
Dynamical Systems Prof. J. Rauch

Gradient Systems
Summary. These notes complement the excellent section 9.3 of Hirsch, Smale, and Devaney.

1 Basic concepts

1.1 Definition

Definition 1.1 Gradient systems are differential equations that have the form

X ′ = −gradV (X) ,

with V a real valued function.

To guarantee that the right hand side is a continuously differentiable function of X one requires
that V is twice continuously differentiable.

1.2 V decreases and steepest descent

The reason that gradient systems are grouped with the study of Lyapunov functions is that for
gradient systems there is a natural candidate for such a function, Indeed, on solutions one has

V (X(t))′ = ∇V (X) ·X ′ = ∇V (X) ·
(
−∇V (X)

)
= −‖gradV (X(t))‖2 .

Except at equilibria, V is strictly decreasing on orbits.
The direction gradV (X) is the direction of most rapid increase of V . It is orthogonal to the level
sets of V , The direction −gradV (X) is the direction of most rapid decrease of V . The orbits
follow the path of steepest descent of V . If V (X) represents altitude, then a skier who follows
the fall line at all points follows these paths of steepest descent.
The numerical algorithm that seeks minima of V (X) by descending toward the bottom of the
graph of V on such curves is called the method of steepest descent.

1.3 How to recognize a gradient system

A differential equation

X ′ = F (X) =
(
F1(X), F2(X), . . . , FN (X)

)
is a gradient system if and only if there is a scalar valued function V (X) so that

−
(
F1(X), F2(X), . . . , FN (X)

)
=

(
∂V (X)

∂x1
,
∂V (X)

∂x2
, . . . ,

∂V (X)

∂xN

)
.

In dimension d = 1
x′ = f(x)
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one can always choose an antiderivative V of −f so that

dV (x)

dx
= −f(x) .

The equation is always a gradient system

x′ = −dV (x)

dx
.

Exercise 1.1 In dimension d = 1 the equations take the confusing form x′ = −V ′(x) with V a
function of the scalar variable. Explain why one cannot integrate to find that x = V (x) + C.

In dimention d = 2 a system

x′ = f(x, y) , y′ = g(x, y)

is a gradient sytem if and only if there is a V (x, y) so that

∂V (x, y)

∂x
= − f(x, y) , ∂V (x, y)

∂y
= − g(x, y)

A necessary and sufficent condition for solvability on a ball {|X −X| < R} (R =∞ allowed) is
the equality of mixed partials,

∂f

∂y
=

∂g

∂x
.

In the general case the necessary and sufficient condition on balls is again equality of mixed
partials expressed as

for all 1 ≤ i < j ≤ N ,
∂Fi(X)

∂xi
=

∂Fj(X)

∂xi
.

2 Equilibria and their stability

Equilibria are the critical points of V , also called stationary points, where the gradient of
V is equal to zero.

Proposition 2.1 (HSD p.204) If Z0 is an ω or α limit point of a solution X(t) of a gradient
system then Z0 is an equilibrium.

Proof. Follows the proof of the LaSalle Invariance Principal, If X(tn) → Z0 with tn ↗ ∞
consider the sequence of solutions Xn(t) := X(tn + t) that converge to the solution Z(t) with
initial value Z0. Then V (Z(t)) is constant. This implies that Z0 is an equilibrium so Z(t) = Z0

for all t.

Exercise 2.1 Show that V (Z(t) is constant. Show that V is constant on the ω-limit set of any
orbit. Show that V is constant on the α-limit set of any orbit. Discussion. It is challenging to
find an example with a limit set larger than a single point.
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2.1 Analysis of equilibria by linearization

If X∗ is an equilibrium, the linearization is

Y ′ = −D2V (X∗)Y ,

where D2V denotes the N ×N symmetric matrix of second derivative,

D2V (X∗) :=
∂2V

∂xi∂xj
(X∗) .

This matrix is called the Hessian. Thanks to the symmetry its eigenvalues are real. The next
result follows from the standard linearization criteria paying special attention to the minus sign
in the linearized equation.

