Kronecker's Theorem

Theorem 1. If α is an irrational mulitple of 2π then the numbers

$$
e^{i k \alpha}, \quad k=0,1,2, \quad \cdots
$$

are uniformly distributed on the circle S^{1} in the sense that for any continuous function g on the circle,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(e^{i \theta}\right) d \theta=\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} g\left(e^{i k \alpha}\right) . \tag{1}
\end{equation*}
$$

Proof. I. The proof concerns the linear functionals

$$
g \mapsto \frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(e^{i \theta}\right) d \theta:=I(g)
$$

and

$$
g \mapsto \frac{1}{N+1} \sum_{k=0}^{N} g\left(e^{i k \alpha}\right):=I_{N}(g) .
$$

These are linear maps $C\left(S^{1}\right) \rightarrow \mathbb{C}$. On $C\left(S^{1}\right)$ use the norm

$$
\|g\|:=\max _{\theta \in[0,2 \pi]}\left|g\left(e^{i \theta}\right)\right| .
$$

One has the two elementary estimates,

$$
\begin{equation*}
|I(g)| \leq\|g\|, \quad \text { and } \quad\left|I_{N}(g)\right| \leq\|g\| . \tag{2}
\end{equation*}
$$

II. The key step in the proof is to prove the assertion for

$$
g\left(e^{i \theta}\right)=e^{i n \theta}, \quad n \in \mathbb{Z}
$$

For $n=0$, one has $g=1$, so $I(g)=I_{N}(g)=1$, proving the result.
For $n \neq 0$,

$$
I(g)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i n \theta} d \theta=\left.\frac{1}{2 \pi} \frac{1}{i n} e^{i n \theta}\right|_{0} ^{2 \pi}=0
$$

Compute,

$$
g\left(e^{i k \alpha}\right)=e^{i k n \alpha}=r^{k}, \quad r:=e^{i n \alpha} .
$$

The definition of I_{N} yields

$$
I_{N}(g)=\frac{1}{N+1}\left(1+r+r^{2}+\cdots+r^{N}\right), \quad r:=e^{i n \alpha}
$$

The hypothesis that α is not a rational multiple of 2π is equivalent to $r \neq 1$ for all $0 \neq n \in \mathbb{Z}$. Summing the series yields

$$
\left|I_{N}(g)\right|=\frac{1}{N+1}\left|\frac{1-r^{N+1}}{1-r}\right| \leq \frac{1}{N+1} \frac{2}{|1-r|} \rightarrow 0 .
$$

This verifies the result of the theorem for $e^{i n \theta}$ and therefore for any finite linear combination,

$$
\begin{equation*}
G=\sum_{n=-\mu}^{\nu} a_{n} e^{i n \theta} . \tag{3}
\end{equation*}
$$

III. For an arbitrary $g \in C\left(S^{1}\right)$ and $\varepsilon>0$, the Weierstrass Approximation Theorem asserts that there is a G as in (3) so that

$$
\|g-G\|<\frac{\varepsilon}{3}
$$

Write

$$
\begin{equation*}
I(g)-I_{N}(g)=(I(g)-I(G))+\left(I(G)-I_{N}(G)\right)+\left(I_{N}(G)-I_{N}(g)\right) . \tag{4}
\end{equation*}
$$

The estmates (2) imply that

$$
|I(g)-I(G)|=|I(g-G)| \leq\|g-G\|<\frac{\varepsilon}{3},
$$

and,

$$
\left|I_{N}(G)-I_{N}(g)\right|=\left|I_{N}(G-g)\right| \leq\|G-g\|<\frac{\varepsilon}{3}
$$

The result from II implies that the middle term on the right hand side of (4) tends to zero. So there is an N_{0} so that for $N>N_{0}$,

$$
\left|I(G)-I_{N}(G)\right|<\frac{\varepsilon}{3}
$$

Combining the estimates for the three terms in (4) shows that for $N>N_{0}$,

$$
\left|I(g)-I_{N}(g)\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
$$

which completes the proof.

