Math 558

Ellipse Axes. Aspect ratio, and, Direction of Rotation for Planar Centers

This handout concerns 2×2 constant coefficient real homogeneous linear systems X' = AXin the case that A has a pair of complex conjugate eigenvalues $a \pm ib$, $b \neq 0$. The orbits are elliptical if a = 0 while in the general case, $e^{-at}X(t)$ is elliptical. The latter curves are the solutions of the equation

$$X' = (A - aI)X, \qquad a = \frac{\operatorname{tr} A}{2}.$$

For either elliptical or spiral orbits we associate this modified equation that has elliptical orbits. The new coefficient matrix $A - (\operatorname{tr} A/2)I$ has trace equal to zero and positive determinant. These two conditions characterize the matrices with a pair of non zero complex conjugate eigenvalues on the imaginary axis. Those are the matrices for which the phase portrait is a center. We show how to compute the axes of the ellipse, the eccentricity of the ellipse, and the direction of rotation, clockwise or counterclockwise.

$\S1$. Direction of rotation.

To determine the direction of rotation it suffices to find the direction of the rotation on the positive x_1 -axis. If the flow is upward (resp. downward) then the swirl is counterclockwise (resp. clockwise). For a matrix A that has no real eigenvalues, the direction of swirl is counterclockwise if and only if the second coordinate of

$$A\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}a_{11}\\a_{21}\end{pmatrix}$$

is positive, if and only if $a_{21} > 0$. The swirl is counterclockwise if and only if $a_{21} > 0$.

Freeing this computation from the choice (1,0) introduces an interesting real quadratic form. For any real $X \neq 0$, the vectors X and AX cannot be parallel. Otherwise, X would be an eigenvector with real eigenvalue. Denote by [X, AX] the 2 × 2 matrix whose first column is X and second is AX. Then the quadratic form

$$Q_1(X) := \det[X, AX] = AX \cdot X^{\perp}, \qquad X^{\perp} := (-x_2, x_1).$$

is nonzero for all real $X \neq 0$. Therefore Q_1 is either always positive or always negative on $\mathbb{R}^2 \setminus 0$. The preceding criterion shows that the sign of $Q_1((1,0))$ and therefore the sign of $Q_1(X)$ determines the direction of rotation.

This result can also be understood considering the angle θ in polar coordinates. On any curve $(x_1(t), x_2(t))$ that does not touch the origin,

$$\frac{d\theta(x_1(t), x_2(t))}{dt} = \frac{\partial\theta}{\partial x_1} \frac{dx_1}{dt} + \frac{\partial\theta}{\partial x_2} \frac{dx_2}{dt} = \frac{x_1 x_2' - x_2 x_1'}{x_1^2 + x_2^2}, \qquad (1.1)$$

the last equality involving the partials of θ .

Exercise 1.1. Compute the partial derivatives of $\theta(x_1, x_2)$ by differentiating the identity

$$||x|| \left(\cos \theta(x), \sin \theta(x)\right) = (x_1, x_2)$$

with respect to x_1 and x_2 .

Formula (1.1) applied to solutions of X' = AX yields

$$\frac{d\theta}{dt} = \frac{x_1 x_2' - x_2 x_1'}{x_1^2 + x^2} = \frac{AX \cdot X^{\perp}}{|X|^2} = \frac{Q_1(X)}{|X|^2}.$$

Therefore Q_1 has a geometric interpretation,

$$Q_1(X) = |X|^2 d\theta/dt.$$
(1)

The criterion for counterclockwise rotation is $d\theta/dt > 0$.

Algorithm I. $Q_1(X)$ is a definite quadratic form and the direction of rotation is counterclockwise if and only if $Q_1 > 0$ on $\mathbb{R}^2 \setminus 0$, and clockwise if and only if $Q_1 < 0$.

Replacing A by $A - \alpha I$ multiplies the solutions of the differential equation by $e^{-\alpha t}$ and does not change $d\theta/dt$ since $X \cdot X^{\perp} = 0$. In particular,

$$Q_1(X) = AX \cdot X^{\perp} = (A - (\operatorname{tr} A/2)I)X \cdot X^{\perp}.$$

\S **2.** Ellipse axis directions.

