
Zeno’s Paradoxes and Uniqueness

Abstract. This section discusses uniqueness. There is link between unique-
ness and the Zeno paradoxes.

1 Rolling stops.

Consider a particle path in dimension one given by the equation x(t) = t3+ǫt
where ǫ > 0 is very small. This motion moves right, slowing to a velocity ǫ
at time t = 0 where it reaches x = 0.

If there were a stop sign at x = 0, then this motion never comes to stop. No
matter how small is ǫ this motion deserves a ticket.

The case ǫ = 0 is more subtle. The velocity hits zero for the unique instant
of time t = 0. For any nonvanishing interval of time the car moves a finite
distance forward. I suspect that the law requires a stop for a nonempty time
interval but do not know how that would be expressed. I call such a motion
a rolling stop.

1.1 Uniqueness implies no rolling stops.

Theorem 1.1 Consider a differential equation

x′ = f(x) (1.1)

with f continuously differentiable. A solution whose velocity is equal to zero

for one instant of time must be an equilibrium.

Proof. Suppose that x(t) is such a solution with x′(t) = 0. Let x := x(t)
be the position at time t.

Then
0 = x′(t) = f(x(t)) = f(x) .

So x is an equilibrium.

The unique solution of (1.1) with x(t) = x is then x(t) = x. So x(t) is an
equilibrium. �
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1.2 Rolling stop with continuous f .

Somewhat surprisingly you can have a rolling stop and therefore do NOT
have unique solutions of the initial value problem if f is merely assumed to
be continuous. It is easy to verify1 that x(t) = t3 is a solution of

x′ = 3 |x|2/3 .

There are many other solutions, for example for any τ > 0 the function
equal to 0 for t ≤ τ and equal to (t − τ)3 for t > τ is another solution.

Similarly, there are solutions which move right, come to a rest at the origin
and take off at a positive time.

Exercise. Verify.

2 Zeno paradox.

One classical paradox of Zeno meant to show the danger of imprecise think-
ing and in particular the imprecision of language demonstrates that a frog
hopping at constant speed in the direction of a pond will never reach the
pond.

The reasoning is the following. Before the frog reaches the pond it reaches
after a time ∆T1 the point which is half way to the pond. Call this event 1.

Before reaching the pond the frog must then reach after an additional time
∆T2 the point half way again to the pond. This is event 2.

In this way, before the frog reaches the pond an infinite number of events
separated by positive times ∆Tj > 0 must occur.

This infinite number of nonvanishing time intervals must take infinitely long

so the frog does not reach the pond in finite time.

Continuing, you can apply the same argument to show that the frog never
gets to half way to the pond. Continuing you find that the frog cannot get
anywhere.

2.1 Time does not move either.

The sentence in italics sounds reasonable but is very wrong.

1This is a simple modification of the example on page 384 of Hirsh-Smale-Devaney.

You can find these solutions in x 6= 0 by separation of variables.
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You can see this by watching the passage of time.

Let T be the time it should take the frog to get to the pond. Event 1 occurs
after T1 = T/2 units of time.

Event 2 occurs after an interval of time half again as long. And so on. Before
T units of time have elapsed an infinite sequence of positive time intervals
must pass. The sentence in italics asserts this is impossible so T units of
time cannot pass.

Continuing one concludes that time cannot progress either.

2.2 The error.

Brought up as we are on limits and infinite series we know that ∆Tj =
∆T1/2

j are summable,

∞∑
j=0

∆T1

2j
= 2∆T1 < ∞ .

That
∞∑

j=1

1

2j
=

1

2
+

1

4
+

1

8
+ · · · = 1

is easily read from the markings between 0 and 1 on a ruler.

3 The ode computation.

Consider the Fundamental Theorem of the Phase Line with f continuously
differentiable, positive on ]a, b[ and vanishing on [a, b]. The fact that there
are no rolling stops asserts that solutions with a < x(0) < b takes an infinite
amount of time to reach b.

Consider the intervals In := [b − 2−n, b − 2n+1].

We know that f(b) = 0. Let

M := max
x∈[a,b]

|f ′(x)| .

Then for x ∈ [a, b]

f(x) = f(x) − f(b) = −

∫ b

x
f ′(x) dx ≤

∫ b

x
M dx = M (b − x) .
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Therefore

x ∈ In ⇒ x′ = f(x) <
M

2n
.

Thus when the solution lies in In its velocity is at most M/2n. To cross In

takes time at least
|In|

M/2n
=

1/2n+1

M/2n
=

1

2M

Now the Zeno argument works since passing each intervals In takes at least
1/2M units of time. These add to an infinite amount of time.

Exercise. Consider a rolling stop solution in x < 0 from §1.2. Compute

that for the ordinary differential equation in that section the time taken to

cross the analogous In sum to a finite quantity. Hint. Show that when
x ∈ In, 3/22(n+1)/3 < x′.
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