
Dynamical Systems Prof. J. Rauch

Spectral Decomposition of General Matrices

Summary. Sometimes there are not enough eigenvectors to form a basis. There is always a basis
of generalized eigenvectors. This gives a spectral decomposition of general matrices. And yields
the general solution of X ′ = AX. As a special case we derive the diagonalisability of symmetric
matrices. Stability of X ′ = AX is studied with an eye to the analysis of asymptotic stability by
linearization.

1 Generalized eigenspaces

Suppose that A is a linear transformation from a finite dimensional complex vector space V to
itself and that λ is an eigenvalue of A. The nullspace 1 ker (A−λI) is the linear space consisting
of all eigenvectors with eigenvalue λ together with the zero vector.
Then ker (A− λI)2 ⊃ ker (A− λI) since if (A− λI)v = 0 then surely (A− λI)(A− λI)v = 0. In
this way for ` = 1, 2, . . . define a nondecreasing sequence of linear subspaces,

K` := ker
(
A− λI

)`
, so 0 6= K1 ⊆ K2 ⊆ K3 ⊆ · · · .

Example 1.1 The matrix (
3 1
0 3

)
has characteristic polynomial

det(zI −A) = (z − 3)2,

so has only the eigenvalue λ = 3. For this eigenvalue,

K1 = ker (A− 3I) = C (1, 0), K2 = ker (A− 3I)2 = ker

(
0 0
0 0

)
= C2.

So K` = C2 for all ` ≥ 2.

Proposition 1.1 There is an r ≤ dimV so that

0 6= K1 ( K2 ( · · · ( Kr = Kr+1 = Kr+2 = · · · ,

with
dimK` ≥ ` for 1 ≤ ` ≤ r . (1.1)

Proof. Whenever there is strict inclusion the dimension must increase by at least one. Thus,
there can be at most dimV strict inclusions K` 6= K`+1. Therefore, there is a first r ≥ 1 so that
Kr+1 = Kr.

1The nullspace or kernel of a linear transformation is the set of vectors X such that BX = 0. It is a linear
subspace. To use the results of the note to compute general solutions one uses Gaussian elimination to compute
nullspaces.
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To show that the Kj = Kr for j ≥ r, it suffices to prove that K` = K`+1 implies K`+1 = K`+2.

If K` = K`+1 and v ∈ K`+2, then (A − λI
)`+1

(A − λI
)
v = 0 so (A − λI

)
v ∈ K`+1 = K` so

(A− λI
)`

(A− λI
)
v = 0 proving that v ∈ K`+1.

Since the inclusion of the K` is strict before r, the dimensions satisfy,

dimK1 ≥ 1, dimK` ≥ dimK`−1 + 1, for 2 ≤ ` ≤ r,

proving (1.1).

Definition 1.1 The space Kr is called the generalized eigenspace associated to λ and r is
its index.

Exercise 1.1 Suppose that V = CN and that A is a real matrix. i. Show that if λ is real, then
the generalized eigenspace X satisfies X = X where the overline signifies complex conjugate. ii.
If λ is not real show that X is equal to the generalized eigenspace associated to the eigenvalue λ.

Proposition 1.2 If Kr is the generalized eigenspace associated to λ and its index is r, define

Y := range (A− λI)r .

i. Kr and Y are invariant under A, that is A(Kr) ⊂ Kr and A(Y ) ⊂ Y .
ii. One has the direct sum decomposition

V = Kr ⊕ Y . (1.2)

Proof. i. For the invariance of K, if v ∈ Kr then (A − λI)rv = 0 so since A commutes with
any polynomial in A,

(A− λI)rAv = A(A− λI)rv = A 0 = 0,

proving that Av ∈ Kr.
For the invariance of Y , if w ∈ Y then there is a u so that w = (A− λI)ru then

Aw = A(A− λI)ru = (A− λI)r(Au) ∈ Range (A− λI)r := Y .

ii. K and Y are the kernel and range of the linear transformation (A− λI)r. It follows that

dimKr + dimY = dimV .

To prove (1.2) it therefore suffices to show that

Kr ∩ Y = 0 .

If v ∈ Kr ∩ Y then,

(A− λI)rv = 0, and there is a u s.t. v = (A− λI)ru .

Then (A− λI)2ru = 0. That is, u ∈ K2r = Kr so, v = (A− λI)ru = 0.

This result splits A into two pieces, the part in K and the part in Y . The next result shows that
that split separates the part with eigenvalue λ from the rest.
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Proposition 1.3 λ is the only eigenvalue of A|Kr , and, λ is not an eigenvalue of A|Y .

Proof. To prove the first assertion suppose that λ̃ 6= λ and v ∈ Kr satisfies Av = λ̃v. Then

(A− λI)v = (λ̃− λ)v .

Therefore

(A− λI)2v = (A− λI)(A− λI)v = (A− λI)(λ̃− λ)v = (λ̃− λ)(A− λI)v = (λ̃− λ)2v .

By induction one has for all k
(A− λI)kv = (λ̃− λ)kv .

Taking k = r yields
(A− λI)rv = (λ̃− λ)rv .

Since v ∈ Kr one has,
0 = (A− λI)rv = (λ̃− λ)rv,

so v = 0 since (λ̃− λ)r 6= 0.
To prove the second assertion it is sufficient to show that ker(λIY − A|Y ) = 0. If w ∈ Y and
(λIY −A|Y )w = 0, then w ∈ K1 ⊂ Kr so w ∈ Kr ∩ Y = {0}.