Define a second quadratic form associated to the matrix A with complex conjugate eigenvalues. First replace A by A - (trA/2)I that has elliptical orbits and eigenvalues on the imaginary axis. The second quadratic form is defined by

$$Q_2(W) := (A - (trA/2)I)W \cdot W.$$

The points where $(A - (trA/2)I)X \perp X$ are the points where $Q_2 = 0$. For elliptical orbits, these are the directions of the principal axes.

The plane is divided into four quadrants by these directions. In each quadrant $Q_2(W)$ has a fixed sign and changes sign exactly when v is along one of the principal axes.

Algorithm II. For a center, the axes of the ellipse are the nonzero vectors W so that $Q_2(W) = 0$. When the ellipse is noncircular this gives a pair of perpendicular lines that are the direction of the principal axes of the ellipse.

Examples. i. For

$$A = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix}, \qquad Q_2(X) = AX \cdot X \qquad AX = (x_2, -4x_1), \qquad Q(X) = -3x_1x_2.$$

Since $Q_2(W) = -3w_1w_2$, the equation of the axes is $x_1x_2 = 0$. The axes are the usual euclidean axes.

ii. For

$$A = \begin{pmatrix} 3 & 5 \\ -2 & -2 \end{pmatrix},$$

 $\operatorname{tr} A = 3 - 2 = 1$, so

$$A - (\operatorname{tr} A/2)I = \begin{pmatrix} 2.5 & 5\\ -2 & -2.5 \end{pmatrix}$$

is the trace free matrix whose motion is a center. The equation determining the axes is

$$0 = Q_2(W) = 2.5 w_1^2 + 3w_1w_2 - 2.5 w_2^2.$$

Any nonzero solution must have $w_1 \neq 0$. Dividing by w_1 shows that solutions are all multiples of W = (1, y) where,

$$2.5 + 3y - 2.5 y^2 = 0$$
, equivalently, $5y^2 - 6y - 5 = 0$. (2)

The roots are

$$\frac{6 \pm \sqrt{6^2 - 4(-5)(5)}}{10} = \frac{6 \pm \sqrt{136}}{10} = \frac{3 \pm \sqrt{34}}{5}$$

The two roots yield the directions $(1, y_1)$ and $(1, y_2)$ of the two axes of the ellipse. The orthogonality of the directions is equivalent to the fact that the product of the roots is equal to -1. This follows from (2) since in the quadratic equation for y, the constant term and the coefficient of y^2 differ by a factor -1.

iii. In the degenerate case where there are more than two directions for which $Q_2 = 0$, one has a quadratic equation with more than two roots so the quadratic form vanishes identically and Q_2 is identically equal to zero. In this case the orbits are circular.

\S **3.** Major and minor axes.

The differential equation with coefficient $\widetilde{A} := A - (\operatorname{tr} A/2)I$ has elliptical orbits. Compute orthogonal unit vectors W_j along the axes of the associated ellipse using Algorithm II. Denote by Y the coordinates with respect to the basis W_j ,

$$X = y_1 W_1 + y_2 W_2$$
, with, $y_1 = X \cdot W_2$, $y_2 = X \cdot W_2$. (3.1)

Introduce the matrix T whose first column is W_1 and second column is W_2 so

$$T := \begin{pmatrix} W_{1,1} & W_{2,1} \\ W_{1,2} & W_{2,2} \end{pmatrix}.$$

Equation (3.1) asserts that

$$X = TY$$
, equivalently $Y = T^{-1}X$. (3.2)

From the definition of T one has

$$T(1,0) = W_1$$
, $T(0,1) = W_2$, so, $T^{-1}W_1 = (1,0)$, $T^{-1}W_2 = (0,1)$. (3.3)

Exercise 3.1 i. If the columns of a 2×2 matrix M form an orthonomal basis of \mathbb{R}^2 show that $M^{\dagger}M = I$ where \dagger denotes transpose. **ii.** Use this to show that $(T^{\dagger}T = I)$. Derive from this that $T^{-1}(T^{-1})^{\dagger} = (T^{-1})^{\dagger}T^{-1} = I$.

