
J.Rauch Math 558: Advanced Ordinary Differential Equations

Dynamics in Dimension 1.5

1 Introduction.

Supplements to section 1.4 and 1.5 of [1]. Those sections consider ordinary
differential equation of the form

x′ = f(t, x) (1.1)

where x(t) is real valued and f(t, x) is a continuously differentiable function
of t, x. The unknown is scalar but the problem is nonautonomous when f
depends on t. The dynamics can be more complicated than the autonomous
scalar case but not as complicated as autonomous planar systems. It is for
that reason that it is called dimension 1.5.

After autonomous planar systems, the next level of complexity is non au-
tonomous planar systems which are called dimension 2.5. It is there that
the first chaotic examples appear.

Important ideas introduced are the concepts of the flow, monotone map, and
Poincaré map. The method of integrating factors for scalar linear equations,
and Perturbation Theory are introduced to analyse an example. A thorough
treatment of dynamics in d = 1.5 is Part II of [2].

2 The flow and Poincaré map.

Section 1.4 introduces the flow φ(t, x0) which is the value at time t of
the solution x(t) with x(0) = x0. The fact that t 7→ φ(t, x0) satisfies the
differential equation says that

∂φ

∂t
= f

(
t , φ(t, x0)

)
, φ(0, x0) = x0 . (2.1)

The fundamental existence and uniuqeness theorem implies that φ is a con-
tinuously differentiable function defined on an open 1 subset of Rt × Rx0 .
It may not be everywhere defined since solutions may diverge to infinity in
finite time.

1A subset Ω ⊂ Rd is open when for each point y ∈ Ω there is an r > 0 so that the ball
Br(y) := {z : |z − y| < r} is a subset of Ω.
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If one fixes t then the map

x0 7→ φ(t, x0)

maps the initial datum to the value of the solution at time t. It is a map
from the x-line to itself describing the dynamics of the differential equation
between time t = 0 and t. 2

More generally φ(t, t0, x0) is the value at time t of the solution satisfying
x(t0) = x0. One can continue the solution starting at t = 0 by taking
φ(t, 0, x0) for 0 ≤ t ≤ t1. Then φ(t, t1, φ(t1, 0, x0)) for t ≥ t1. This corre-
sponds to taking initial datum φ(t1, 0, x0) at time t1. And of course one can
repeat this over and over.

This becomes particularly interesting when f is periodic in t with period
equal to 1. In that case if x(t) is a solution then so is x(t− 1) whose graph
is that of x translated one unit to the right. It remains tangent to the slope
field of the differential equation x′ = f(t, x) because that field is invariant
under translation to the right by one unit. The same is true for translation
to the left or right by any integer n ∈ N.

In this periodic case define a map denote by p(x0) := φ(1, x0). It is called
the Poincaré map. Then p(x) gives the position at time t = 1 of the
solution starting at t = 0 at the point x. If one knows p(x0), the values
in the next period 1 ≤ t ≤ 2 are found as the solution of the initial value
problem

x′ = f(t, x), x(1) = p(x0) .

This is the translation to the right by one unit of the the solution x(t) of

x′ = f(t, x), x(0) = p(x0) .

Therefore the solution at time 2 is equal to

x(2) = x(1) = φ(1, 0, p(x0)) = p
(
p(x0)

)
= (p ◦ p)(x0) .

The iterates
p, p2 := p ◦ p, p3 := p ◦ p ◦ p, . . .

describe the behavior after one, two three periods, by

x(n) = pn(x0) .

2 If some solutions diverge to infinity at times ≤ t then φ(t, x) will be defined only on
a subset of x ∈ R.
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Warning: This is not the nth power but the nth composition. The sequence
pn(x) is called the (future) orbit of x. Be sure that you understand why this
depends essentially on the periodicity of f .

When x belongs to the range of p the uniqueness theorem implies that it
has only one preimage. Denote by p−1(x) its preimage . Similarly

p−2 := p−1 ◦ p−1 , p−3 := p−1 ◦ p−1 ◦ p−1, etc.

The sequence p−n(x) is called the past orbit of x for as long as it remains
well defined. The domain of p−n consists of points that have n generations
of predecessors. The domain is non increasing in n.