2 Completeness of the generalized eigenspaces

Theorem 2.1 Suppose that A is a linear transformation from a finite dimensional complex
vector space V to itself with characteristic polynomial

det(zI −A) = Πk
j=1

(
z − λj)mj , λj distinct ,

∑
mj = dimV .

Denote by Xj the generalized eigenspace associated to λj.
i. dimXj = mj. Therefore the index rj of the generalized eigenspace of λj is ≤ mj and

Xj := ker (A− λjI)rj = ker (A− λjI)mj .

ii. V = X1 ⊕ X2 ⊕ · · · ⊕Xk .

Proof. i. For ease of reading fix one of the λj and call it λ. Proposition 1.2 shows that

A = A|X ⊕ A|Y .

Taking a basis for V whose first elements are a basis for X and last elements a basis for Y .
Abusing notation with A|X and A|Y also denoting the matrices of the restrictions yields block
matrices

A =

(
A|X 0

0 A|Y

)
, zI −A =

(
zIX −A|X 0

0 zIY −A|Y

)
.

Therefore for all z,

det(zI −A) = det(zIX −A|X) det(zIY −A|Y ) . (2.1)
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Propostion 1.3 shows that λ is the only eigenvalue of A|X , so

det(zIX −A|X) = (z − λ)dimX .

The same proposition shows that λ is not an eigenvalue of A|Y , so

det(λIY −A|Y ) 6= 0 .

Therefore (2.1) shows that the multiplicity of the root λ is equal to dimX. Since the mulitplicity
of the root λ is equal to m, one has

m = dimX .

Estimate (1.1) with ` = r yields dimX = dimKr ≥ r proving the estimate for the index.

ii. Using i yields

dimX1 ×X2 × · · · ×Xk =
∑

dimXj =
k∑
1

mj = dimV .

The map

X1 ×X2 × · · · ×Xk 3 (x1, x2, . . . , xk) 7→ x1 + x2 + · · ·+ xk ∈ V

is a linear map of spaces of the same dimension. To prove the direct sum assertion of the Theorem
it is sufficient to show that it is injective.
If x1 + · · · + xk = 0, multiplying by Πj 6=µ(A − λjI)mj annihilates all the summands except the
xµ term to yield,

Πj 6=µ(A− λjI)mjxµ = 0 .

Proposition 1.3 shows λµ is the only eigenvalue of A|Xµ , so for j 6= µ, A − λjI is an invertible
map of Xµ to itself. Therefore Πj 6=µ(A − λjI)mj is invertible from Xµ to itself. It follows that
xµ = 0. Since this is true for each µ one has x1 = x2 = · · · = xk = 0 proving injectivity.

Exercise 2.1 Suppose that A is a real matrix as in Exercise 1.1 and that λ and λ is a pair of com-
plex conjugate eigenvalues with generalized eigenspaces X and X. If m ≥ 1 and w1, w2, . . . , wm
is a basis for X, prove that

Rew1 , Imw1 , Rew2 , Imw2 , . . . , Rewm , Imwm

is a basis for X ⊕ X. Hint. Show that they are independent and that their number matches
the dimension.

Exercise 2.2 The polynomial p(z) := det(zI − A) is called the characteristic polynomial of A.
Prove the Cayley-Hamilton Theorem asserting that p(A) = 0. Hint. Show that if v is a member
of one of the generalized eigenspaces Xj, then p(A)v = 0.

Exercise 2.3 A different proof of the Cayley-Hamilton Theorem uses the fact that the set of
matrices whose characteristic polynomial has no repeated roots is dense in the set of all matrices.
i. Show that the Cayley-Hamilton Theorem is true for this dense set of matrices by evaluating
p(A)v on a basis of eigenvectors v. ii. Then approximate a general matrix A by matrices An
whose polynomials have no repeated roots. Pass to the limit n → ∞ in the Cayley-Hamilton
Theorem applied to An. Hint. Show that the characteristic polynomial pn of An converges to
the characteristic polynomial of A.
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3 General solution to constant coefficient systems

Theorem 3.1 Suppose that A, λj, mj, and Xj are as above. If v ∈ Xj then the solution of the
initial value problem

X ′ = AX , X(0) = v

is given by

X(t) = eλjt
[
I + t(A− λjI) +

t2(A− λjI)2

2!
+ · · · +

tmj−1(A− λjI)mj−1

(mj − 1)!

]
v .

Proof. Write A = λjI + (A− λjI) as the sum of commuting transformations and compute

eAtv = eλjtIeAt−λjtIv = eλjtI
[ ∞∑
k=0

tk(A− λjI)k

k!
v

]
.

The result follows because eλjtI = eλjtI and the infinite sum terminates at power k = mj − 1
since v ∈ Xj .

To construct a general solution it suffices to find a basis vj each element of which is a generalized
eigenvector and to use the Theorem to compute the solution Φj(t) with initial value vj . This is
spelled out in more detail in the Multiple Roots Handout.

4 Diagonalisability of symmetric matrices

We derive the fact that symmetric matrices have an orthonormal basis of eigenvectors from the
result of the preceding section. Recall that the analogue in a general scalar product space of
symmetric matrices are the linear transformations which satisfy

∀ v , w , 〈Av,w〉 = 〈v,Aw〉

where 〈 , 〉 denotes the scalar product.

