Homework 2
Due Tuesday September 16

1. $18 / 10$.

Remark. Section 10 of the Dimension 1.5 handout was written to help with the next question. You may use the Theorems from that section.
2. $18 / 15$. Hint. Note that $p<q$ is given. Denote $p(x):=\phi(T, x)$ the Poincaré map. Find the sign of $p(x)-x$ for $x=p, q$. Toward that end show that the solution with $x(0)=p$ must satisfy $x(t)>p$ for $t>0$. For $0<t \ll 1$ prove and use $x^{\prime}(0)>0$. If it is violated there would be a smallest $\underline{t}>0$ with $x(\underline{t})=p$. Derive a contradition. Hint Draw a picture. Discussion. The conclusion is valid if the hypotheses are weakened to $f(t, p) \geq 0$ and $f(t, q) \leq 0$ provided that the periodic orbit is required only to satisfy $q \leq x \leq p$. You need not prove that harder result. It is useful in problem 18/16 of HSD that will be assigned later.
3. Exercise 2.2 of the Dimension 1 handout.

The next two problems concern the logistic equation $x^{\prime}=a x(1-x)$ with $a>0$.
4. a. Find the linearized equation ${ }^{1}$ at the equilibrium $x=0$. Explain why this suggests instability of the equilibrium.
b. Find the linearized equation at the equilibrium $x=1$. Explain why this suggests stability of the equilibrium.
5. The solution of the initial value problem (see text page 5)

$$
x^{\prime}=a x(1-x), \quad x(0)=A \quad \text { is } \quad x(t)=\frac{A e^{a t}}{1-A+A e^{a t}}
$$

c. Find the linearized equation at this solution.
6. Exercise 8.1 of the Dimension 1.5 handout. Remark. The online handout "The Steps of Perturbation Theory" may be useful.
7. $17 / 5$.

1 The linearization or variational equation of $X^{\prime}=F(t, X)$ at a solution $\underline{X}(t)$ is the homogeneous linear system $U^{\prime}=A(t) U$ with $A(t)=D_{X} F(t, \underline{X}(t))$.

