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It is sometimes possible to compute the derivatives of the Poincaré first return map at
its fixed point, when the map itself is inaccessible. The procedure is described below. A
simple example is given in Problem 3 of the 2006 Final Exam.

The system
X ′ = F (X)

has the T -periodic orbit X(t).

Suppose that coordinates have been chosen so that

X(T ) = X(0) = 0, X(t) 6= 0 for 0 < t < T ,

and that
S = {xn = 0}

is a section at 0.

Denote the flow by
Φ(t, X) = (φ1(t, X), . . . , φn(t, X)) .

The variational (a.k.a perturbation, a.k.a linearization) equation along the periodic orbit
is

Y ′ = A(t)Y , A(t) = ∂XF (X(t)) .

A(t) is an N ×N matrix function of t. Denote by Y (t) the solution whose initial value at
t = 0 is the N × N identity matrix. Then

∂XΦ(t, 0) = Y (t) , (1)

Used when t = T this is important for computing the Poincaré map. In addition one has

∂tΦ(t, X) = F (X) (2)

from the definition of flow. If you compute Y (T ) you then know the first partial derivatives

of Φ(t, X) at the important point t = T, X = 0.

From these values one can compute the derivative of the Poincaré map by implicit differ-
entiation. The time of first return t(x1, . . . , xn−1) = t(xI) is given by

φn(t(xI), 0) = 0 , t(0) = T . (3)

With xI := (x1, . . . , xn), the Poincaré map P (x1, . . . , xn−1) = P (xI) is given by

P (xI) = Φ
(

t(xI), (xI , 0)
)

. (4)

The derivative of P is computed by differentiating (4), and (3) with respect to the n − 1
variables in xI . Then set xI = 0 using (1) and (2) for for the derivatives of Φ. (3) is
one equation and (4) is n − 1 equations. Each has derivatives with respect to the n − 1
variabales xI . This generates n(n − 1) linear equations (with nonvanishing determinant)
for the n(n − 1) unknown derivatives of t(xI) and P (xI) at xI = 0.
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