Example 4.1 If V = Cn the standard scalar product is

〈v, w〉 =
∑

xj yj ,

and the corresponding symmetric linear transformations are the matrices satisfying

Aij = A∗ji .

They are hermitian symmetric. For real matrices that reduces to symmetry.

Theorem 4.2 Suppose that V is a complex scalar product space and A is a symmetric linear
transformation from V to itself.
i. The eigenvalues of A are real.
ii. For each eigenvalue, the index r = 1 that is K` = K1 for all ` so every generalized eigenvector
is an eigenvector.
iii. Eigenvectors with distinct eigenvalues are orthogonal.
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Proof. i. If λ is an eigenvalue, choose a unit eigenvector v to find,

λ = λ〈v, v〉 = 〈λv, v〉 = 〈Av, v〉 = 〈v,Av〉 = 〈v, λv〉 = λ〈v, v〉 = λ .

ii. Must show that K2 = K1. That is if (A− λ)2v = 0 then (A− λI)v = 0. Compute

‖(A− λI)v‖2 =
〈
(A− λI)v, (A− λI)v

〉
=
〈
(A− λI)2v, v〉 = 〈0, v

〉
= 0 .

iii. If Av = λ1v and Aw = λ2w with λ1 6= λ2 must show that 〈v, w〉 = 0. Compute using the
fact that the eigenvalues are real,

λ1〈v, w〉 = 〈λ1v, w〉 = 〈Av,w〉 = 〈v,Aw〉 = 〈v, λ2w〉 = λ2〈v, w〉 .

Therefore (λ1 − λ2)〈v, w〉 = 0 showing that 〈v, w〉 = 0.

5 Application to stability for X ′ = AX

The Spectral Decomposition Theorem yields characterizations of asymptotic stability and sta-
bility of the equilibrium solution X = 0 of X ′ = AX. In both cases the description in terms of
the spectrum of A is the criterion most often employed.

5.1 Asymptotic stability

The next results require that one choose a norm ‖·‖ on V. When V = CN it is sometimes natural
to choose the Euclidean norm. The four equivalent conditions in the theorem are ordered from
strongest to weakest.

Theorem 5.1 Suppose that V is a finite dimensional complex normed vector space and that
A : V→ V is linear. For the differential equation X ′ = AX the following are equivalent.
1. There are positive constants K and ρ so that for all t ≥ 0

‖eAt‖ ≤ K e−ρt . (5.1)

2. 0 is an asymptotically stable equilibrium.
3. Every solution X(t) converges to 0 as t→∞.
4. All the eigenvalues of A have strictly negative real part.

Proof. It suffices to show that 1⇒ 2⇒ 3⇒ 4⇒ 1.

Exercise 5.1 Prove the easiest steps 1⇒ 2⇒ 3.

3 ⇒ 4. The implication 3 ⇒ 4 is equivalent to contrapositive ∼ 4 ⇒∼ 3 where ∼ denotes the
denial of.
The statement ∼ 4 means that there is an eigenvalue λ with real part ≥ 0. Choose an eignevector
v 6= 0. Then X(t) := eλtv is a solution that does not tend to zero as t→∞ proving ∼ 3.
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4⇒ 1. This is the important implication. Denote by Xj the generalized eigenspaces of A. Any
v has a unique expansion v =

∑
vj with vj ∈ Xj . By the triangle inequality, it follows that

‖v‖ ≤
∑
‖vj‖ .

On the other hand the map v 7→ vj is a linear map from V to Xj ⊂ V so there is a constant Cj
so that ‖vj‖ ≤ Cj ‖v‖.

Exercise 5.2 Expanding v as a sum of elements in the generalized eigenspaces show that it
suffices to show that for each generalized eigenspace Xj associated to A there are positive constants
ρj and Kj so that for v ∈ Xj

‖etAv‖ ≤ Kj e
−ρjt ‖v‖ . (5.2)

Denote by mj ≥ 1 the multiplicity of λj as a root of the characteristic polynomial of A. Then
for v ∈ Xj

eAtv = eλjt
[
I + t(A− λjI) +

t2(A− λjI)2

2!
+ · · · +

tmj−1(A− λjI)mj−1

(mj − 1)!

]
v .

Since λj has strictly negative real part we can choose 0 < ρj < |Reλj | then for each µ there are
constants C(µ, ρj) so that for t ≥ 0

|tµ eλjt| ≤ C e−ρjt .

The desired estimate (5.2) then follows from the triangle inequality.

5.2 Stability

Theorem 5.2 For the linear equation X ′ = AX, the following are equivalent.
1. There is a constant K so that for all t ≥ 0

‖etA‖ ≤ K .

2. 0 is a stable equilibrium.
3. Every solution X(t) is uniformly bounded for t ≥ 0.
4. Each eigenvalue of A has real part ≤ 0. In addition if λ is a purely imaginary eigenvalue and
m its multiplicity, then ker(A− λI) has dimension m.

Proof. The proof is by showing that 1⇒ 2⇒ 3⇒ 4⇒ 1.

Exercise 5.3 Prove 1⇒ 2⇒ 3.

3 ⇒ 4 is equivalent to ∼ 4 ⇒∼ 3. If 4 is violated either there is an eigenvalue with strictly
negative real part or an eigenvalue in the imaginary axis and a vector v 6= 0 so that

(A− λI)v 6= 0 , and (A− λI)2v = 0 .

