
Math 558 Prof. J. Rauch

Ellipse Axes. Aspect ratio, and, Direction of Rotation for Planar Centers

This handout concerns 2×2 constant coefficient real homogeneous linear systems X ′ = AX
in the case that A has a pair of complex conjugate eigenvalues a ± ib, b 6= 0. The orbits
are elliptical if a = 0 while in the general case, e−atX(t) is elliptical. The latter curves are
the solutions of the equation

X ′ = (A− aI)X, a =
trA

2
.

For either elliptical or spiral orbits we associate this modified equation that has elliptical
orbits. The new coefficient matrix A − (trA/2)I has trace equal to zero and positive
determinant. These two conditions characterize the matrices with a pair of non zero
complex conjugate eigenvalues on the imaginary axis. Those are the matrices for which
the phase portrait is a center. We show how to compute the axes of the ellipse, the
eccentricity of the ellipse, and the direction of rotation, clockwise or counterclockwise.

§1. Direction of rotation.

To determine the direction of rotation it suffices to find the direction of the rotation on the
positive x1-axis. If the flow is upward (resp. downward) then the swirl is counterclockwise
(resp. clockwise). For a matrix A that has no real eigenvalues, the direction of swirl is
counterclockwise if and only if the second coordinate of

A

(
1
0

)
=

(
a11
a21

)
is positive, if and only if a21 > 0. The swirl is counterclockwise if and only if a21 > 0.

Freeing this computation from the choice (1, 0) introduces an interesting real quadratic
form. For any real X 6= 0, the vectors X and AX cannot be parallel. Otherwise, X would
be an eigenvector with real eigenvalue. Denote by [X,AX] the 2 × 2 matrix whose first
column is X and second is AX. Then the quadratic form

Q1(X) := det[X,AX] = AX ·X⊥, X⊥ := (−x2, x1) .

is nonzero for all real X 6= 0. Therefore Q1 is either always positive or always negative on
R2 \ 0. The preceding criterion shows that the sign of Q1

(
(1, 0)

)
and therefore the sign of

Q1(X) determines the direction of rotation.

This result can also be understood considering the angle θ in polar coordinates. On any
curve (x1(t) , x2(t)) that does not touch the origin,

dθ(x1(t), x2(t))

dt
=

∂θ

∂x1

dx1
dt

+
∂θ

∂x2

dx2
dt

=
x1 x

′
2 − x2 x′1
x21 + x22

, (1.1)

the last equality involving the partials of θ.
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Exercise 1.1. Compute the partial deriviatives of θ(x1, x2) by differentiating the identity

‖x‖
(

cos θ(x) , sin θ(x)
)

= (x1 , x2)

with respect to x1 and x2.

Formula (1.1) applied to solutions of X ′ = AX yeilds

dθ

dt
=

x1 x
′
2 − x2 x′1
x21 + x2

=
AX ·X⊥

|X|2
=

Q1(X)

|X|2
.

Therefore Q1 has a geometric interpretation,

Q1(X) = |X|2 dθ/dt . (1)

The criterion for counterclockwise rotation is dθ/dt > 0.

Algorithm I. Q1(X) is a definite quadratic form and the direction of rotation is counter-
clockwise if and only if Q1 > 0 on R2 \ 0, and clockwise if and only if Q1 < 0.

Replacing A by A − αI mulitplies the solutions of the differential equation by e−αt and
does not change dθ/dt since X ·X⊥ = 0. In particular,

Q1(X) = AX ·X⊥ = (A− (trA/2)I)X ·X⊥ .

§2. Ellipse axis directions.

Define a second quadratic form associated to the matrix A with complex conjugate eigen-
values. First replace A by A − (trA/2)I that has elliptical orbits and eigenvalues on the
imaginary axis. The second quadratic form is defined by

Q2(W ) := (A− (trA/2)I)W ·W .

The points where (A− (trA/2)I)X ⊥ X are the points where Q2 = 0. For elliptical orbits,
these are the directions of the principal axes.
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The plane is divided into four quadrants by these directions. In each quadrant Q2(W ) has
a fixed sign and changes sign exactly when v is along one of the principal axes.

Algorithm II. For a center, the axes of the ellipse are the nonzero vectors W so that
Q2(W ) = 0. When the ellipse is noncircular this gives a pair of perpendicular lines that
are the direction of the principal axes of the ellipse.

Examples. i. For

A =

(
0 1
−4 0

)
, Q2(X) = AX ·X AX = (x2,−4x1) , Q(X) = −3x1x2 .

Since Q2(W ) = −3w1w2, the equation of the axes is x1x2 = 0. The axes are the usual
euclidean axes.

ii. For

A =

(
3 5
−2 −2

)
,

trA = 3− 2 = 1, so

A− (trA/2)I =

(
2.5 5
−2 −2.5

)
is the trace free matrix whose motion is a center. The equation determining the axes is

0 = Q2(W ) = 2.5w2
1 + 3w1w2 − 2.5w2

2 .

