
Math 558, Fall 2012, Prof. J. Rauch. NAME ....................................................

Midterm Exam Solutions, October 18, 2012

Instructions. 1. Two sides of a 3.5in.× 5in. sheet of notes from home. Closed book.
2. No electronics, phones, cameras, . . . etc.
3. Show work and explain clearly.
4. There are six questions.
5. You may use the back of the pages. Extra pages are available.

1. (6+1 points). i. Find the general solution of the differential equation

X ′ =

(

3 −2
2 −1

)

X .

A series with an infinite number of non zero terms is not acceptable.

ii. Determine the stability of the equilibrium solution (0, 0).

Solution. i. Denote by A the coefficient matrix and compute the characteristic polynomial

A :=

(

3 −2
2 −1

)

, det(A− zI) = det

(

3− z −2
2 −1− z

)

= (3− z)(−1− z)+ 4 = (z− 1)2 .

The only eigevalue is 1 and it has multiplicity equal to 2 as a root of the characteristic equation.

Find the eigenvectors by computing the kernel of

A− I =

(

2 −2
2 −2

)

.

The kernel consists of vectors satisfying x1 = x2 that is the multiples of (1, 1). The kernel is one
dimensional so up to scalar multiples there is a unique eigenvector, and the associated solution
et(1, 1).

The generalized eigenspace

ker(A− I)2 = ker 4

(

1 −1
1 −1

)2

= ker

(

0 0
0 0

)

= R
2

is two dimensional.

Write eAt with A = I + (A− I), the sum of two commuting matrices. Therefore,

eAt = eIt e(A−I)t = et
[

I + (A− I)t

]

= et
[(

1 0
0 1

)

+ t

(

2 −2
2 −2

)]

,

where the other terms in the expansion of et(A−I) vanish since (A− I)k = 0 for k ≥ 2.

The columns of eAt are independent solutions of the differential equation so the general solution is

c1 e
t
(

(1, 0) + t(2, 2)
)

+ c2 e
t
(

(0, 1) + t(−2,−2)
)



with scalars c1 and c2.

Equivalently, the general solution is the product of eAt times (c1, c2) yielding the solution with
value (c1, c2) at t = 0. This yields the same formula as above.

ii. Each solution of the differential equation diverges exponentially to infinity as t → ∞ showing
that even if you start arbitrarily close to the origin you diverge to infinity. The equilibrium 0 is
unstable.

Remark. Some students have observed that for this 2 × 2 repeated eigenvalue case one can find
the solution by calculating carefully (At)n then summing explicitly the infinite series that appear
in the expansion of eAt. This simple idea will work for larger systems. There one could sum the
series for initial data that belong to any of the generalized eigenspaces, but one must determine
those first. And must know that they span. One needs the Spectral Theorem.

2. (5+ 2+3 points). i. Find the general solution of

X ′ =

(

3 −1
5 −1

)

X ,

and show that it is of spiral type.

ii. Determine the direction of rotation about the equilibrium.

iii. Determine the principal axes of the associated elliptical orbits of X ′ = (A−
(

(trA)/2)
)

I
)

X.

Solution. i. Denote again the constant matrix coefficient by

A =

(

3 −1
5 −1

)

, det(A− zI) = det

(

3− z −1
5 −1− z

)

= (3− z)(−1− z) + 5 = z2 − 2z + 2 .

The quadratic formula yields the eigenvalues,

z =
2±

√

4− 4(2)

2
=

2±
√
−4

2
=

2± 2i

2
= 1± i .

This is a pair of complex conjugate eigenvalues with real part equal to one so orbits are of the form
et times an elliptical orbit. They are exponentially growing spirals.

Compute the eigenvectors with eigenvalue 1 + i. They are the non zero vectors in the kernel of

A− (1 + i)I =

(

3− (1 + i) −1
5 −1− (1 + i)

)

=

(

2− i −1
5 −2− i

)

The (x1, x2) belonging to the kernel are exactly those satisfying (2− i)x1−x2 = 0, that is (x1, (2−
i)x1). Taking x1 = 1 yields the solution

Φ1(t) = e(1+i)t
(

1, 2− i
)

.

A solution associated to the complex conjugate eigenvalue is the complex conjugate of Φ1 yielding

Φ2(t) = e(1−i)t
(

1, 2 + i
)

.

The general solution is
c1Φ1 + c2Φ2



with complex scalars cj .

ii. The direction of the orbit through (1, 0) is A(1, 0) = (3, 5) the first column of A. This points
from (1, 0) into the positive quadrant showing that the spirals are traversed in the counterclockwise
sense.

iii. Denote by B the traceless part of A

B := A− tr(A)

2
I =

(

2 −1
5 −2

)

.