In the first case if v is an eigenvector then eλtv is an unbounded solution. In the second case

eλt
[
I + t(A− λI)

]
v

7



is an unbounded solution. In both cases we have ∼ 3.

4⇒ 1. It is sufficient to show that for each generalized eigenspace Xj there is a constant Kj so
that for all v ∈ Xj and t ≥ 0,

‖etAv‖ ≤ Kj ‖v‖ . (5.3)

If the eigenvalue for Xj has strictly negative real part, then Theorem 5.1 applied in the vector
space Xj implies that there are positive Kj and ρj so that ‖etA‖ ≤ Kje

−ρjt. This implies (5.3)
If the eigenvalue is purely imaginary, then Xj has dimension m equal to the dimension of the
kernel so for v ∈ Xj , Av = λjv. Therefore for those v, etAv = etλjv. Since λj is purely imaginary
eλjt has modulus equal to one so

‖etAv‖ = ‖etλjv‖ = |etλj | ‖v‖ = ‖v‖ .

This is the desired estimate (5.3) with Kj = 1.

6 Quadratic forms decreasing on orbits

6.1 General result

This section gives a generalization of two easy examples. The decreasing quadratic form is used
(not in these notes) to prove the asymptotic stability of equilibria of nonlinear problems whose
linearization is asymptotically stable.

Example 6.1 i. For a real 2× 2 system whose phase plane is a spiral sink the orbits are of the
form eat times elliptical orbits where a < 0 is the real part of the complex conjugate eigenvalues.
The positive quadratic form whose level sets define the ellipses is then decreasing on non zero
orbits.
ii. For a 2 × 2 system with two distinct negative real eigenvalues λj and eigenvectors Vj define
new coordinates αj by

X = α1V1 + α2V2 .

A function X(t) satisfies the differential equation if and only if αj(t) = cje
λjt . Therefore the

quadratic form ∑
j

|αj |2 (6.1)

decreases on orbits.
In both cases, the vector field is transverse to and points into the ellipsoids that are level sets of
the positive definite quadratic form.

Definition 6.1 A scalar product on a complex vector space V is a mapping Q : V × V → C
satisfying for all X, Y , and Z in V and a ∈ C,
i. Q(X + Y, Z) = Q(X,Z) +Q(Y, Z),
ii. Q(aX,Z) = aQ(X,Z),
iii. Q(X,Z) = Q(Z,X),
iv. Q(X,X) > 0 if X 6= 0.
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Exercise 6.1 If Q is a scalar product show that Q(0, Y ) = 0, Q(X, aY ) = aQ(X,Y ), and
Q(X,Y + Z) = Q(X,Y ) +Q(X,Z).

Example 6.2 If vj, 1 ≤ j ≤ dimV is a basis then u, v ∈ V have unique expansions

u =
∑

αj vj , v =
∑

βj vj .

Then Q(u, v) :=
∑
αjβj is a scalar product. With respect to this scalar product the basis is

orthonormal.

Example 6.3 Suppose that V is a complex finite dimensional vector space, A : V→ V is linear
and has a basis of eigenvectors {vj}, and, all eigenvalues have strictly negative real part. Then
the scalar product in the preceding example decreases on orbits of X ′ = AX.
This example includes the preceding two as special cases and almost yields the general result. It
misses only the case of A that have non trivial generalized eigenspaces.

Theorem 6.4 (Lyapunov) Suppose that V is a finite dimensional complex vector space and that
A : V → V is a linear transformation whose eigenvalues have strictly negative real part. Then
there is a scalar product Q(X,Y ) on V and a constant c > 0 to that for all solutions of X ′ = AX
one has

dQ(X(t), X(t))

dt
≤ −cQ(X(t), X(t)) . (6.2)

In particular Q(X(t), X(t)) is strictly decreasing on non zero orbits.

Geometric interpretation. Orbits cross from ellipsoids Q = const to ellipsoids with smaller
constants.

The proof uses the following characterization of transformations whose only eigenvalue is 0.

Lemma 6.1 If W is a finite dimensional complex vector space and B : W → W is linear then
the following are equivalent.
i. Zero is the only eigenvalue of B.
ii. BdimW = 0.
iii. For every ε > 0 there is a scalar product Q on W so that for all w ∈W,

Q(Bw,Bw) ≤ ε2Q(w,w) . (6.3)

Equivalently, in the norm defined by Q, ‖Bw‖Q ≤ ε‖w‖Q .

Proof. i.⇒ii. Since 0 is the only eigenvalue, the only generalized eigenspace is the one associated
to λ = 0. The multiplicity of the eigenvalue must be equal to dimW. The Spectral Theorem for
General Matrices implies ii.

ii.⇒iii. This is the difficult step. Begin by choosing any scalar product on W. Denote the scalar
product by ( · , · ) and by m the dimension of W. With a thunder bolt of creativity define a
new scalar product Q by

Q(X,W ) :=
m−1∑
j=0

(
Γj BjX , Γj BjW

)
:=

(
X , W

)
+
(
ΓBX , ΓBW

)
+
(
Γ2B2X , Γ2B2W

)
+ · · ·+

(
Γm−1Bm−1X , Γm−1Bm−1W

)
.

with large positive Γ to be chosen later.
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Exercise 6.2 Verify that if Γ ≥ 0 then Q is a scalar product.