Any nonzero solution must have w1 6= 0. Dividing by w1 shows that solutions are all
multiples of W = (1, y) where,

2.5 + 3y − 2.5 y2 = 0, equivalently, 5y2 − 6y − 5 = 0 . (2)

The roots are
6±

√
62 − 4(−5)(5)

10
=

6±
√

136

10
=

3±
√

34

5
.

The two roots yield the directions (1, y1) and (1, y2) of the two axes of the ellipse. The
orthogonality of the directions is equivalent to the fact that the product of the roots is
equal to −1. This follows from (2) since in the quadratic equation for y, the constant term
and the coefficient of y2 differ by a factor −1.

iii. In the degenerate case where there are more than two directions for which Q2 = 0,
one has a quadratic equation with more than two roots so the quadratic form vanishes
identically and Q2 is identically equal to zero. In this case the orbits are circular.

§3. Major and minor axes.

The differential equation with coefficient Ã := A−(trA/2)I has elliptical orbits. Compute
orthogonal unit vectors Wj along the axes of the associated ellipse using Algorithm II.
Denote by Y the coordinates with respect to the basis Wj ,

X = y1W1 + y2W2 , with, y1 = X ·W2, y2 = X ·W2 . (3.1)
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Introduce the matrix T whose first column is W1 and second column is W2 so

T :=

(
W1,1 W2,1

W1,2 W2,2

)
.

Equation (3.1) asserts that

X = TY , equivalently Y = T−1X . (3.2)

From the definition of T one has

T (1, 0) = W1 , T (0, 1) = W2 , so, T−1W1 = (1, 0) , T−1W2 = (0, 1) . (3.3)

Exercise 3.1 i. If the columns of a 2× 2 matrix M form an orthonomal basis of R2 show
that M†M = I where † denotes transpose. ii. Use this to show that (T †T = I. Derive
from this that T−1(T−1)† = (T−1)†T−1 = I.

X(t) satisfies X ′ = ÃX if and only if Y = TX satisfies Y ′ = T−1ÃTY . Next compute

T−1ÃT to show that

T−1ÃT =

(
0 α
β 0

)
, with α := ÃW2 ·W1, β := ÃW1 ·W2 . (3.4)

The first column of T−1ÃT is equal to

T−1ÃT (1, 0) = T−1ÃW1 .

Expand ÃW1 with respect to the orthonormal basis of W ’s to find

ÃW1 = (ÃW1 · W1)W1 + (ÃW1 · W2)W2 = βW2 .

Since (ÃW1 · W1) = 0 one has

T−1ÃW1 = βT−1W2 = (0, β)

verifying the first column of (3.4).

Exercise 3.2. Verify the second column of the identity.

The formulas show that α and β are real. The determinant of Ã is positive and equal to
the determinant of T−1ÃT so αβ < 0 proving that α and β have opposite sign.

The differential equation in Y coordinates is

y′1 = αy2, y′2 = βy1 .
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Multiply the first equation by β y1, the the second by αy2, and subtract to find

0 = βy1y
′
1 − αy2y

′
2 =

1

2

d(βy21 − αy22)

dt
.

The orbits have equation βy21−αy22 = constant. The orbits are ellipses. Length of the axis
in the y1 direction divided by the axis in the y2 direction is equal to |α/β|−1/2.

Algorithm III. Suppose that Wj are orthogonal unit vectors along the axis directions
found in Algorithm II and α and β are computed from formula (3.4). Then the elliptical
orbits are similar to the ellipse with axis along W1 of length |β|−1/2 and axis along W2 of
length |α|−1/2.

Examples. i. Choose W1 = (1, 0), W2 = (0, 1) unit vectors along the axes computed in
§2. Then

β =

(
0 1
−4 0

)(
1
0

)
·
(

0
1

)
=

(
0
−4

)
·
(

0
1

)
= −4

α =

(
0 1
−4 0

)(
0
1

)
·
(

1
0

)
=

(
1
0

)
·
(

1
0

)
= 1 .

The ellipses have axes along the x1 and x2 axis. The major axis is along x2 and is longer
by a factor 2 than the minor axis.

ii. Choose,

U1 =

(
1 ,

3 +
√

34

5

)
, W1 =

U1

‖U1‖
, U2 =

(
1 ,

3−
√

34

5

)
, W2 =

U2

‖U2‖
.

Then

β =
1

‖U1‖‖U2‖

(
2.5 5
−2 −2.5

)(
1

3+
√
34

5

)
·
(

1
3−
√
34

5

)
,

α =
1

‖U1‖‖U2‖

(
2.5 5
−2 −2.5

)(
1

3−
√
34

5

)
·
(

1
3+
√
34

5

)
,

The ellipses are similar to the ellipse with axes along W1 and W2 of lengths |β|−1/2 and
|α|−1/2 respectively.

Exercise 3.3. If the axes are not along the x-axes, then the equation for x = x1/x2
in algorithm II has the form x2 + ax − 1 = 0. Show that it is impossible to find an
example where the roots are integers. Hint. The sum of the roots is equal to −a and the
discriminant must be a perfect square.

This may explain why you don’t find algorithms II, III in textbooks.
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