Instructions.

- 1. Clearly explain your answers.
- 2. You are allowed two sides of a 3"×5" card of notes.
- 3. No calculators.
- 4. There are 5 problems and a total of 50 points.

Good Luck.

1. (13 points) The origin is an equilibrium point of each of the nonlinear systems

$$x' = x + y + xy$$

$$y' = -y + x^2 + y^2,$$

$$x' = x + y + x^2 - y^2$$

$$y' = y + xy.$$

- i. (4+4 points) The origin is what type of equilibrium in each case? For example, one of them is a saddle.
- ii. (5 points) For the saddle compute the tangent line to the stable manifold at the origin.

2. (8 points) Consider the system

$$x' = -x + a y, \qquad y' = ax - 2y,$$

with a a real constant. Show that the function

$$L(x,y) = 2x^2 + y^2,$$

is a strict Lyapunov function on the entire plane \mathbb{R}^2 if and only if |a| < 4/3.

3. (6+4 points) The planar system in polar coordinates,

$$r' = r - 1 + (r - 1)^2 \sin \theta$$
, $\theta' = 1$,

has the 2π periodic orbit

$$r(t) = 1$$
, $\theta(t) = t$, $x(t) = \cos t$, $y(t) = \sin t$.

The positive x-axis is a section, denoted S, defined in polar coordinates by $\theta = 0$. Since $\theta' = 1$, the first return from (r, 0) occurs at $t = 2\pi$ at which time $\theta = 2\pi$.

Consider orbits beginning on S. Then r=x and $\theta=0$ at t=0. For $x\approx 1$ define $r(t,x),\theta(t,x)$ to be the solution with

$$r(0,x) = x$$
, $\theta(0,x) = 0$.

Then $r(t,1), \theta(t,1)$ is the periodic orbit. The function $x \to r(2\pi, x)$ is the first return map.

i. Show that

$$R(t) := \frac{\partial r(t,x)}{\partial x} \bigg|_{x=1} \,, \qquad \Theta(t) := \frac{\partial \theta(t,x)}{\partial x} \bigg|_{x=1} \,,$$

satisfy the variational (perturbation) equations

$$R' = R$$
, $\Theta' = 0$, $R(0) = 1$, $\Theta(0) = 0$.

Conclude that

$$\left. \frac{dr(2\pi, x)}{dx} \right|_{x=1} = e^{2\pi} .$$

ii. Use the result of i to show that the first return of trajectories near the periodic orbit return roughly $e^{2\pi}$ times further away from the orbit r = 1 than they started.

4. (8 points) Suppose that

$$X' = F(X), \qquad X = (x_1, x_2)$$

is an autonomous planar system of ordinary differential equations such that

- **a.** The origin is the only equilibrium inside the unit disk $\{|X| \leq 1\}$ and is a source.
- **b.** $F(X) \cdot X \leq 0$ when |X| = 1 so the disk is positively invariant.

Show that for any $X \neq 0$ in the disk, the ω -limit set $\omega(X)$ is a periodic orbit.

5. (4+2+5) points) For $0 \neq \lambda$ consider the map

$$f_{\lambda}(x) = \lambda x(x-1)$$
.

- i. Show that f_{λ} has exactly two fixed points and find them.
- ii Compute $f_{\lambda}^{2}(x)$ the second iterate of f_{λ} .
- iii. For which values of $\lambda \neq 0$ does f_{λ} has a two cycle which is not a fixed point of f_{λ} . Hint. Each of the fixed points of f_{λ} is a fixed point of f_{λ}^2 . This gives two roots and therefore two linear factors of the polynomial whose roots are the 2-cycles. You need to find out if the polynomial has any other roots.