By definition

Q(w,w) = (w,w) + (ΓBw,ΓBw) + · · ·+
(
Γm−1Bm−1w , Γm−1Bm−1w

)
.

Then,

Q(Bw,Bw) = (Bw,Bw)+(ΓBw,ΓBw)+· · ·+
(
Γm−2Bm−1w , Γm−2Bm−1w

)
+
(
Γm−1Bmw , Γm−1Bmw

)
.

Mulitply by Γ2 and use Bm = 0 to find

Γ2Q(Bw,Bw) = (ΓBw,ΓBw) + · · ·+
(
Γm−1Bm−1w , Γm−1Bm−1w

)
= Q(w,w) − (w,w) ≤ Q(w,w) .

Choosing Γ so large that 1/Γ ≤ ε proves iii.

iii.⇒i. If λ is an eigenvalue, choose an eigenvector w. Using iii compute

|λ|‖w‖ = ‖λw‖ = ‖Bw‖ ≤ ε‖w‖ .

Therefore |λ| ≤ ε. Since this is true for all ε > 0 it follows that λ = 0. This completes the proof
of the Lemma.

Proof of Theorem. Step I. Reduction to the case of (A−λI)m = 0. Decompose V = ⊕Xj

as a direct sum of generalized eigenspaces. The Xj are invariant by A and also by the flow of
the differential equation.
To construct Q it is sufficient to construct scalar products Qj on Xj that decrease under the
flow of the differential equation restricted to Xj . Then Q(X,X) :=

∑
j Qj(Xj , Xj) serves for

the original problem.
Thus it is sufficient to consider A|Xj . That restriction has one eigenvalue and satisfies (A|Xj −
λjIXj )

mj = 0. This reduces to the case of transformations A so that there is a λ ∈ {Re z < 0}
and an m ≥ 1 so that (A− λI)m = 0. The remainder of the proof treats that case.

Step II. Use Lemma 6.1. Define B = A − λI with Bm = 0. If X ′ = AX, then Y = e−λtX
satisfies

Y ′ =
(
e−λtX

)′
= e−λtX ′ − λe−λtX = e−λt

(
AX − λX

)
= BY .

The strategy is to find a scalar product that grows slowly under Y ′ = BY so that X = eλtY
decays because of the exponential factor.
For ε > 0 to be chosen later, choose Q as in the Lemma. A product rule yields

d

dt
Q(Y (t), Y (t)) = Q(Y ′, Y ) +Q(Y, Y ′) = Q(BY, Y ) +Q(Y,BY ) . (6.4)

The Cauchy-Schwartz inequality for the scalar product Q and then (6.3) yield

|Q(BY, Y )| = |Q(Y,BY )| ≤ Q(BY,BY )1/2Q(Y, Y )1/2

≤
(
ε2Q(Y, Y )

)1/2
Q(Y, Y )1/2 = εQ(Y, Y ) .

Therefore
d

dt
Q(Y (t), Y (t)) ≤ 2 εQ(Y (t), Y (t)) . (6.5)
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Step III. Endgame. Since |eλt| = eReλt one has

Q(X,X) = Q(eλtY , eλtY ) = eλt eλtQ(Y, Y ) = |eλt|2Q(Y, Y ) = e2ReλtQ(Y, Y ) . (6.6)

Differentiate to find

d

dt

(
e2ReλtQ(Y (t), Y (t))

)
= 2Reλ e2Reλt Q(Y, Y ) + e2Reλt d

dt
Q(Y (t), Y (t)) .

Using (6.6) yields

d

dt
Q(X,X) ≤ (2 Reλ) Q(X,X) + 2 ε e2Reλt Q(Y, Y ) =

(
2 Reλ+ 2 ε

)
Q(X,X) . (6.7)

Choose ε so small that ε < |Reλ| . Then the coefficient in front of Q(X,X) is strictly negative.
This complete the proof of the Theorem.

Example 6.5 Consider the special case

A =

(
−1 4
0 −1

)
, λ = −1, B =

(
0 4
0 0

)
, m = 2 .

Denote by ( , ) and ‖ ‖ the euclidean scalar product and norm. The preceding analysis shows
that for Γ sufficiently large,

‖X‖2 + Γ2

∥∥∥∥(0 4
0 0

)
X

∥∥∥∥2 (6.8)

decreases on orbits.

Exercise 6.3 Continue this example by finding the constant Γ0 so that the quadratic form in
(6.8) is strictly decreasing on non zero orbits for Γ > Γ0 and not for Γ ≤ Γ0. Hint. Write the
time derivative as a quadratic form in the coordinates (x1, x2). Check negativity using the fact
that ax21 + bx1x2 + cx22 is strictly negative definite if and only if a < 0, and b2 − 4ac < 0. The
proof of this necessary and sufficient condition for definiteness goes as follows. The necessity of
a < 0 comes from considering x2 = 0. If b2 − 4ac ≥ 0 then one can find a point (x1, x2) 6= 0
where the form vanishes so b2 − 4ac < 0 is also necessary. For sufficiency complete squares to
find

ax21 + bx1x2 + cx22 = a
(
x1 +

b

2a
x2

)2
+
(
c− b2

4a

)
x22 = a

(
x1 +

b

2a
x2

)2
+

1

4a
(4ac− b2)x22 .

