
Math 558. Fall 2014. Prof. J. Rauch. NAME ....................................................

Midterm Exam Solutions, October 16, 2014

Instructions. 1. Two sides of a 3in.× 5in. sheet of notes from home. Closed book.
2. No electronics, phones, cameras, . . . etc.
3. Show work and explain clearly.
4. There are 3 questions.
5. You may use the back of the pages. Extra pages are available.

1. (2+4+5+3+1+5 points). i. Find all equilibria of the real scalar differential equation x′ = x4−1.

ii. Draw the phase line diagram.

iii. Denote by φ(t, x) the flow and by p(x) := φ(1, x) the time one map also known as the Poincaré
map. In the handouts it is proved that ∂φ/∂x > 0 for general equations x′ = f(t, x). On the axes
provided, sketch the rough form of the curve y = p(x) labeling as necessary. The graph should be
consistent with the information from i. and ii. Indicate important features.
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iv. For |b| << 1 explain how the notion of structural stability shows that the equation

x′ = x4 − 1 + b sin 2πt

has exactly two solutions periodic with period equal to 1.

v. When b is very small explain why the periodic solutions are close to the constant functions
x(t) = ±1.

vi. Define x(t, b) to be the solution of the initial value problem with x(t, b) = 1. Compute an
initial value problem satisfied by the leading term in perturbation theory,

x(t, b) = x(t, 0) + b z(t) + higher order in b, z(t) :=
∂x(t, b)

∂b
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∣
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Solve exactly the initial value problem.

Solution. i. The equilibria are the solutions of x4 − 1 = 0, therefore x = ±1.



ii. The real line is divided into three intervals, ] − ∞,−1[, ] − 1, 1[, and ]1,∞[ by the equilibria.
On each interval x4 − 1 does not vanish so is of one sign.

On the interval ]−∞,−1[, x4 − 1 > 0 so solutions move to the right. The sign is easily verified by
considering x → −∞ where x4 − 1 → +∞.

On the interval ] − 1, 1[, x4 − 1 < 0 so solutions move to the left. The sign is easily verified by
considering x = 0 where x4 − 1 = −1 < 0.

On the interval ]1,∞[, x4 − 1 > 0 so solutions move to the right. The sign is easily verified by
considering x → ∞ where x4 − 1 → +∞.

The phase line diagram is as follows.
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iii. On the graph note the following features of the graph y = p(x).

The curve y = p(x) is strictly increasing.

The curve y = p(x) intersects the line y = x at exactly the equilibrium points x = ±1.

On the intervals ]−∞,−1[ and ]1,∞[, p(x) > x.

On the interval ]− 1, 1[, p(x) < x.

Some observed that the theorem in class implies that since the right hand side of the differential
equation is convex as a function of x for all times t, the map p(x) is also convex. This was not
required.

iv. The curve y = p(x) is strictly increasing and intersects y = x transversally at exactly the
two points x = ±1. Under a small perturbation of the differential equation, the curve y = p(x) is
changed only a little bit.

When a strictly increasing curve is slightly perturbed it remains strictly increasing.

When the curve that crosses transversally at x = ±1 is slightly perturbed it will still cross y = x
transversally at exactly two points, one close to x = −1 and a second close to x = +1.

This is exactly what happens when p(x) is replaced by the time one map of the time periodic
problem with 0 6= b and |b| << 1.

The intersections with y = x for such a time periodic problem correspond exactly to periodic
orbits with period 1. So there are exactly two such periodic orbits one with initial condition close
to x = −1 and the second with initial condition close to x = 1.

v. The solution curves coressponding to the fixed point near x = −1, starts near x = −1. Thus
the differential equation and initial value are nearly the same as those for the equilibrium solution
-1 of the unperturbed equation. Therefore for 0 ≤ t ≤ 1 the solution curves are close. Since both
are periodic with period equal to one, they are close for all time.

Similar reasoning applies to the other periodic orbit.

vi. Differentiating the equation with respect to b yields

( ∂2x

∂t ∂b

)

= 4x3
∂x

∂b
+ sin

(

2π t
)

.

Differentiating the initial condition with respect to b yields

∂x

∂b
= 0 .



Setting b = 0 in the preceding two equations yields

z′ = 4x(t, 0)3 z + sin
(

2πt)
)

, z(0) = 0 .

