
Math 558, Fall 2010 Prof. J. Rauch

Final Exam Solutions December 14, 2010

Instructions. 1. Two sides of a 3.5in.× 5in. sheet of notes from home. Closed book.
2. No electronics, phones, cameras, . . . etc.
3. Show work and explain clearly.
4. There are 7 questions, seven pages, and a total of 74 points.
5. You may use the back of the pages and/or supplementary sheets.

1. (2+5+3+3 points). i. Explain why eA+cI = eceA for all scalars c and matrices A.

ii. Compute eAt for all t ∈ R, where

A :=

(
0 ω
−ω 0

)
, ω > 0 .

iii. Write the formula for the solution of the initial value problem

X ′ =

(
−1 ω
−ω −1

)
X + f(t), X(0) = 0

using the variation of parameters formula and the results above.

iv. Show that if f(t) is a continuous bounded function ∗ on 0 ≤ t < ∞, then the solution from
iii is also a bounded function on 0 ≤ t < ∞. Discussion. This is the sort of thing variation of
parameters is good for.

Solution. i. One has eA+B = eA eB whenever AB = BA. Appliy with B = cI together with
ecI = ec I. The latter identity follows immediately from the series definition,

ii. det(A− λI) = λ2 + ω2 so the eigenvalues are ±i ω.

The eigenvectors for the plus sign are the nonzero elements of the kernel of the singular matrix,

A− (i ω)I =

(
−iω ω
−ω −iω

)
= ω

(
−i 1
−1 −i

)
.

The kernel is defined by the equation x2 = ix1 so is spanned by (1, i). Therefore eiωt(1, i) is a
solution. It together with its complex conjugate generate the general solution,

a+ e
iωt(1, i) + a− e

−iωt(1,−i) , a+, a− ∈ C .
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∗ Definition. A function f : [0,∞[→ CN is bounded when there is an M > 0 so that for all t ≥ 0,
‖f(t)‖ ≤ M .



The solution with X(0) = (1, 0) is the first column of eAt. The initial value (1, 0) is attained by
the choice a+ = a− = 1/2.

X(t) =
1

2

(
eiωt(1, i) + e−iωt(1,−i)

)
=
(

cosωt , − sinωt
)
.

The solution with X(0) = (0, 1) is the second column of eAt. The initial value (0, 1) is attained by
the choice a+ = −a− = 1/2i,

X(t) =
1

2i

(
eiωt(1, i)− e−iωt(1,−i)

)
=
(

sinωt , cosωt
)
.

So,

eAt =

(
cosωt sinωt
− sinωt cosωt

)
.

Alternate. One can compute explicitly the powers of An and sum the series defining eAt recog-
nizing the series for sine and cosine in the answer. The advantage of the method presented above
is that it works in general. It is rare for the series for sine and cosine to pop out so nicely.

iii. Use the variation of constants formula

X(t) =

∫ t

0

e(A−I)(t−s) f(s) ds =

∫ t

0

e−(t−s) eA(t−s) f(s) ds .

iv. There is a constant C independent of t, s so that∥∥eA(t−s) f(s)
∥∥ ≤ C ‖f(s)‖ .

Therefore

‖X(t)‖ ≤
∫ t

0

e−(t−s) C ‖f(s)‖ds ≤ C sup
s≥0
‖f(s‖

∫ t

0

e−(t−s) ds .

The final integral is no larger than
∫∞
0
e−σ dσ = 1 so the right hand side gives a uniform bound

on the values of X.



2. (2+5+1+2 points). (Hale/Kocak 276/1). i. For any real a find the unique equilibrium point
of Lienard’s equation

ẋ1 = x2 − a(x31 − x1) , ẋ2 = −x1 .

ii. Determine the stability of the equilibrium for those values of a where stability is determined
from the linearization.

iii. The phase portrait of the linearization at the equilibrium changes type when a changes from
negative to positive. Describe the change in the phase portrait.

iv. In addition to the conclusion of iii, what change in the phase portrait of the nonlinear system
do you expect when a changes from negative to positive?

Solution. i. Solve the pair of equations,

x2 − a(x31 − x1) = 0, −x1 = 0 .

Plugging the second into the first yields x2 = 0 so the unique equilibrium is (0, 0).

ii. The linearization at the origin arises by dropping the higher order terms to yield the linear
system

Y ′ =

(
a 1
−1 0

)
:= AX .

Compute

det(A− λI) = det

(
a− λ 1
−1 −λ

)
= −λ(a− λ) + 1 = λ2 − aλ+ 1 .