Example. For the logistic equation with harvesting there is an x∗ ∈ R so
that solutions with initial value larger than x∗ exist throughout 0 ≤ t ≤ 1
while the solution with initial value x∗ diverges to −∞ as t increases to 1.
The domain of p is ]x∗,∞[ and p maps this interval one to one and onto
]−∞,∞[. The maps p−n are everywhere defined for n > 0 and the domains
of pn decrease with n.

Fixed points of p correspond to solutions of the ordinary differential equation
that are periodic with period 1. The behavior of solutions of an ordinary
differential equation has been replaced by the behavior of the iterates of a
map. The study of iterates is the subject of Dynamical Systems and is
intimately related to differential equations. This close relation was brought
to prominence in the work of Poincaré.

The example in §1.5 supplemented with these notes shows how it can be
used to analyse the logistic equation with periodic harvesting.

3 Monotonicity.

The Poincaré map when x is one dimensional has an important monotonicity
property, even when the problem is not periodic.

Definition 3.1 A map p from an interval I ⊂ R to R is called strictly
monotone when x1 < x2 ⇒ p(x1) < p(x2).

Consider two solution curves (t, x(t)) and (t, x̃(t)) the first starting below
the second, x0 < x̃0. The upper orbit must stay above because orbits cannot
cross.

3



Theorem 3.1 Suppose that x0 < x̃0 and that x(t) and x̃(t) are the solutions
with those initial data. If both x and x̃ exist for 0 ≤ t ≤ T then for those t,

x(t) < x̃(t) .

Proof. Define d(t) = x̃(t) − x(t). The theorem asserts that d > 0. To
show that the continuous function d is strictly positive it suffices (by the
Intermediate Value Theorem for continuous functions) to show that d can
never vanish.

If there were a 0 < t ≤ T with d(t) = 0 then x(t) and x̃(t) would be solutions
of (1.1) with the same value when t = t. The uniqueness theorem implies
that they must be equal throughout. In particular

0 = d(0) = x̃(0) − x(0) > 0 .

This contradiction shows that d(t) = 0 is impossible so d < 0. �

This shows that the Poincaré map is strictly monotone. This implies that the
dynamics cannot be very complicated. There is no chaos in 1.5 dimensional
systems.

4 Fundamental theorem of monotone maps.

The next result is closely related to the Fundamental Theorem of the Phase
Line.

Theorem 4.1 Suppose that p : [a, b]→ R is a continuous and strictly mono-
tone map with fixed points a and b and no other fixed points in ]a, b[. Then

• p maps the interval [a, b] one to one and onto itself.

• p(x)− x has one sign on ]a, b[.

• If p(x) − x > 0 (resp. < 0) on ]a, b[ then for any x ∈]a, b[ the orbit
x, p(x), p2(x), . . . converges to b (resp. a).

• If p(x)−x > 0 (resp. < 0) then for any x ∈]a, b[ the past orbit x, p−1(x), p−2(x), . . .
converges to a (resp. b).

Proof. If a < x < b then monotonicity implies a = p(a) < p(x) < p(b) = b
proving that p maps [a, b] to itself.

If a ≤ x1 < x2 ≤ b then monotonicity yields p(x1) < p(x2) showing that p
is one to one.
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Since p(a) = a and p(b) = b, the intermediate value property of continuous
functions implies that for any y ∈ [a, b] there is an x ∈ [a, b] so that p(x) = y
proving that the map is onto.

Monotonicity and p(x) > x imply that for x ∈]a, b[, the sequence pn(x) < b
is strictly increasing. An increasing sequence bounded above has a limit

lim
n→∞

pn(x) = x ≤ b.

It remains to prove that x = b.

Using continuity for the second equality we have,

p(x) = p
(

lim pn(x)
)

= lim p
(
pn(x)

)
= lim pn+1(x) = x .

Thus x is a fixed point with a < x ≤ b. By hypothesis, b is the only such
fixed point, so x = b. �

5 Long term behavior.

When f is t-periodic, each root of p(x) − x is the initial value of an orbit
of x′ = f(t, x) that is periodic with period equal to 1. The fundamental
theorem shows that solutions starting in an interval between roots converge
to one or the other of the bounding periodic orbits. The long term behavior
of all solutions is determined by the roots of p(x)−x and its sign in between.