The equation X ′ = BX has elliptical orbits and the question asks for the principal axes. Those
axes are in the directions X that satisfy 0 = BX ·X. Compute

BX ·X =

(

2 −1
5 −2

)(

x1

x2

)

·
(

x1

x2

)

= (2x1 − x2, 5x1 − 2x2) ·
(

x1

x2

)

= (2x2
1 − x1x2) + (5x1x2 − 2x2

2) = 2(x2
1 + 2x1x2 − x2

2).

When this vanishes with X 6= 0 one must have x2 6= 0. In that case dividing by x2
2 and introducing

y := x1/x2 yields y2 + 2y − 1 = 0. The quadratic formula yields

y =
−2±

√
4 + 4

2
=

−2±
√
2 · 4

2
=

−2± 2
√
2

2
= −1±

√
2.

Taking x2 = 1 this yields the two direction

(−1±
√
2 , 1)

as the directions of the principal axes.

As a check verify that the directions are orthogonal,

(−1 +
√
2, 1) · (−1−

√
2, 1) = ((−1)2 −

√
2
2
) + 1 = 1− 2 + 1 = 0.

3. (2+5 points). For small 0 < ǫ << 1 consider the initial value problem,

x′ = x(1 + ǫ sin x), x(0, ǫ) = 1

determining x(t, ǫ).

i. Find the unperturbed solution x(t, 0).

ii. Find an initial value problem determining the order ǫ corrector term, z(t) in the perturbation
theory approximation

x(t, ǫ) ≈ x(t, 0) + ǫ z(t) + higher order terms .

You need not solve the initial value problem for z(t).

Solution i. The unperturbed solution comes from setting ǫ = 0 in the initial value problem to
find x(t, 0)′ = x(t, 0), x(0, 0) = 1 with exact solution x(t, 0) = et.



ii. Differentiate the differential equation with respect to ǫ. This is justified by the differentiable
dependence on parameters part of the Fundamental Existence and Uniqueness Theorem.

∂

∂ǫ

∂x

∂t
=

∂

∂ǫ

(

x(1+ǫ sin x)
)

=
∂x

∂ǫ
(1+ǫ sin x)+x

∂

∂ǫ
(1+ǫ sin x) =

∂x

∂ǫ
(1+ǫ sinx)+x sin x+x ǫ

∂

∂ǫ
sinx .

In this use the equality of mixed partials, set ǫ = 0 and z(t) := ∂x/∂ǫ|ǫ=0 to find z′ = z +
x(t, 0) sinx(t, 0) = z+et sin et . Differentiating the initial condition with respect to ǫ yields z(0) = 0
whence the Initial value problem

z′ = z + et sin et , z(0) = 0 .

4. (5+1+1 points). Consider the scalar ordinary differential equation

x′ = f(x) , (1)

with f(x) continuously differentiable. You are given the following information about the continu-
ously differentiable function f(x),

f(0) = f(10) = 0, and f(7) < 0.

Warning. You are only told that f is negative at the single point 7. You might want to draw
some figures.

i. Use the fundamental theorem of the phase line to show that the solution x(t) of the initial value
problem with x(0) = 7 is a decreasing function of time that exists for all t > 0 and satisfies x(t) > 0
for all t > 0. 1

ii. The result in i implies that (you need not prove this) α := limt→∞ x(t) exists. Describe the
solution that satisifes x(0) = α.

iii. Can there be a point x ∈]α, 7[ with f(x) = 0? Why or why not?

Solution. i. The subtlety in this question is that you are given that f is negative at 7 and zero at
0 and 10 but you are not given that f < 0 on the entire interval ]0, 10[. The function f can have
other zeroes. There can be intervals where f > 0. On such intervals solutions of the differential
equation would be increasing. You cannot directly apply the fundamental theorem of the phase
line whose main hypothesis is recalled in the footnote. An example is sketch below.

x
7

RL 10

f(x)

The key idea is to consider the set E of equilibria in [0, 10] that is the set of points x ∈ [0, 10] so
that f(x) = 0. It is closed set and 7 /∈ E. There are equilibria to the left of 7 including at least
0 and also to the right. There is a largest equlibrium to the left of 7. Call it L for left. Then
f(L) = 0 and f has one sign on ]L, 7[ so f < 0 on ]L, 7[ since f < 0 near 7. Similarly if R is

1 Reminder. The main hypotheses of the fundamental theorem are f(a) = f(b) = 0 and f > 0 on
]a, b[.



the smallest equilibrium to the right of 7 then f(R) = 0 and f < 0 on ]7, R[. Thus L and R are
equilbria with f < 0 between. The fundamental theorem of the phase line then implies that the
orbit with x(0) = 7 is decreasing exists for all time and satisfies

lim
t→∞

x(t) = L, and lim
t→−∞

x(t) = R .