Using the unperturbed solution x(t, 0) = 1 shows that z(t) satisfies the initial value problem

z′ = 4 z + sin 2πt , z(0) = 0 .

Solve using the method of integrating factors,

d

dt
e−4tz = e−4t

(

z′ − 4z
)

= e−4t sin 2πt .

The fundamental theorem of calculus implies that

e−4t z(t) = e4tz
∣

∣

∣

t

0

=

∫ t

0

d

dt
e−4tz dt =

∫ t

0

e−4s sin 2πs ds .

So,

z(t) = e4t
∫ t

0

e−4s sin 2πs ds . (1)

Alternatively, using the fundamental matrix e4t the formula of varaition of constants for the solution
of the inhomogeneous equation with initial value 0 imediately gives (1).

2. (3+3+3+3 points). Consider the family of systems

X ′ = AX , A :=

(

2α −β
β 0

)

with α and β real.

i. Find the region in the αβ-plane where the phase plane is a center.

ii. Find the region in the αβ-plane where the phase plane is an outward spiral.

iii. Find the region in the αβ-plane where the phase plane is a saddle.

iv. Find the region in the αβ-plane where there exist a non constant continuous conserved quantity.

Solution. The eigenvalues are the roots of the quadratic equation

0 = det
(

A− λI) = det

(

2α− λ −β
β −λ

)

= (2α− λ)(−λ) + β2 = λ2 − 2αλ+ β2 .

The roots are
2α±

√

4α2 − 4β2

2
= α ±

√

α2 − β2 .

i. The roots are a pair of complex conjugate numbers when α2 − β2 < 0. Equivalently α2 < β2 or
|α| < |β|.

It is a center when the real parts vanish that is α = 0. Answer.
{

α, β : α = 0 6= β
}

.



ii. It is an outward spiral when there are two complex roots with positive real part. Answer.
{

α, β : 0 < α < |β|
}

.

iii. There are two distinct real roots when α2 − β2 > 0. The phase plane is a saddle when this
holds and in addition |α| <

√

α2 − β2 so the roots have opposite signs. The latter condition never

holds so the system is never a saddle. Both real roots always have the same sign as α.

iv. There is a continuous nonconstant conserved quantity exactly for saddles and centers. The
former do not occur. Answer. Same as i.

3. (4+4+3+2 points). Consider

X ′ =





0 1 −1
−2 3 −1
−1 1 1



X := AX .

You are given the information that the matrix satisfies

det(zI −A) = (z − 1)2(z − 2) .

and for the eigenvalue 2, (0, 1, 1) is an eigenvector.

i. Find all eigenvectors for the eigenvalue 1. †

ii. Find a basis for the generalized eigenspace corresponding to the eigenvalue 1.

iii. Find three linearly independent solutions Φj(t) of the differential equation.

iv. What is the simple relation between the matrix Ψ(t) whose columns are the Φj and the matrix
eAt? No explanation needed.

Solution. i.

A− I =





−1 1 −1
−2 2 −1
−1 1 0





Find its nullspace by row reduction. Subtract the first row from the last and subtracting twice the
first row from the second yields





−1 1 −1
0 0 1
0 0 1





The nullspace is given by x3 = 0 = −x1+x2. The eigenvectors are the nonzero multiples of (0, 1, 1).
Since this is a double root the generalized eigenspace is larger than the set of all eigenvectors.

ii. Compute

(A− I)2 =





−1 1 −1
−2 2 −1
−1 1 0









−1 1 −1
−2 2 −1
−1 1 0



 =





0 0 0
−1 1 0
−1 1 0





The generalized eigenspace is the two dimensional subspace defined by the single equation x1 = x2.

† By definition eigenvectors are nonzero vectors.



It is convenient to choose the eigenvector as one basis element, (1, 1, 0). A second basis element is,
for example, (0, 0, 1).

iii. Corresponding to the two eigenvectors one has the solutions

Φ1(t) = e2t (0, 1, 1) , Φ2(t) = et (1, 1, 0) .

The solution with initial value the other basis element of the generalized eigenspace is

Φ3(t) = et
(

I + (A− I)t
)

(0, 0, 1) .

iv. eAt = Ψ(t) (Ψ(0))−1.