Theorem 2.1 i. If the eigenvalues of the Hessian are all strictly positive then, X∗ is a sink. In
particular, it is asymptotically stable.
ii. If the Hessian has a negative real eigenvalue then the equilibrium is unstable.
iii. If the eigenvalues of the Hessian are nonzero, then the dimension of the unstable manifold is
equal to the number of negative eigenvalues counting mulitplicity. The dimension of the unstable
manifold is the number of negative eigenvalues counting mulitplicity. The tangent spaces of these
manifolds are the spans of the corresponding eigenspaces so are orthogonal at the equilibrium
point.

Remark 2.1 Strictly positive eigenvalues as in i is the classic second derivative sufficient con-
dition for a strict local minimum of V .

Example 2.2 The example (with 27 continuous derivatives)

V (X) := |X|28
(
1 +

sin2(1/|X|)
10

)
,

has a strict local minimum but there are circles |X| = rk with rk → 0 consisting of equilibria, so
X∗ is NOT asymptotically stable. There are even circles of stable equilibria. Indeed, near the
origin the first factor changes little on the scale at which the second varies so there are circles of
stable equilbria near the minima of the second factor that occur at radii so that 1/r is an integer
multiple of π.

2.2 Analysis of equilibria by the Lyapunov/Lasalle method

The function
L(X) := V (X)− V (X∗) ,

decreases on orbits and vanishes at X∗.

Theorem 2.3 L is a Lyapunov function when (and only when) X∗ is a strict local minimum
of V . It is a strict Lyapunov function when in addition X∗ is an isolated critical point point
of V . Lyapunov’s Theorem implies that in the first case, X∗ is stable, and in the second it is
asymptotically stable.
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Remark 2.2 i. Example 2.2 shows that the isolation hypothesis in the second assertion is needed.
ii. X∗ can be strict local minimum in cases where D2V is not positive definite. For example
V (X) := ‖X‖4.

It is commonly thought that if ∇V (X) = 0 and V does not have a local minimum then the
equilibrium is unstable. The idea is that orbits escapes from X by following paths along which
V decreases. Unfortunately this appealing argument is incorrect as the next example shows.

Exercise 2.2 Show that the one dimensional gradient system with V (x) := x28 sin(1/x) has
x = 0 as a stable equilibrium and x = 0 is not a local minimum of V (x). Hint. The potential
function V (x) has lots of little positive barriers near x = 0.

Lasalle’s Principle yields an accurate lower bound for the basin of attraction. Since L decreases
on orbits it follows that for any α the set {X : V (X) ≤ α} is positively invariant. The strategy
is to gradually increase α and find the largest sets to which Lasalle’s principle applies.

Example 2.4 In the left hand figure α is a little larger than the minimum of V and the region
{V (X) ≤ α} is indicated by the region filled in the the bottom of the left hand bowl. The set is a
connected neighborhood of the left hand minimum.
In the second figure the region {V (X) ≤ α} is sketched for a larger value of α and the set of X
includes two connected components one about each of the two local minima.

α

α

Each of the connected components is closed, bounded, positively invariant. For each of the two
components, the only orbit in the component on which L is constant is the equlibrium in the set.
This verifies Hypothesis ii of Lassalle’s Theorem.
The hypothesis ceases to be satisfied when α is increased to the height of the saddle point in the
graph of V . At that critical value of α, the two components merge and {X : V (X) ≤ α} becomes
connected. That connected set contains three equilibria, both of the minima and the saddle point.
In particular, the saddle point is an orbit on which L is constant. And, that orbit is not in the
basis of attraction of either of the two minima.

The analysis of the example for α lower than the saddle yields the following general result.

Theorem 2.5 If X∗ is a strict local minimum of V with V (X∗) < α and if the connected
component of X∗ in {X : V (X) ≤ α} is compact and contains no equilibria other than X∗,
then that component is contained in the basin of attraction of X∗.

This proves the intuitive result that orbits starting in the bowl defined by the local minimum
X∗ descend the bowl to X∗ so long as V < α at the initial point.
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Exercise 2.3 The complete phase portrait of one such example is on page 205 of Hirsch, Smale,
and Devaney. For the asymmetric potential in Example 2.4 sketch the form that the stable and
unstable manifold take. Hint. You cannot find them exactly.
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