Instructions.

1. Clearly explain your answers.
2. You are allowed two sides of a $3 " \times 5 "$ card of notes.
3. No calculators.
4. There are 5 problems and a total of 50 points.

Good Luck.

1. (13 points) The origin is an equilibrium point of each of the nonlinear systems

$$
\begin{aligned}
x^{\prime} & =x+y+x y \\
y^{\prime} & =-y+x^{2}+y^{2}, \\
x^{\prime} & =x+y+x^{2}-y^{2} \\
y^{\prime} & =y+x y .
\end{aligned}
$$

i. ($4+4$ points) The origin is what type of equilibrium in each case? For example, one of them is a saddle.
ii. (5 points) For the saddle compute the tangent line to the stable manifold at the origin.
2. (8 points) Consider the system

$$
x^{\prime}=-x+a y, \quad y^{\prime}=a x-2 y,
$$

with a a real constant. Show that the function

$$
L(x, y)=2 x^{2}+y^{2}
$$

is a strict Lyapunov function on the entire plane \mathbb{R}^{2} if and only if $|a|<4 / 3$.
3. $(6+4$ points) The planar system in polar coordinates,

$$
r^{\prime}=r-1+(r-1)^{2} \sin \theta, \quad \theta^{\prime}=1
$$

has the 2π periodic orbit

$$
r(t)=1, \quad \theta(t)=t, \quad x(t)=\cos t, \quad y(t)=\sin t
$$

The positive x-axis is a section, denoted S, defined in polar coordinates by $\theta=0$. Since $\theta^{\prime}=1$, the first return from $(r, 0)$ occurs at $t=2 \pi$ at which time $\theta=2 \pi$.
Consider orbits beginning on S. Then $r=x$ and $\theta=0$ at $t=0$. For $x \approx 1$ define $r(t, x), \theta(t, x)$ to be the solution with

$$
r(0, x)=x, \quad \theta(0, x)=0
$$

Then $r(t, 1), \theta(t, 1)$ is the periodic orbit. The function $x \rightarrow r(2 \pi, x)$ is the first return map.
i. Show that

$$
R(t):=\left.\frac{\partial r(t, x)}{\partial x}\right|_{x=1}, \quad \Theta(t):=\left.\frac{\partial \theta(t, x)}{\partial x}\right|_{x=1}
$$

satisfy the variational (perturbation) equations

$$
R^{\prime}=R, \quad \Theta^{\prime}=0, \quad R(0)=1, \quad \Theta(0)=0
$$

Conclude that

$$
\left.\frac{d r(2 \pi, x)}{d x}\right|_{x=1}=e^{2 \pi}
$$

ii. Use the result of \mathbf{i} to show that the the first return of trajectories near the periodic orbit return roughly $e^{2 \pi}$ times further away from the orbit $r=1$ than they started.
4. (8 points) Suppose that

$$
X^{\prime}=F(X), \quad X=\left(x_{1}, x_{2}\right)
$$

is an autonomous planar system of ordinary differential equations such that
a. The origin is the only equilibrium inside the unit disk $\{|X| \leq 1\}$ and is a source.
b. $F(X) \cdot X \leq 0$ when $|X|=1$ so the disk is positively invariant.

Show that for any $X \neq 0$ in the disk, the ω-limit set $\omega(X)$ is a periodic orbit.
5. $(4+2+5)$ points) For $0 \neq \lambda$ consider the map

$$
f_{\lambda}(x)=\lambda x(x-1)
$$

i. Show that f_{λ} has exactly two fixed points and find them.
ii Compute $f_{\lambda}^{2}(x)$ the second iterate of f_{λ}.
iii. For which values of $\lambda \neq 0$ does f_{λ} has a two cycle which is not a fixed point of f_{λ}. Hint. Each of the fixed points of f_{λ} is a fixed point of f_{λ}^{2}. This gives two roots and therefore two linear factors of the polynomial whose roots are the 2 -cycles. You need to find out if the polynomial has any other roots.

