Independent Eigenvector Theorem

Theorem. If A is an $N \times N$ complex matrix with N distinct eigenvalues, then any set of N corresponding eigenvectors form a basis for \mathbb{C}^{N}.

Proof. It is sufficient to prove that the set of eigenvectors is linearly independent.
Denote by $z_{1}, z_{2}, \ldots z_{N}$ the eigenvalues and corresponding eigenvectors V_{1}, \ldots, V_{N}.
Since each $V_{j} \neq 0$, any dependent subset of the $\left\{V_{j}\right\}$ must contain at least two eigenvectors.
If there is such a dependent pair. Choose it. If not ask if there is a dependent set of three $V^{\prime} s$. If yes, choose it. If not ask if there is a dependent set of $4 V^{\prime} s$ and so on.
If the set of eigenvectors were dependent we would arrive at a set of j eigenvectors which is dependent and so that no subset of $j-1$ eigenvectors is dependent. Renumbering we may assume the dependent set is V_{1}, \ldots, V_{j}.
Since they are dependent there are constants a_{k} not all zero so that

$$
a_{1} V_{1}+\cdots+a_{j} V_{j}=0
$$

Since not all the a_{k} vanish, renumbering we may suppose that $a_{j} \neq 0$. Then with $b_{k}=$ $-a_{k} / a_{j}$ one has

$$
\begin{equation*}
V_{j}=b_{1} V_{1}+\cdots+b_{j-1} V_{j-1} \tag{1}
\end{equation*}
$$

Since $V_{j} \neq 0$ the b_{k} are not all equal to zero.
Multiply (1) by the matrix A to find

$$
\begin{equation*}
z_{j} V_{j}=b_{1} z_{1} V_{1}+\cdots+b_{j-1} z_{j-1} V_{j-1} \tag{2}
\end{equation*}
$$

Multiply (1) by z_{j} to find

$$
\begin{equation*}
z_{j} V_{j}=b_{1} z_{j} V_{1}+\cdots+b_{j-1} z_{j} V_{j-1} \tag{3}
\end{equation*}
$$

Subract (2) from (3) to find

$$
\begin{equation*}
0=b_{1}\left(z_{j}-z_{1}\right) V_{1}+\cdots+b_{j-1}\left(z_{j}-z_{j-1}\right) V_{j-1} \tag{3}
\end{equation*}
$$

Since the b_{j} are not all zero and the differences of the eigenvalues are all not zero, this shows that V_{1}, \ldots, V_{j-1} are dependent. By construction, V_{1}, \ldots, V_{j-1} is independent and we arrive at a contradiction.
It follows that the eigenvectors are independent.