Setting this equal to zero and using the quadratic formula yields the eigenvalues,

λ =
a ±

√
a2 − 4

2
.

For |a| ≥ 2 there are two real roots with the same sign as a. For |a| < 2 there are a pair of complex
conjugate roots whose real part is equal to a/2. The linearization is a sink for a < 0 and a source
for a > 0. The nonlinear system is asymptotically stable for a < 0 and unstable for a > 0.

iii. When a crosses zero from negative to positive, a pair of complex conjugate roots cross from
the left half plane to the right. The phase portrait changes from a spiral sink to a spiral source.

iv. This is an example of a Hopf bifurcation where the equilibrium at the origin becomes unstable
and a periodic orbit is generated at the origin.



3. (1+3+3+4 points). Consider the damped hard spring equation

x′′ + a x′ + x + x3 = 0

where the coefficient of friction is a ≥ 0.

i. Write the equation as a first order system.

ii. Find a potential energy function V (x) so that when a = 0 the energy ẋ2/2+V (x) is a conserved
quantity. Derive an energy dissipation identity for a ≥ 0.

iii. Use the energy function to show that the equilibrium x = x′ = 0 is stable for all a ≥ 0. State
clearly the theorem you are using. Discussion. The interest is the case a = 0 which cannot be
obtained by linearization.

iv. Show that for a > 0, every solution converges as t → ∞ to the equilibrium at the origin.
Hint. Lasalle Invariance together with the energy dissipation law. State clearly the hypotheses
that you verify.

Solution. i. Introduce v := ẋ. The equation is equivalent to the system

ẋ = v , v̇ = −a v − x− x3 .

ii. Want −dV/dx = −x− x3 so V = x2/2 + x4/4 + C. In the sequel we take the constant C = 0.
Then

d

dt

( ẋ2
2

+
x2

2
+
x4

4

)
= x′x′′ + xx′ + x3ẋ = x′

(
x′′ + x + x3

)
.

The first conclusion is that when a = 0 the derivative vanishes and we have a conserved quantity.
The second conclusion is that solutions for general a ≥ 0 satisfy,

d

dt

( ẋ2
2

+
x2

2
+
x4

4

)
= −a(x′)2 . (1)

iii. Introduce the Lyapunov function

L(x, v) :=
v2

2
+
x2

2
+
x4

4
.

Then L > 0 except at the origin so the origin is a strict minimum. The preceding computation
shows that for a ≥ 0, L̇ = −av2 ≤ 0. Stability of the origin follows by Lyapunov’s Theorem.

iv. For any constant R > 0 define

P :=
{

(x, v) : L(x, v) ≤ R
}
.

Then P is closed because L is continuous and it is bounded since x2 + v2 ≤ 2R for points of P.
Since L decreases on orbits P is postively invariant. To apply Lasalle’s invariance principle we
need to show that the x = v = 0 is the only orbit in P along which L is constant. Suppose that
x(t), v(t) is an orbit in P along which L is constant. From (1) together with a > 0 it follows that
x′ = 0 so x(t) is constant. The differential equation then implies that

0 = x+ x3 = x(1 + x2) .

Since 1 + x2 > 0 it follows that x = 0 so the orbit is x = v = 0. LaSalle implies that every orbit
in P tends to (0, 0) as t→∞.

For any point x, v one can choose R = L(x, v) then x, v ∈ P. Therefore the orbit through x, v
tends to (0, 0).



4. (5+5 points). i. In polar coordinates consider the system

r′ = f(r, θ) , θ′ = g(r, θ) > 0 in r > 0 .

Suppose that f is continuously differentiable and

f > 0 when r = 1 , and f < 0 when r = 2 .

Prove that every orbit starting on the circle {r = 1} spirals to its ω-limit set which is a periodic
orbit. Hint. Use a result from the course to make this easy.

ii. a. Sketch an example satisfying these hypotheses where the periodic limit is asymptotically
stable.

b. Sketch an example satisfying these hypotheses where the periodic limit is unstable.

c. Sketch an example satisfying these hypotheses where the periodic limit is stable but not asymp-
totically stable.

Solution. i. Consider the annulus

A :=
{

1 ≤ r ≤ 2
}
.

Since f > 0 on r = 1 it follows that the direction field is transverse to and points into A along the
inner circular boundary r = 1.

Since f < 0 on r = 2, the direction field is transverse to the boundary and inward pointing on
outer circular boundary r = 2. It follows that A is a positively invariant set.

Since θ′ > 0 in A it follows that there is no equilibrium in A.

