It is sometimes possible to compute the derivatives of the Poincaré first return map at its fixed point, when the map itself is inaccessible. The procedure is described below. A simple example is given in Problem 3 of the 2006 Final Exam.
The system

$$
X^{\prime}=F(X)
$$

has the T-periodic orbit $X(t)$.
Suppose that coordinates have been chosen so that

$$
X(T)=X(0)=0, \quad X(t) \neq 0 \quad \text { for } \quad 0<t<T
$$

and that

$$
S=\left\{x_{n}=0\right\}
$$

is a section at 0 .
Denote the flow by

$$
\Phi(t, X)=\left(\phi_{1}(t, X), \ldots, \phi_{n}(t, X)\right)
$$

The variational (a.k.a perturbation, a.k.a linearization) equation along the periodic orbit is

$$
Y^{\prime}=A(t) Y, \quad A(t)=\partial_{X} F(X(t))
$$

$A(t)$ is an $N \times N$ matrix function of t. Denote by $Y(t)$ the solution whose initial value at $t=0$ is the $N \times N$ identity matrix. Then

$$
\begin{equation*}
\partial_{X} \Phi(t, 0)=Y(t) \tag{1}
\end{equation*}
$$

Used when $t=T$ this is important for computing the Poincaré map. In addition one has

$$
\begin{equation*}
\partial_{t} \Phi(t, X)=F(X) \tag{2}
\end{equation*}
$$

from the definition of flow. If you compute $Y(T)$ you then know the first partial derivatives of $\Phi(t, X)$ at the important point $t=T, X=0$.
From these values one can compute the derivative of the Poincaré map by implicit differentiation. The time of first return $t\left(x_{1}, \ldots, x_{n-1}\right)=t\left(x^{I}\right)$ is given by

$$
\begin{equation*}
\phi_{n}\left(t\left(x^{I}\right), 0\right)=0, \quad t(0)=T . \tag{3}
\end{equation*}
$$

With $x^{I}:=\left(x_{1}, \ldots, x_{n}\right)$, the Poincaré map $P\left(x_{1}, \ldots, x_{n-1}\right)=P\left(x^{I}\right)$ is given by

$$
\begin{equation*}
P\left(x^{I}\right)=\Phi\left(t\left(x^{I}\right),\left(x^{I}, 0\right)\right) . \tag{4}
\end{equation*}
$$

The derivative of P is computed by differentiating (4), and (3) with respect to the $n-1$ variables in x^{I}. Then set $x^{I}=0$ using (1) and (2) for for the derivatives of Φ. (3) is one equation and (4) is $n-1$ equations. Each has derivatives with respect to the $n-1$ variabales x^{I}. This generates $n(n-1)$ linear equations (with nonvanishing determinant) for the $n(n-1)$ unknown derivatives of $t\left(x^{I}\right)$ and $P\left(x^{I}\right)$ at $x^{I}=0$.