This is more than asked for in i.

ii. The analysis above shows that α = L the first equilibrium to the left of 7. Therefore the
solution with x(0) = α is the equilibrium that satisfies x(t) = α for all t.

iii. The answer NO is explained in i.

Alternatively, if there were such an x then one woulld necessarily have x(t) > x for all t > 0 since
the solution can not touch the equilibrium in finite time. Then it would be impossible to have
x(t) → α as t → ∞. This alternative explanation reproves part of the fundamental theorem of the
phase line.

5. (3+2+3 points) Consider the scalar ordinary differential equation

x′ = f(t, x) ,

where f is continuously differentiable with respect to t, x and is periodic with period 1 in t. That
is for all (t, x),

f(t+ 1, x) = f(t, x) .

Suppose that it is known that solutions with arbitrary initial values exist for all time. Denote by
p the Poincaré map that for a solutions x(t) maps x(0) to x(1).

This question has parts i, ii, and iii.

i. Of the following two graphs, one cannot be the graph of a Poincaré map. Which one and why?

p(x)

x

p(x)

x

Solution i. The Poincaré map is known to be strictly monotone increasing. The function on the
left is increasing to the left of the maximum and decreasing after so CANNOT be a Poincaré map.

Alternatively one could reprove a part of the monotonicity as follows. For the graph on the left if
one considers a value y just a little bit lower than the maximum then there are points x1 < x2 so
that p(xj) = y for j = 1 and j = 2. The points (x1, y) and (x2, y) are points on the graph of p to
the left and right of the maximum at the same height y.



Then the orbits starting at t = 0 at the points x1 and x2 both reach the point y at time t = 1.
This violates uniqueness of the solution with x(1) = y.

ii. If the graph below is the Poincaré map, how many periodic orbits with period equal to 1 are
there? Explain.

x

p(x)
x

Solution. The periodic orbits are exactly the solutions of p(x) = x, namely the solutions that
return to their initial value after time 1. These are the points where the graph of p crosses the
dashed line with slope 1 in the figure. There are exactly three points of intersection, therefore
three periodic orbits of period 1.

iii. Pick and clearly identify one of the periodic orbits. Determine its stability. Explain.

Solution. Call the initial values of the periodic orbits x1 < x2 < x3.

The graph shows that p(x) > x on ]x1, x2[ and p(x) < x on ]x2, x3[.

The Fundamental Theorem of Monotone Maps implies that the orbit of any point starting in
]x1, x2[ is strictly increasing and converges to x2 as t → ∞. Similarly the orbits starting in ]x2, x3[
are strictly decreasing and tend to x2. This shows that the orbit starting at x2 is stable.

6. (7 points). Consider

X ′ =





0 0 0
3 0 −2
2 2 0



X := AX , with, det(zI −A) = z
(

z − 2i
)(

z + 2i
)

.

You are given the information that for the eigenvalue 2i, (0, i, 1) is an eigenvector. Find the general
solution of the differential equation.

Solution. The given characteristic polynomial implies that the 3× 3 matrix A has three distinct
eigenvalues, 0, 2i, and −2i. Therefore there is a basis of eigenvectors and to construct the general
solution it is sufficient to find an eigenvector for each eigenvalue.

The given eignenvalue and eigenvector implies that

Φ1(t) := e2it(0, i, 1)

is a solution.

Since the equation is real, the complex conjugate is also a solution, namely

Φ2(t) := e−2it(0,−i, 1) .



This solution is associated to the eigenvalue −2i and eigenvector (0,−i, 1).

Need to find eigenvectors associated to the eigenvalue 0. The eigenspace is the kernel of A−0I = A.
The kernel of A is defined by the pair of equations

3x1 − 2x3 = 0, and 2x1 + 2x2 = 0 .

The kernel, parameterized by x3 is given by,

x1 = (2/3)x3, and, x2 = −x1 = −(2/3)x3 .

Taking x3 = 3/2 yields (1,−1, 3/2). Multiplying by 2 yields the simpler (2,−2, 3) and correspond-
ing solution

Φ3(t) = e0t(2,−2, 3) = (2,−2, 3) .

The general solution is
c1Φ1(t) + c2Φ2(t) + c3Φ3(t)

where the cj are complex scalars.