The Poincaré-Bendixon Theorem implies that the the orbit through any point in A sprials to a
periodic orbit.

ii. a. Take an example where the orbit spirals to r = 3/2 and in addition, obits with r > 3/2 spiral
in to r = 3/2. If you consider the section {θ = 0}, the Poincaré map has the unique fixed point at
r = 3/2 and orbits inside move monotonically out while those outside move monotonically in.

b. Again take a unique fixed point of the Poincaré map with orbits moving monotonically away
for r > 3/2. In this case orbits in r > 3/2 spiral away from the periodic orbit.

c. Take a Poincaré map for which [4/3 , 5/3] consists of fixed points and the map is strictly
monotone increasing in [1, 4/3[ and strictly monotone decreasing in ]5/3 , 2]. There is an inner
annulus of periodic orbits. Orbits on either side of the core spiral to the core. Periodic orbits in
the inner annulus are stable and not asymptotically stable.



5. (3+3+3 points). Consider the scalar equation

x′ = x g(x, a)

depending on a real parameter a. The equilibria consist of the line {x = 0} and the level curve
{g = 0}. Suppose that g is infinitely differentiable with

g(0, 0) = 0 , and,
(
gx(0, 0) , ga(0, 0)

)
6= (0, 0) .

i. Give sufficient conditions involving partial derivatives of g that guarantee that near (0, 0) the
level set {g = 0} is a graph of a smooth function a = h(x).

ii. Give additional sufficient conditions involving partial derivatives of g that guarantee that near
(0, 0) the level set {g = 0} is tangent to the x-axis, {a = 0}, at the origin.

iii. Give additional sufficient conditions involving partial derivatives of g that guarantee that near
(0, 0) the level set is strictly convex and lies in a ≥ 0. Discussion. This is called supercrtical
bifurcation.

Solution. i. The Implicit Function Theorem asserts that near (0, 0) the level set is a smooth
curve since ∇a,xg(0, 0) 6= 0. The normal to the curve is parallel to ∇a,xg(0, 0). The level set is a
graph a = h(x) when that normal is NOT parallel to the x axis. It is parallel when ga = 0. The
level set is a graph a = h(x) when ga(0, 0) 6= 0.

ii. In this case compute the derivative by differentiating g(x, h(x)) = 0 to find

gx + ga h
′ = 0, h′ = −gx/ga . (2)

When ∇a,xg(0, 0) 6= 0, the curve is tangent to {x = 0} precisely when h′ = 0. The curve is tangent
to {a = 0} at (0, 0) if and only if gx(0, 0) = 0.

Alternate solution. One has tangency when and only when the normal is parallel to the x-axis.
This holds when and only when gx(0, 0) = 0.

iii. Compute the second derivative of h by differentiating the first identity in (2) with respect to
a to find,

(gah
′′ + gaa (h′)2 + gxa h

′) + (gxa h
′ + gxx) = 0 ,

where the parentheses enclose the derivative of one or the other of the summands. Injecting the
fact that h′(0) = 0 yields

h′′(0) = −gxx(0, 0)/ga(0, 0) . (3)

The convexity of the question holds when h′′(0) > 0 which holds when −gxx(0, 0)/ga(0, 0) > 0.



6. (3+3+3+(1+1+1) points). Consider the dynamics on R defined by iterating the map x 7→
x(x− a) with 0 < a < 1/2.

i. Find all fixed points.

ii. Determine their stability.

iii. Determine the large n behavior of orbits {xn : n ≥ 0} starting at arbitrary points x0. Group
them into sets that have the same behavior.

iv. Explain why this map has none of the three properties defining chaos, sensitive dependence,
transitivity, and dense cycles.

Solution. i. x is a fixed point when and only when

x(x− a) = x, equivalently x(x− a− 1) = 0 .

There are two fixed points x = 0 and x = a+ 1.

ii. Set f(x) := x(x− a) = x2 − ax. Compute

f ′ = 2x− a f ′(0) = −a, f ′(a+ 1) = 2(a+ 1)− a = a+ 2 .

Since f ′(a+ 1) > 1, the equilibrium a+ 1 is unstable.

Since |f ′(0)| = |a| < 1, the equilibrium x = 0 is stable.

iii. Remark. This part is much longer than I intended. It is a good study problem nevertheless.

Start at the right. In ]a + 1,∞[, f is monotone increasing and f(x) > x so orbits starting there
increase monotonically to +∞.

The point a+ 1 is fixed.

