
Define $g(w)$ on a neighborhood of $w=1$ to be a local inverse of the map $w=z^{k}$ on a neighborhood of $z=1$ where the derivative $w^{\prime}(1)=k \neq 0$. Then $g^{\prime}(1)=1 / k, g(h(z))^{k}=h(z)$ for z near 1 , and

$$
\begin{equation*}
f(z)-f(\underline{z})=c_{k}((z-\underline{z}) g(h(z)))^{k} . \tag{2.1}
\end{equation*}
$$

Since

$$
\left.\frac{d}{d z}((z-\underline{z}) g(h(z)))\right|_{z=\underline{z}}=g(h(\underline{z}))=1 \neq 0,
$$

is follows that the map $z \mapsto(z-\underline{z}) g(h(z))$ is open on a neighborhood of \underline{z}. Therefore equation (2.1) expresses f as the composition of the mappings $(z-\underline{z}) g(h(z)), z^{k}$ and $z \mapsto c_{k} z+f(\underline{z})$. Thus the image by f of an open set containing \underline{z} contains an open neighborhood of $f(\underline{z})$ verifying the criterion of Proposition 1.3 at points where f^{\prime} vanishes

Remark 2.1. Examining (2.1) one sees that the preimage of a point $w \approx$ $f(\underline{z})$ consists of k points near \underline{z} nearly positioned at the vertices of a regular k-gon centered at \underline{z}. In this sense the behavior of $f-f(\underline{z})$ near \underline{z} is well modelled by the k to one open mapping $c_{k}(z-\underline{z})^{k}$.