Exercise 6.4 Show that if there is a scalar product Q(X,X) that is strictly decreasing on nonzero
orbits of X ′ = AX, then the eigenvalues of A have strictly negative real part. Hint. Consider
the solution X(t) = eλtv. You must be careful about complex numbers and complex scalar
products. Discussion. The assertion is the converse of the Theorem.

Exercise 6.5 For the damped linear spring, x′′ + x′ + x = 0 show that there is no choice of the
constant A > 0 so that the quadratic form Q := (x′)2 +Ax2 is strictly decreasing on orbits.

Exercise 6.6 Continuing the damped linear spring show that for ε > 0 sufficiently small the
quadratic form R := (x′)2 + x2 + ε x′ x is strictly positive definite and strictly decreasing on
orbits.
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Exercise 6.7 An incorrect proof of the Theorem is the following. Given any ε > 0 one can
Choose Ã with ‖A − Ã‖ < ε so that Ã has distinct eigenvalues with strictly negative real part.
Easily construct a scalar product Q̃ that satisfies (6.2) on orbits of X ′ = ÃX as in Example 6.3.
It follows that there is a δ > 0 so that if ‖B − Ã‖ < δ, then Q̃ decreases on orbits of X ′ = BX.
Since A is as close to Ã as one likes, Q̃ is the desired scalar product. Explain the error in the
last sentence.

6.2 Reality

In this section we show that when A is a real matrix the scalar product Q can be chosen real.
Even in the general case, though Q may be complex, the decreasing functional Q(X(t), X(t)) is
real valued and that is enough.

Definition 6.2 A linear subspace V ⊂ CN is called real when each of the following equivalent
conditions hold.
i. The complex conjugate of each vector v ∈ V belongs to V.
ii. The real and imaginary parts of each vector v ∈ V belong to V.
iii. V has a basis of real eigenvectors.

Exercise 6.8 Prove the easy implications i⇔ ii and iii⇒ i.

To see that iii is implied by the others, reason as follows. Choose vα a finite spanning set of
complex vectors of V. Denote by wβ the set of real and imaginary parts of these spanning vectors.
The wβ is a spanning set of real vectors with twice as many elements as a basis.
Consider the finite family of subsets of the wβ . Some, for example a subset consisting of one
nonzero element, are linearly independent. Denote by k the size of the largest of these indepen-
dent subsets. Choose u1, . . . , uk one of these largest independent sets. Then each wβ is in the
span of the uj . Otherwise, adjoining wβ would yields a larger independent set. Therefore the uk
is a real basis.

Exercise 6.9 Give details of the last two assertions.

Exercise 6.10 Suppose that A is a real N × N matrix, λ ∈ R is a real eigenvalue, and Xλ is
its generalized eigenspace. Show that Xλ is a real subspace of CN .

Example 6.6 i. Suppose that U ⊂ CN is a linear subspace. Show that U is a linear subspace.
ii. Show that Span {U ∪ U} is a real linear subspace.
iii. If in addition U∩U = {0} show that the span has dimension equal to twice the dimension of
U.

Example 6.7 Suppose that A is a real N ×N matrix, λ ∈ C is an eigenvalue that is not real.
Denote by Xλ the generalized eigenspace associated to λ and Xλ the complex conjugate. Exercise
1.1 shows that Xλ is the generalized eigenspace associated to λ. Exercise 2.1 shows that Xλ⊕Xλ

is a real vector space.
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Exercise 6.11 If Q is a scalar product defined on a real subspace U ⊂ CN show that the following
are equivalent.
i. For all v, w ∈ U, Q(v, w) = Q(v, w).
ii. For all real v, w ∈ U, Q(v, w) ∈ R.
iii. For all real v ∈ U, Q(v, v) ∈ R.

Definition 6.3 When these conditions are satisfied, the scalar product is called real.

Example 6.8 The standard scalar product on CN given by
∑

j xjyj is real.

Example 6.9 If CN is the direct sum of real subspaces Uα, and for each α, Qα is a real scalar
product on Uα, then

∑
αQα is a real scalar product on CN .

Corollary 6.10 If V = CN and A is a real matrix with eigenvalues of strictly negative real
part, then there is a real scalar product Q so that Q(X,X) is strictly decreasing on orbits of
X ′ = AX.

The construction in the preceding subsection does not usually yield a real Q. Typically the
generalized eigenspace associated to a complex eigenvalue has no nonzero real vectors in it. To
achieve reality one must link the constructions on the generalized eigenspaces associated to λ
and λ.

Proof. Step I. Real direct sum decomposition. Denote by λ1, . . . , λJ the distinct real
eigenvalues of A and Xλj their generalized eigenspaces. Exercise 6.10 shows that each of the Xλj

is a real subspace.
Denote by µ1, . . . , µK the distinct eigenvalues of A with strictly positive imaginary part. Denote
by Xµk the generalized eigenspace. Exercise 2.1 shows that the generalized eigenspace associated
to µk is equal to Xµk . Since the generalized eigenspaces associated to µj and µk intersect exactly
at 0 the direct sum Yk := Xµk ⊕ Xµk is a real subspace with dimension equal to twice the
dimension of Xµk .
The general spectral theorem implies that one has the direct sum decomposition in real subspaces

CN = Xλ1 ⊕ · · · ⊕ XλJ ⊕ Y1 ⊕ · · · ⊕ YK .

Each of the summands is invariant under A and therefore under the flow of the differential
equation X ′ = AX.
Thanks to Example 6.9 it is sufficient to construct real decreasing scalar products on each of the
direct summands.