Next consider small x. Since |f ′(0)| < 1 it follows that for x small, |f(x)| < |x|. For x > 0 this
holds for 0 < x < a + 1 and fails at the right hand endpoint where f(x) = x. For negative x one
has |f(x)| < |x| until the root xl < 0 of f(xl) = −xl. Find xl by solving

xl(xl − a) = −xl, xl(xl − a+ 1) = 0, xl = −1 + a .

On the interval ] − 1 + a , 1 + a[ one has |f(x)| < |x|. The inequality becomes equality at the
endpoints.

Since |− 1 +a| < 1 +a it follows that {|x| < 1−a} ⊂ ]− 1 +a, 1 +a[. Orbits starting in |x| < 1−a
have modulus tending monotonically to zero. Proof. We’ve shown the interval is invariant. An
orbit |xn| satisfies |xn| ≤ |x0| < 1− a. On |x| ≤ |x0|, |f(x)/x| is continuous and < 1 so reaches a
maximum m < 1. Therefore on the orbit

|xn+1| = |f(xn)| ≤ m|xn| .

By induction |xn| ≤ mn|x0| → 0.

Orbits starting in [0, a] are mapped to [−a2/4, 0] since −a2/4 is the minimum value of f . Since
a < 1/2, −a2/4 > −1 + a so the succeeding points on the orbit have modulus tending to zero.

Next study orbits starting in ]a, a+ 1[ where 0 < f(x) < x. Orbits starting in this set decrease in
a finite number of steps (the number depending on the initial condition) to a point in ]0, a] and
then decrease in modulus to 0 by the preceding result.



We now know the future of all points starting in x ≥ 0.

Points in x < 0 are immediately mapped to x > 0 and their future is determined. Define Xl < 0
to be the value so that f(Xl) = 1 + a. The solution in x < 0 is Xl = −1.

Points starting in ]−∞, Xl[ are mapped to ]a+ 1,∞[ and then increase to infinity.

Xl is mapped to 1 + a which is fixed.

Points in ]Xl, 0[ have orbits tending to 0.

Summary. The origin attracts orbits starting in ]− 1, a+ 1[. Positive ∞ attracts orbits starting
in ]−∞ , −1[∪ ]a+ 1,∞[. 0 and a+ 1 are fixed and −1 maps to a+ 1.

iv. The equilibrium 0 is stable so points starting close stay close. In fact for 0 < δ << 1 the set
[−δ, δ] is postively invariant, so one does not have sensitive dependence.

The orbits starting in x > a + 1 increase to infinity. So the origin attracts no such orbit. The
origin attracts all points in the invariant interval [−δ, δ] for δ small. Therefore for all n ≥ 0,
f−n(]a+ 1,∞[) does not meet [−δ, δ]. The dynamics is not have transitive.

For δ > 0 and sufficiently small, orbits in [−δ, δ] tend to zero. Therefore no cycle can meet [−δ, δ].
Therefore the cycles are not dense.



7. (3+1+3+2 points). i. Which of the following two systems is a gradient system, that is of the
form X ′ = −gradV (X)?

a. x′ = x2 − 2xy , y′ = y2 − 2xy ,

b. x′ = x2 − 2xy , y′ = y2 − x2 .

ii. What is the relation of the integral curves of the gradient system and the level sets of V ?

The next questions concern the gradient system with V (x, y) := −(x− y2)2 + y2. The origin is an
equilibrium that is a saddle point.

iii. Show that Vy = 0 on the x-axis. Show that the x-axis is invariant. Describe the flow on the
x-axis.

iv. Use iii to explain why the unstable manifold of the origin is equal to the x-axis.

Solution. i. Write the systems as x′ = f, y′ = g. The system is gradient like when and only
when fy = gx.

a. fy = −2x, gx = −2y. This is not gradient system.

b. fy = −2x, gx = −2x. This system is a gradient system.

ii. The integral curves of the gradient system are orthogonal to the level sets of V .

iii. Vy = −2(x − y2)(2y) + 2y so vanishes when y = 0. Since Vy = 0 on the x-axis the direction
field is parallel to the axis. Therefore the x-axis is invariant.

Compute
Vx = −2(x− y2) , Vx(x, 0) = −2x .

So the flow on the x-axis is given by x′ = 2x. Precisely (x(t), 0) is an integral curve if and only if
x′ = 2x.

iv. Each half of the x-axis is an orbit that converges to the origin as t→ −∞. Thus the x axis is
a curve of points whose orbits converge to the origin in the distant past. Since (0, 0) is a saddle,
the stable manifold theorem asserts that the unstable manifold is the union of two such orbits so
must be equal to the x-axis.


