Open Mapping Theorem

1 Definition and statement.

Definition 1.1. A map from an open set $\Omega \subset \mathbb{C}$ to \mathbb{C} is an **open mapping** when the image by f of any open subset of Ω is open.

Proposition 1.1. A map is open if and only if for each $z \in \Omega$ the image of any open set containing z contains a neighborhood of f(z).

Exercise 1.1. Prove this proposition.

Examples 1.1. 1. The map f(z) = az + b with $a, b \in \mathbb{C}$ is open when $a \neq 0$ and not open when a = 0.

2. The map

$$x + iy \mapsto \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} (x, y)$$

is open when the matrix M is invertible and not open otherwise. The same is true of $a\overline{z} + b$.

- 3. If f is analytic with $f'(z) \neq 0$ at all z then f is locally invertible by the inverse function theorem so satisfies the criterion of Proposition 1.1.
- 4. The mapping $f(z) = z^k$ with $k \ge 1$ integer is open. To prove this it suffices to show that the image by f of a small open set about z = 0 contains a neighborhood of 0. For that it suffices to observe that the image by f of $\{|z| < r\}$ is exactly the disk of radius $r^{1/k}$. Each point in the latter disk has k preimages in the former disk located at the vertices of regular k-gon.
- 5. The map $x + iy \mapsto x^2 + iy$ is not open. The image of the open set \mathbb{C} is not open. The restriction of this map to any set Ω that does not meet the imaginary axis is an open mapping. The mapping is not analytic.

Proposition 1.2. The composition of open maps is open. Precisely, if g is open on Ω_1 , f is open on Ω_2 and $g(\Omega_1) \subset \Omega_2$ then f(g(z)) is open on Ω_1 .

Exercise 1.2. Prove this proposition.

Theorem 1.3. If f(z) is a nonconstant analytic on an open connected set Ω , then f is an open mapping.

2 Proof of the Open Mapping Theorem.

Proof. Verify the condition of Proposition 1.3. At $\underline{z} \in \Omega$ where $f'(\underline{z}) \neq 0$ the map is locally invertible and the condition is automatic.

Suppose on the other hand that $\underline{z} \in \Omega$ and $f'(\underline{z}) = 0$. Since f is not constant there is a smallest $k \geq 2$ so that $f^{(k)}(\underline{z}) \neq 0$. Taylor's theorem yields for z near \underline{z}

$$f(z) - f(\underline{z}) = c_k(z - \underline{z})^k + c_{k+1}(z - \underline{z})^{k+1} + \cdots \qquad c_k \neq 0$$

Factor to find

$$f(z) = c_k(z - \underline{z})^k \Big(1 + a_1(z - \underline{z}) + a_2(z - \underline{z})^2 + \cdots \Big) := c_k(z - \underline{z})^k h(z),$$

with

$$h(z) := 1 + a_1(z - \underline{z}) + a_2(z - \underline{z})^2 + \cdots$$

Then h is analytic as the sum of a convergent power series.

Define g(w) on a neighborhood of w = 1 to be a local inverse of the map $w = z^k$ on a neighborhood of z = 1 where the derivative $w'(1) = k \neq 0$. Then g'(1) = 1/k, $g(h(z))^k = h(z)$ for z near 1, and

$$f(z) - f(\underline{z}) = c_k \left((z - \underline{z}) g(h(z)) \right)^k. \tag{2.1}$$

Since

$$\frac{d}{dz}\Big((z-\underline{z})g(h(z))\Big)\Big|_{z=\underline{z}}=g(h(\underline{z}))=1\neq 0\,,$$

is follows that the map $z \mapsto (z - \underline{z})g(h(z))$ is open on a neighborhood of \underline{z} . Therefore equation (2.1) expresses f as the composition of the mappings $(z - \underline{z})g(h(z))$, z^k and $z \mapsto c_k z + f(\underline{z})$. Thus the image by f of an open set containing \underline{z} contains an open neighborhood of $f(\underline{z})$ verifying the criterion of Proposition 1.3 at points where f' vanishes

Remark 2.1. Examining (2.1) one sees that the preimage of a point $w \approx f(\underline{z})$ consists of k points near \underline{z} nearly positioned at the vertices of a regular k-gon centered at \underline{z} . In this sense the behavior of $f - f(\underline{z})$ near \underline{z} is well modelled by the k to one open mapping $c_k(z-\underline{z})^k$.