
Kronecker’s Theorem

Theorem 1. If α is an irrational mulitple of 2π then the numbers

eikα , k = 0, 1, 2, · · ·

are uniformly distributed on the circle S1 in the sense that for any continuous

function g on the circle,

1

2π

∫ 2π

0
g(eiθ) dθ = lim

N→∞

1

N + 1

N
∑

k=0

g
(

eikα
)

. (1)

Proof. I. The proof concerns the linear functionals

g 7→
1

2π

∫ 2π

0
g(eiθ) dθ := I(g),

and

g 7→
1

N + 1

N
∑

k=0

g
(

eikα
)

:= IN (g) .

These are linear maps C(S1) → C. On C(S1) use the norm

‖g‖ := max
θ∈[0,2π]

|g(eiθ)| .

One has the two elementary estimates,

|I(g)| ≤ ‖g‖, and |IN (g)| ≤ ‖g‖ . (2)

II. The key step in the proof is to prove the assertion for

g(eiθ) = einθ , n ∈ Z .

For n = 0, one has g = 1, so I(g) = IN (g) = 1, proving the result.

For n 6= 0,

I(g) =
1

2π

∫ 2π

0
einθ dθ =

1

2π

1

in
einθ

∣

∣

∣

2π

0
= 0 .

Compute,
g(eikα) = eiknα = rk, r := einα .
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The definition of IN yields

IN (g) =
1

N + 1

(

1 + r + r2 + · · · + rN
)

, r := einα .

The hypothesis that α is not a rational multiple of 2π is equivalent to r 6= 1
for all 0 6= n ∈ Z. Summing the series yields

|IN (g)| =
1

N + 1

∣

∣

∣

∣

1 − rN+1

1 − r

∣

∣

∣

∣

≤
1

N + 1

2

|1 − r|
→ 0 .

This verifies the result of the theorem for einθ and therefore for any finite
linear combination,

G =
ν

∑

n=−µ

an einθ . (3)

III. For an arbitrary g ∈ C(S1) and ε > 0, the Weierstrass Approximation
Theorem asserts that there is a G as in (3) so that

∥

∥g − G
∥

∥ <
ε

3
.

Write

I(g)−IN (g) =
(

I(g)−I(G)
)

+
(

I(G)−IN (G)
)

+
(

IN (G)−IN (g)
)

. (4)

The estmates (2) imply that

∣

∣I(g) − I(G)
∣

∣ =
∣

∣I(g − G)
∣

∣ ≤ ‖g − G‖ <
ε

3
,

and,
∣

∣IN (G) − IN (g)
∣

∣ =
∣

∣IN (G − g)
∣

∣ ≤ ‖G − g‖ <
ε

3
.

The result from II implies that the middle term on the right hand side of
(4) tends to zero. So there is an N0 so that for N > N0,

∣

∣I(G) − IN (G)
∣

∣ <
ε

3
.

Combining the estimates for the three terms in (4) shows that for N > N0,

∣

∣I(g) − IN (g)
∣

∣ <
ε

3
+

ε

3
+

ε

3
= ε ,

which completes the proof.
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