X(t) satisfies $X' = \widetilde{A}X$ if and only if Y = TX satisfies $Y' = T^{-1}\widetilde{A}TY$. Next compute $T^{-1}\widetilde{A}T$ to show that

$$T^{-1}\widetilde{A}T = \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix}, \quad \text{with} \quad \alpha := \widetilde{A}W_2 \cdot W_1, \quad \beta := \widetilde{A}W_1 \cdot W_2. \quad (3.4)$$

The first column of $T^{-1}\widetilde{A}T$ is equal to

$$T^{-1}\widetilde{A}T(1,0) = T^{-1}\widetilde{A}W_1.$$

Expand $\widetilde{A}W_1$ with respect to the orthonormal basis of W's to find

$$\widetilde{A}W_1 = (\widetilde{A}W_1 \cdot W_1) W_1 + (\widetilde{A}W_1 \cdot W_2) W_2 = \beta W_2.$$

Since $(\widetilde{A}W_1 \cdot W_1) = 0$ one has

$$T^{-1}\widetilde{A}W_1 = \beta T^{-1}W_2 = (0,\beta)$$

verifying the first column of (3.4).

Exercise 3.2. Verify the second column of the identity.

The formulas show that α and β are real. The determinant of \widetilde{A} is positive and equal to the determinant of $T^{-1}\widetilde{A}T$ so $\alpha\beta < 0$ proving that α and β have opposite sign.

The differential equation in Y coordinates is

$$y_1' = \alpha y_2, \qquad y_2' = \beta y_1.$$

Multiply the first equation by βy_1 , the second by αy_2 , and subtract to find

$$0 = \beta y_1 y_1' - \alpha y_2 y_2' = \frac{1}{2} \frac{d(\beta y_1^2 - \alpha y_2^2)}{dt}.$$

The orbits have equation $\beta y_1^2 - \alpha y_2^2 = \text{constant}$. The orbits are ellipses. Length of the axis in the y_1 direction divided by the axis in the y_2 direction is equal to $|\alpha/\beta|^{-1/2}$.

Algorithm III. Suppose that W_j are orthogonal unit vectors along the axis directions found in Algorithm II and α and β are computed from formula (3.4). Then the elliptical orbits are similar to the ellipse with axis along W_1 of length $|\beta|^{-1/2}$ and axis along W_2 of length $|\alpha|^{-1/2}$.

Examples. i. Choose $W_1 = (1,0), W_2 = (0,1)$ unit vectors along the axes computed in §2. Then

$$\beta = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -4$$
$$\alpha = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1.$$

The ellipses have axes along the x_1 and x_2 axis. The major axis is along x_2 and is longer by a factor 2 than the minor axis.

ii. Choose,

$$U_1 = \left(1, \frac{3+\sqrt{34}}{5}\right), \qquad W_1 = \frac{U_1}{\|U_1\|}, \qquad U_2 = \left(1, \frac{3-\sqrt{34}}{5}\right), \qquad W_2 = \frac{U_2}{\|U_2\|}.$$

Then

$$\beta = \frac{1}{\|U_1\| \|U_2\|} \begin{pmatrix} 2.5 & 5\\ -2 & -2.5 \end{pmatrix} \begin{pmatrix} 1\\ \frac{3+\sqrt{34}}{5} \end{pmatrix} \cdot \begin{pmatrix} 1\\ \frac{3-\sqrt{34}}{5} \end{pmatrix},$$
$$\alpha = \frac{1}{\|U_1\| \|U_2\|} \begin{pmatrix} 2.5 & 5\\ -2 & -2.5 \end{pmatrix} \begin{pmatrix} 1\\ \frac{3-\sqrt{34}}{5} \end{pmatrix} \cdot \begin{pmatrix} 1\\ \frac{3+\sqrt{34}}{5} \end{pmatrix},$$

The ellipses are similar to the ellipse with axes along W_1 and W_2 of lengths $|\beta|^{-1/2}$ and $|\alpha|^{-1/2}$ respectively.

Exercise 3.3. If the axes are not along the x-axes, then the equation for $x = x_1/x_2$ in algorithm II has the form $x^2 + ax - 1 = 0$. Show that it is impossible to find an example where the roots are integers. **Hint.** The sum of the roots is equal to -a and the discriminant must be a perfect square.

This may explain why you don't find algorithms II, III in textbooks.