Example. Suppose that the Poincaré map of a periodic differential equation
is as in the figure.

y=p(x)

x

y

p(x)−x)>0

p(x)−x)<0

a b c

y=x

The orbits starting at the fixed points a, b, and c of p are periodic with
period equal to 1. The orbit through b lies above that through a and below
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that through c. All orbits with initial values a < x0 < b converge to the
periodic orbit through b.

Exercise 5.1 Draw a diagram analogous to Figure 1.11 of Hirsch-Smale-
Devaney illustrating this situation.

Exercise 5.2 Suppose that p(x) is a monotone map with only two fixed
points x1 < x2. They divides the real line into three intervals and on each
the sign of p(x)− x is constant. Suppose that p(x)− x is positive on −∞ <
x < x1. There remain four possibilites for the signs in the remaining two
intervals yielding sign patterns +,−,−, +,+,−, +,−,+, and +,+,+. For
each of the four possibilities find the future limit and past limit of the orbits
of points starting in each of the three intervals.

Algorithm. The sign pattern of p(x) − x determines the dynamics of a
periodic x′ = f(t, x) just as the sign pattern of f(x) detemines the dynamics
of x′ = f(x). That sign pattern is found by either plotting p(x)−x or plotting
both p(x) and x on the same graph.

To determine the sign patterns requires the determination of the roots of
p(x)−x. In almost all cases that can only be done approximately. When the
roots are not very close together and curves cross the x-axis with slope not
too small this can be done with accuracy and confidence. One strategy that
gives additional information is to compute the values of p(x)−x at regularly
spaced points. Even when p is given by an explicit formula, for example
cosx, its values can only be computed approximately. The values of p(x) can
be computed with comparable accuracy and comparable low computational
complexity using a numerical method for approximately solving ordinary
differential equations.

Exercise 5.3 Each of the four figures sketches a Poincaré map p(x) on
the same axes as the dotted line which is a graph of x. For each graph
determine the fixed points of p. They correspond to periodic orbits of the
differential equation. Determine the long time behavior of solutions (both
past and future) of the differential equation for initial data starting in each
of the intervals bounded by equilibria or ±∞. You may assume that the
solutions of the ordinary differential equation do not blow up in finite time.
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6 Derivative test for stability of periodic orbits.

There are derivative criteria involving f ′(x) for stability of equilibria in the
autonomous case. In the periodic case there are analogous criteria involving
p′(x) for the stability of periodic orbits.

Equilibria x of x′ = f(x) are stable (resp. unstable) when f ′(x) < 0 (resp.
> 0).

A first criterion that generalizes easily to higher dimensional problems is
that a fixed point x of p(x) yields a stable (resp. unstable) periodic orbit
when |p′(x)| < 1 (resp. > 1). This is reasonable since for x ≈ x,

|p(x)− x| = |p(x)− p(x)| ≈
∣∣p′(x)(x− x)

∣∣ = |p′(x)| |x− x| .

When |p′(x)| < 1 and x ≈ x, then p(x) will be closer to x than x was.

More generally, an isolated equilibrium, x of p(x) − x is stable p(x) − x is
positive to the left of x and negative to the right. A sufficient condition is
that p(x)−x has negative derivative at x. This holds if and only if p′(x) < 1,
a sharper criterion than |p′(x)| < 1.

7 Convcavity of p(x).

This material presents an alternative version of page 13 of [1]. It is better
because it introduces Perturbation Theory that is useful in other contexts
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too.3 The goal is to compute the derivatives of the Poincaré map p(x).
This amounts to studying what happens to a solution of the differential
equation when the initial condition is changed a little bit. The first result is
a strengthening of monotonicity. The computation is an application of the
Fundamental Existence and Uniqueness Theorem. That theorem guarantees
that when f(t, x) is a k times continuously differentiable function of t, x then
the flow φ(t, t0, x) is k times continuously differentiable function of t, t0, x.
In addition, if f(t, x, a) is Ck in its dependence of t, x and on parameters
a = (a1, a2, . . . , ak), then the flow is a Ck function of t, t0, x, a.

Example 7.1 An example is the parameter h in the logistic equation with
periodic harvesting. A second example are the parameters m > 0 and k > 0
in the equation of a vibrating spring, mx′′ + k x = 0.