Step II. Decreasing scalar product on the Xj. The construction of Q yields a real scalar
product provided that the beginning scalar product (·, ·) on Xj is real.
A real scalar product on Xj is constructed as follows. Choose a real basis vα of Xj . Then the
unique scalar product so that the vα form an orthonormal basis is such a real scalar product. If
the coordinates of vectors v, w in this basis are xα and yα respectively, then the scalar product
is given by

∑
α xαyα.

Step III. Decreasing scalar product on the Yk. The proof constructs a decreasing scalar
product on Xµk . Call that scalar product Pk. Define a unique scalar product Qk on Yk :=
Xµk ⊕Xµk so that

13



• the two direct summands are orthogonal with respect to Q,
• Q restricted to Xµk is equal to P , and,
• for v, w belonging to Xµk ,

Qk(v, w) := P (v, w) .

Then Qk is a real scalar product on Yk strictly decreasing on orbits.

Exercise 6.12 Verify the last sentence.

7 Floquet theory

Floquet theory is the study of linear equations with coefficients that are periodic in t,

X ′ = A(t)X , A(t+ T ) = A(t) . (7.1)

Suppose that A(t) is continuous. Define the map M by

M X0 := X(T )

where X(t) is the unique solution of X ′ = A(t)X with X(0) = X0. The linear transformation
M is the Poincaré map or time T map of the system.
Thanks to the periodicity of the coefficients, X(nT ) = MnX(0) so studying the long time
behavior of orbits is equivalent to studying the powers of the linear transformation M .

Definition 7.1 M is called the Floquet map and its eigenvalues λj are called Floquet mul-
tipliers.

The next result describes the systems for which the zero solution is asymptotically stable.

Theorem 7.1 If V is a finite dimensional complex vector space and M : V→ V is linear, then
the following are equivalent.
i. For any vector v, limn→∞M

nv = 0.
ii. The eigenvalues of M all have modulus strictly less than 1.
iii. If 1 > a > maxj |λj | then there is a scalar product Q so that in the norm defined by Q,

‖Mv‖Q ≤ a ‖v‖Q for all v ∈ V .

iv. There are positive constants c, α so that

‖Mn‖ ≤ c e−αn .

Proof. Prove the four implications, i⇒ ii⇒ iii⇒ iv⇒ i.

Exercise 7.1 Prove iv⇒ i⇒ ii.
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Proof that ii ⇒ iii. Denote by Xj the generalized eigenspaces of λj . It is sufficient to show
that there are scalar products Qj on Xj so that

‖Mv‖Qj ≤ a ‖v‖Qj for all v ∈ Xj .

Thus it suffices to consider the case of only one eigenvalue. We do that and drop the subscripts
j.
Choose 0 < ε < a − |λ|. Lemma 6.1 applied to B := M − λ I implies that there is a scalar
product Q so that for all v

‖(M − λI)v‖Q ≤ ε ‖v‖Q .

Then

‖Mv‖Q = ‖λv+(M−λI)v‖Q ≤ ‖λv‖Q+‖(M−λI)v‖Q ≤ |λ| ‖v‖Q+ε‖v‖Q = (|λ|+ε) ‖v‖Q < a ‖v‖Q .

Proof that iii ⇒ iv. Choose a < 1 and Q as in iii. Choose α > 0 so that e−α = a. By
induction on n one has for all v and integers n ≥ 0,

‖Mnv‖Q ≤ an‖v‖Q = e−αn‖v‖Q .

There are constants 0 < c1 < C2 <∞ so that for all vectors v

c1‖v‖Q ≤ ‖v‖ ≤ C1‖v‖Q .

Therefore
‖Mnv‖ ≤ C1 ‖Mnv‖Q ≤ C1 e

−αn‖v‖Q ≤ (C1/c1) ‖v‖ .

The proof is complete.

Remark 7.1 i. Condition iii is at the heart of the sufficient linearization criterion for asymp-
totic stability of fixed points of mappings.
ii. Applied to the Poincaré map it yields the linearization criterion for orbital asymptotic stability
of periodic orbits of autonomous systems.

Corollary 7.2 Suppose that X ′ = A(t)X is a linear system with continuous T -periodic coeffi-
cient and Floquet map M . The the following are equivalent.
i. All solutions X(t) satisfy limt→∞X(t) = 0.
ii. There are positive constants γ, α so that for all solutions and all t ≥ 0

‖X(t)‖ ≤ γ e−βt‖X(0)‖ .

iii. The eigenvalues of M all have modulus strictly less than one.

Proof. iii⇒ ii⇒ ii⇒ iii. Only iii⇒ ii is difficult.

Exercise 7.2 Prove the other two implications.
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iii⇒ ii Denote by λj the eigenvalues and Vj the associated generalized eigenspace. The triangle
inequality implies that It is sufficient to show that for each j there are positive constants γj , βj
so that for all v ∈ Vj , the solution with X(0) = v satisfies

‖X(t)‖ ≤ γj e
−βjt‖X(0)‖ .

Denote by Ψ(t) the fundamental matrix with Ψ(0) = I. For t ≥ 0 write t = nT + s with
0 ≤ s < T and n ≥ 0 integer. Then

Ψ(t) = Ψ(s)Ψ(nT ) = Ψ(s)Mn .

Define
C := max

0≤s≤T
‖Ψ(s)‖ < ∞ .

