## Instructions.

1. Clearly explain your answers.
2. You are allowed two sides of a $3 " \times 5 "$ card of notes.
3. No calculators.
4. There are four problems.

Good Luck.

1. The first three parts concern the scalar ordinary differential equation

$$
p^{\prime}=p^{100}-1
$$

i. (4 points) Find all equilibrium points.
ii. (4 points) Draw the phase line diagram.
iii. (2 points) Determine the stability of each equilibrium point.
iv. ( $3+2$ points) This equation is in the family of equations

$$
p^{\prime}=p^{100}+a, \quad-\infty<a<\infty .
$$

Determine all values of $a$ where bifurcations occur and describe the change(s) that occur at the bifurcations. Diagrams can help here.

Solution outline. The equilibria are the solutions of $p^{100}-1=0$. There are two, $p= \pm 1$. Since $p^{100}-1$ is positive outside $[-1,1]$ and negative in $]-1,1[$, solutions move to the right when they are ouside $[-1,1]$ and move to the left in the interval $]-1,1[$.
It follows that the equilibrium $p=-1$ is a sink and $p=1$ is a source. This can also be shown by linearization since the equilibria are hyperbolic.
The same analysis works for the family in iv. when $a<0$ and the equilibria are at $\pm|a|^{1 / 2}$. When $a=0$ there is exactly one equilibrium, at $p=0$. The phase line in this case is moving to the right at all points other than $p=0$.
For $a>0$ there are no equilibria and the flow is strictly right moving at all points.
2. This problem has four parts, ai, aii, bi, bii each worth 4 points. For each of the two systems

$$
\text { (a) } \quad X^{\prime}=\left[\begin{array}{cc}
-1 & 2 \\
-1 / 2 & -1
\end{array}\right] X, \quad \text { (b) } \quad X^{\prime}=\left[\begin{array}{cc}
4 & 5 \\
-2 & -3
\end{array}\right] X
$$

i. Determine if the system falls into one of the following categories, sprial sink, spiral source, saddle, nonspiral source, nonspiral sink.
ii. If a spiral sink or spiral source determine the direction of rotation of the spiral and the exponential rate of growth or decay.
If a source determine the direction of fastest growth. If a (nonspiral) sink determine the direction of slowest decay.
If a saddle determine the direction of the stable line. (Definition. The stable line is the set of initial data with the property that the solution of the corresponding initial value problem tends to 0 as $t \rightarrow \infty$.

Solutionn outline. a. Compute

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}+2 \lambda+2
$$

The eigenvalues are $\lambda=-1 \pm i$. The equilibrium is a spiral sink.
The tangent at $(1,0)$ has second component equal to $-1 / 2$ so the orbit crosses the $x$-axis moving in the clockwise direction.
The solutions decay like $e^{-t}$ thanks to the real part of the eigenvalues.
b.

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}+\lambda-2=(\lambda-2)(\lambda+1)
$$

The eigenvalues are $-1,2$. The equilibrium is a saddle.
The stable line is the line of eigenvectors with eigenvalue -1 . That is, $\mathbb{R}(1,-1)$.
3. (15 points) Define

$$
A=\left[\begin{array}{ccccc}
-1 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

Find the general solution of $X^{\prime}=A X$.
Solution outline. Since

$$
\begin{gathered}
A=\left[\begin{array}{cc}
A_{3 \times 3} & 0 \\
0 & A_{2 \times 2}
\end{array}\right], \\
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(A_{3 \times 3}-\lambda I_{3 \times 3}\right) \operatorname{det}\left(A_{2 \times 2}-\lambda I_{2 \times 2}\right)=(\lambda+1)^{3}\left[(1-\lambda)^{2}+4\right] .
\end{gathered}
$$

The roots are $\lambda=-1,-1,-1,1 \pm 2 i$.
The eigenvectors with eigenvalue $1+2 i$ are the nonzero multiples of $V:=(0,0,0,-2 i, 1)$.
Two linearly independent solutions are

$$
e^{(1+2 i) t} V, \quad e^{(1-2 i) t} \bar{V}
$$

For $\lambda=-1$ the eigenspace is

$$
E_{\lambda}=\operatorname{ker}(A+I)^{3}=\operatorname{ker}(A+I)^{2}=\left\{v: v_{4}=v_{5}=0\right\} .
$$

This set is invariant and $(A+I)^{2}$ vanishes on these vectors so the solutions with values in $E_{\lambda}$ are given by the three parameter family of solutions

$$
\left.e^{-t}[I+(A+I) t](a, b, c, 0,0)\right] .
$$

The general solution is then

$$
e^{-t}[I+(A+I) t](a, b, c, 0,0)+d e^{(1+2 i) t} V+f e^{(1-2 i) t} \bar{V}
$$

4. (5 points) Compute the linearization of the nonlinear system

$$
x_{1}^{\prime}=\cos x_{1} \sin x_{2}, \quad x_{2}^{\prime}=\pi x_{1}^{2}-x_{2}
$$

at the equilibrium point $\left(x_{1}, x_{2}\right)=(1, \pi)$.
Solution outlilne. Define

$$
f_{1}\left(x_{1}, x_{2}\right)=\cos x_{1} \sin x_{2}, \quad f_{2}\left(x_{1}, x_{2}\right)=\pi x_{1}^{2}-x_{2}
$$

The linearization at an equilibrium is the system $X^{\prime}=A X$ with matrix $A$ equal to the value of

$$
\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]
$$

evaluated at the equilibrium point.
The matrix of partial derivative is equal to

$$
\left[\begin{array}{cc}
-\sin x_{1} \sin x_{2} & \cos x_{1} \cos x_{2} \\
2 \pi x_{1} & -1
\end{array}\right] .
$$

The matrix $A$ is computed by plugging in $\left(x_{1}, x_{2}\right)=(1, \pi)$.