Proposition 7.1 For any equation (1.1) one has for all t, x, ∂φ/∂x > 0.

Proof. In equation (7.1) differentiate with respect to x. The computation
is challenging at the level of notation for the chain rule. Denote ∂2f for
the partial derivative of f with respect to the second variable. To avoid
confusion between the initial condition and the solution x(t), denote the
initial value by x. The flow φ(t, x) then satisfies

∂φ(t, x)

∂t
= f(t, φ(t, x)) , φ(0, x) = x .

Differentiate with respect to x to find

∂

∂x

∂φ

∂t
= ∂2f

(
t , φ(t, x)

) ∂φ
∂x

,
∂φ(0, x)

∂x
= 1 . (7.1)

The equality of mixed partials implies that

z1(t, x) :=
∂φ(t, x)

∂x

satisfies the linear ordinary differential equation

∂

∂t
z1 = ∂2f(t, φ(t, x)) z1 , z1(0, x) = 1 .

For each fixed x this is an ordinary differential equation in t even though
the time derivative must be written with partials since z1 depends on more
than one variable.

3A summary of the method of perturbation theory is available on a separate posting
in the Course Materials.
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Such scalar linear ordinary differential equations are analysed using the inte-
grating factor e−B. Choosing B cleverly then multiplying the differential
equation by eB yields an exact derivative. Define

A(t, x) := ∂2f(t, φ(t, x)) , B(t, x) :=

∫ t

0
A(t, x)dt , so, ∂tB = A .

Then

∂t
(
e−B z1

)
= e−B

(
∂tz1 −Btz1

)
= e−B

(
∂tz1 −Az1

)
= 0 .

Therefore e−B z1 is independent of t so,

e−B(t,x) z1(t, x) = eB(0,x) z1(0, x) = 1, hence, z1 = eB > 0 .

This is the desired result. �

Proposition 7.2 If ∂22f < 0 then for t > 0 φ(t, x) is strictly concave down
in x.

Proof. Differentiate (7.1) with respect to x to find 4

∂

∂x

∂

∂t
z1 = ∂2f(t, φ(t, x))

∂

∂x
z1 + ∂22f(t, φ)φx z1 .

Define

z2(t, x) :=
∂2φ

∂x2
=

∂

∂x
z1 ,

to find the linear ordinary differential equation initial value problem

∂

∂t
z2 = Az2 + ∂22f(t, φ)φx z1 , z2(0, x) = 0 . (7.2)

To show that φ is strictly concave down in x it suffices to prove that z2 < 0.

Since z1 := φx, the source term in the ordinary differential equation (7.2) is
n(t) := ∂22f z

2
1 . The preceding proposition together with the strict concavity

of f imply that n < 0 (n stands for negative). Thus,

z′2 = Az2 + n(t) , z2
∣∣
t=0

= 0 .

The integrating factor method yields,

∂t
(
e−Bz2

)
= e−B

(
∂tz2 −Az2

)
= e−B n < 0.

4This is second order perturbation theory.
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Thus e−Bz2 is strictly decreasing and vanishes at t = 0. Therefore e−Bz2 < 0
for t > 0. Since e−B > 0 this completes the proof. �

Remarks. The same argument works with concave up instead of down.
And also if strict concavity is replaced by concavity.

Example. For the logistic equation with periodic harvesting from §1.4, the
Poincaré map for t > 0 is strictly increasing and strictly concave down.

8 Application to the logistic equation.

This section replaces a too brief discussion on the bottom of page 14 of [1].
Consider the logistic equation with harvesting

x′ = ax(1− x)− h(1 + sin 2πt), a > 0, h > 0 .

We fix a the ecological background, and discuss the effects of harvesting.

Denote by φ(t, x, h) the flow and p(x, h) = φ(1, x, h) the Poincaré map
with harvesting rate h. Proposition 7.1 implies that px > 0. Compute
∂2xf = −2a < 0. Proposition 7.2 implies that pxx < 0. The next exercise
shows that φh < 0 establishing the intuitively clear assertion that increasing
the harvesting rate, decreases the population for all t > 0. A more general
comparison theorem of this type is given in the last section of this handout.