On Vj M has a unique eigenvalue λj and (M − λj)dimVj = 0. Choose 0 < ε < 1− |λj |. Lemma
6.1 implies that there is a scalar product Q and associated norm ‖ · ‖Q so that for all v ∈ Vj

‖Mv‖Q ≤ ε ‖v‖Q .

Then for v ∈ Vj ,

‖Mv‖Q = ‖λjv + (M − λjI)v‖Q ≤ ‖λj v‖Q + ‖(M − λjI)v‖Q
≤ |λj |‖v‖Q + ε ‖v‖Q = (|λj |+ ε)‖v‖Q . (7.2)

By construction, |λj |+ ε < 1 so there is an αj > 0 so that for all v ∈ Vj and n ≥ 0,

‖Mv‖Q ≤ e−αj‖v‖Q so ‖Mnv‖Q ≤ e−αjn‖v‖Q .

Therefore
‖Ψ(t)v‖Q ≤ C e−αjn‖v‖Q .

There are positive constants c1 < C1 so that for all v ∈ Vj

c1 ‖v‖C ≤ ‖v‖ ≤ C1‖v‖Q .

Therefore

‖Ψ(t)v‖ ≤ C1 ‖Ψ(t)v‖Q ≤ C1C e
−αjn‖v‖Q ≤ (C1/c1)C e

−αjn‖v‖ .

For t ≥ T one has n ≥ t/2 and this estimate proves the desired estimate for v ∈ Vj and t ≥ T .
The estimate for t ≤ T follows from the continuity of Ψ(t). This completes the proof.

Remark 7.2 i. Condition iv is invariant under small T -periodic perturbations of A(t).
ii. More generally one can add a nonlinear term that is ≤ C‖X‖2 for ‖X‖2 ≤ ρ and the origin
will silll have a basin of attraction containing a neighbhorhood of zero.
iii. If the flow conserves volume or a postiive definite quadratic form, then the conditions of the
corollary cannot be satisfied.
iv. There is a corresponding result for stability in contrast to asymptotic stability that requires
that the eigenvalues of M lie in the unit disk and those of modulus one must have eigenspaces
spanned by eigenvenctors. That result is not stable under perturbations either linear or nonlinear.
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Remark 7.3 i. The linearization of an equation X ′ = F (X) at a periodic solution X(t) is an
equation of the form (7.1) with

A(t) := DXF (X(t) .

The conditions of Theorem 7.1 are never satisfied in this context. The reason is that X(t + σ)
is a solution for all σ. Differentiating the equation

d

dt
X(t+ σ) = F (X(t+ σ))

with respect to σ then setting σ = 0 yields

Y ′(t) = A(t)Y (t) , Y (t) = X ′(t) .

Denote v := X ′(0). Since Y (t) = Ψ(t)Y (0) and is T -periodic one has

Ψ(T )v = Ψ(T )Y (0) = Y (T ) = Y (0) = v .

Therefore Ψ(T ) always has 1 as an eigenvalue so can never have all eigenvalues with modulus
strictly less than one.
ii. The orbital asymptotic stability of periodic solutions of autonomous systems is analysed using
the Poincaré first return map in the handout on Asymptotic Stability by Linearization. Theorem
7.1 is the key element.

8 A spectral mapping theorem

This section computes the eigenvalues of eA. That shows how Floquet Theory and the theory of
systems with constant coefficients yield the same asymptotic stability criteria for X ′ = AX.

Theorem 8.1 If V is a complex vector space and A : V → V is a linear transformation with
distinct eigenvalues λ1, λ2, . . . , λk with multiplicities m1,m2, . . . ,mk, then the eigenvalues of eA

are the numbers eλj . The multiplicity of z as an eigenvalue of eA is the sum of the multiplicities
of the λj such that eλj = z.

Proof. Step I. Prove the result for an A that has only one eigenvalue λ. When A has only one
eigenvalue λ, there is a µ so that (A− λI)µ = 0. Let B := A− λI so Bµ = 0.
Then

eB − I = B +
B2

2!
+ · · · +

Bµ−1

(µ− 1)!
= B q(B), q(B) := I +

B

2!
+ · · · +

Bµ−2

(µ− 1)!
.

Therefore since Bµ = 0,
(eB − I)µ = Bµq(B)µ = 0 .

Therefore 1 is the only eigenvalue of eB.
It follows that eλ is the only eigenvalue of eA. To prove this suppose that z is an eigenvalue of
eA and v an eigenvector so eAv = zv. Then

eBv = eAe−λIv = e−λzv .

Thus e−λz is an eigenvalue of eB. Thus e−λz = 1, so, z = eλ.
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Step II. Write X = ⊕Xj the spectral decomposition of A. Since the Xj are invariant under A
one has

eA = ⊕ e
A|Xj ,

where A|Xj : Xj → Xj denotes the restriction of A to Xj .

The result of Step I shows that eA|Xj has only one eigenvalue, eλj , with multiplicity equal to mj .
Theorem 6.1 follows.

Exercise 8.1 The theorem is a spectral mapping theorem for eA. To appreciate that this is a
special case of a general phenomenon prove the following spectral mapping theorem for An. If A
as in Theorem 8.1 and n is a positive integer, then the eigenvalues of An are the numbers λnj .
The multiplicity of z as an eigenvalue of An is the sum of the multiplicities of the λj such that
λnj = z.
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