Kronecker’s Theorem

Theorem 1. If « is an irrational mulitple of 2w then the numbers
efe k= 0,1,2,

are uniformly distributed on the circle S* in the sense that for any continuous
function g on the circle,
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Proof. 1. The proof concerns the linear functionals
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g — g(eika) = In(g).

These are linear maps C(S') — C. On C(S!) use the norm
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One has the two elementary estimates,
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II. The key step in the proof is to prove the assertion for
g(e?) = &, nez.

For n =0, one has g =1, so I(g) = In(g) = 1, proving the result.
For n # 0,

1 [ 1 1 27
hi - o do = — o -0
(9) 2 Jo ° 21 in ° 0
Compute,
g(eika) _ tkna _ Tk r o= e



The definition of Iy yields
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In(g) = —N+1(1+r+r2+---+rN), = e,
The hypothesis that « is not a rational multiple of 27 is equivalent to r #£ 1
for all 0 #£ n € Z. Summing the series yields
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This verifies the result of the theorem for ¢ and therefore for any finite
linear combination,
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III. For an arbitrary g € C(S!) and £ > 0, the Weierstrass Approximation
Theorem asserts that there is a G as in (3) so that
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I(9)—In(9) = (I(9)—I1(G)) + (I(G)~IN(G)) + (IN(G)~IN(9)). (4)
The estmates (2) imply that
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and,

N (@) = In(9)| = [In(G=9)| < G4l < 5.

The result from II implies that the middle term on the right hand side of
(4) tends to zero. So there is an Ny so that for N > Np,
€
(@) - In(@)] < 3.
Combining the estimates for the three terms in (4) shows that for N > Np,
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which completes the proof. O