Exercise 8.1 Denote by φ(t, x, h) the flow of the logistic equation with har-
vesting h,

x′ = ax(1− x) − h(1 + sin 2πt) . (8.1)

Use a perturbation argument like that above to show that for h ≥ 0, x, and
t > 0,

∂φ(t, x, h)

∂h
< 0 . (8.2)

The equation with h = 0 is autonomous and is well understood. The
Poincaré map has two fixed points, x = 0 and x = 1. The function p(x)− x
is concave down with positive derivative at 0 and negative derivative at 1.

Since p(x, h)−x is decreasing with h and concave down it follows that for h
small and positive there is an unstable fixed point close to and to the right
of 0 and a stable fixed point close to and to the left of 1.

10



Proposition 8.1 For h > a/4 one has p(x, h)− x < 0 for all x.

Proof. Compute

x(1)− x(0) =

∫ 1

0
x′(t) dt =

∫ t

0
a x(t) (1− x(t))− h(1 + sin 2πt) dt .

The maximum in x of x(1− x) is 1/4. It follows that

x(1)− x(0) ≤
∫ t

0

a

4
− h(1 + sin 2πt) dt =

a

4
− h .

When h > a/4 the right hand side is strictly negative. �

As h increases, the concave down curve p(x, h) − x decreases. For h = 0
and nearby values the graph has an arc above the axis and there are exactly
two equilibria. As h increases the graph decreases. By the time h = a/4
the curve lies entirely below axis and there are no equiliibria. There is an
intermediate value h∗ ∈]0, a/4] where p(x, h∗)−x is nonpositive, with graph
touching the axis at a unique equilibrium. The value h∗ is a bifurcation.
There are two equilibria for h < h∗ and none for h > h∗. For h ∈]0, h∗[, the
concavity shows that p(x)−x is positive between its two roots and negative
to the left of the smaller and to the right of the larger. It follows that larger
periodic orbit is stable and the smaller is unstable. For the values of h the
qualitative behavior is that suggested by figures 1.10 and 1.11. For h > h∗
the harvesting drives the population to zero in finite time.

Exercise 8.2 Take a = 1. Use a computer to compute an approximate
values of p(x, h)−x for h = a/8 and regularly spaced initial data in [0, 1]. If
one finds p(x, a/8)−x has roots then h∗ ∈ [a/8, a/4]. Otherwise h∗ ∈ [0, a/8].
One can continue this bisection process to find h∗ as accurately as one wants.

9 Structural stability.

If p(x)− x has only a finite number of roots and at those roots p′ 6= 1 then
the curve y = p(x)− x crosses the x-axis transversally at the roots.

A small perturbation of f on a bounded set of x yields a new Poincaré map
p̃ ≈ p so y = p̃(x)− x is a small perturbation of y = p(x)− x.

Therefore p̃(x) − x will have roots near the old roots. The derivative test
shows that they will have the same stability properties,. The long term
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dynamics will be essentially equivalent to that of the unperturbed problem.
The original problem is structurally stable.

These short paragraphs should convince you of the power of the dynamical
systems point of view.

Exercise 9.1 With h∗ the bifurcation value for the logistic equation with
harvesting, show that for 0 < h < h∗ the dynamics of the logistic equation
with harvesting is structurally stable. Draw the same conclusion for h > h∗.

10 Comparison principles.

The monontonicity principle is an example of a comparison principle 5 as-
serting that under suitable hypotheses one solution is smaller than another.
The monotonicity result followed from uniqueness. The next results are
subtle and far reaching generalizations.

Theorem 10.1 (Strict Comparison Theorem) Suppose that f(t, x) and
f̃(t, x) are continuously differentiable on [a, b]× R and satisfy

f(t, x) < f̃(t, x) , for all (t, x) ∈ [a, b]× R .

If x(t) and x̃(t) are solutions on a ≤ t ≤ b of

x′ = f(t, x), x̃′ = f̃(t, x) , with x(a) < x̃(a),

then for all t ∈ [a, b]
x(t) < x̃(t) .

Proof. Must show that it is impossible that there is a T ∈ [a, b] with
x̃(T )−x(T ) ≤ 0. Since x̃(a)−x(a) > 0, if such a T existed the intermediate
value theorem would imply that there was a t ∈]a, T ] so that x̃(t)−x(t) = 0.

In that case, K := {t ∈ [a, b] : x̃(t)−x(t) = 0} would be a nonempty closed
subset with a /∈ K. It would therefore have a smallest element t > a.

For 0 ≤ t ≤ t, x̃(t)− x(t) > 0 and x̃(t)− x(t) = 0 so

x̃′(t)− x′(t) = lim
n→∞

(x̃(t)− x(t)) − (x̃(t− 1/n)− x(t− 1/n))

1/n
≤ 0

(10.1)

5Student difficulties with problems 18/15 and 18/16 from Hirsh, Smale, and Devaney
and problem 4 on the 2010 midterm have led to inclusion of this section.
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since the numerator is ≤ 0.

On the other hand,

x̃′(t) = f̃(t, x̃(t)) > f(t, x̃(t)) = f(t, x(t)) = x′(t) . (10.2)

The contradiction between (10.1) and (10.2) proves that no such T can exist.
�

Exercise 10.1 The proof uses only that f̃(t, x̃(t)) > f(t, x̃(t)) for all t.
That give a result with hypotheses only along the curve (t, x(t)). What
does f̃(t, x̃(t)) > f(t, x̃(t)) say about the direction field of f along the curve
(t, x(t))? Sketch. Explain geometrically why this prevents a solution curve
of the f equation from crossing from below to above (t, x̃(t)).

Theorem 10.2 (Comparison Theorem) Suppose that f(t, x) and f̃(t, x)
are continuously differentiable on [a, b]× R and satisfy

f(t, x) ≤ f̃(t, x) , for all (t, x) ∈ [a, b]× R .

If x(t) and x̃(t) are solutions on a ≤ t ≤ b of

x′ = f(t, x), x̃′ = f̃(t, x) , with x(a) ≤ x̃(a),

then for all t ∈ [a, b],
x(t) ≤ x̃(t) .

Proof. Define x(t, ε) to be the solution of

x′ = f(t, x)− ε , x(a, ε) = x(a) .

For ε = 0, x(t, 0) = x(t).

The Continuous Dependence Theorem implies that there is an ε0 > 0 so
that for 0 ≤ ε ≤ ε0, x(t, ε) exists for a ≤ t ≤ b and depends continuously on
ε.

The Strict Comparison Theorem implies that for 0 < ε ≤ ε0 and a ≤ t ≤ b
x̃(t) > x(t, ε).

Passing to the limit ε→ 0 yields

x(t) = lim
ε→0

x(t, ε) ≤ lim
ε→0

x̃(t) = x̃(t) .

�
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Example 10.1 i. Consider two solutions of harvesting model (8.1) with
harvesting rates h1 > h2. Intuitively, larger harvesting rate should lead to
smaller populations. The Strict Comparison Theorem shows that if x1(0) <
x2(0) then for all t ≥ 0, x1 < x2.

ii. If one has only h1 ≥ h2 and x1(0) ≤ x2(0) the Comparison Theorem
implies that x1 ≤ x2.

Exercise 10.2 In ii, show that if h1 > h2 and x1(0) ≤ x2(0) then for
t > 0, x1 < x2. Hint. Only the case x1(0) = x2(0) is needed. Use (8.2).
Alternatively, prove the relation for t small positive and apply the Strict
Comparison Theorem beyond that.

Exercise 10.3 In ii, show that if h1 ≥ h2 and x1(a) < x2(a) then for t ≥ 0,
x1 < x2. Hint. Redo the proof of the Strict Comparison Theorem showing
where it needs to be changed.

Remarks. 1. Generalizing these two exercises shows that if in the Com-
parison Theorem one has f < f̃ then for a < t ≤ b one has x1(t) < x̃(t).
Similarly if f ≤ f̃ and x1(a) < x2(a) then for all a ≤ t ≤ b, x1(t) < x2(t).

2. All the results and proofs extend to differential inequalities x′ ≤ f(t, x)
and x̃′ ≥ f̃(t, x).

References

[1] M. Hirsch, S. Smale, and R.L. Devaney, Differential Equations, Dynam-
ical Systems, and an Introduction to Chaos 3rd. ed., Elsevier, 2011.

[2] J. Hale and H. Kocak, Dynamics and Bifurcations, Springer-Verlag,
1991.

14


