Theory of Linear Systems

This proves the two fundamental results concerning the theory of homogeneous linear systems

$$X' = A(t) X + f(t).$$

The coefficient A(t) is given as a continuous $N \times N$ matrix valued function on this interval and f is continuous both for $0 \le t < \infty$.

1 No blow up theorem

Extending A to be independent of t for $-\infty < t \le 0$ and for $T \le t < \infty$ we may suppose that A is defined and continuous for all t. The equation then has the form X' = F(t, X) with F continuous in t and continuously differentiable in X on all of $\mathbb{R} \times \mathbb{R}^N$. The fundamental existence and uniqueness theorem implies that for any $X_0 \in \mathbb{R}^N$, the there is a unique maximal solution X(t) defined for $0 \le t \le T_*$ satisfying the initial condition $X(0) = X_0$. In the nonlinear case one can have $T_* < \infty$. For linear equations this cannot occur unless the coefficients are singular.

Theorem 1.1 $T_* = \infty$. In particular the solution exists throughout the interval of interest $0 \le t \le T$.

Proof. The fundamental existence theorem shows that if $T_* < \infty$ then for any closed bounded set $\Gamma \in \mathbb{R}^N$ there is a $\underline{t} < T_*$ so that the solution takes values outside Γ for $t \in [\underline{t}, T_*[$. We show that this is not possible by finding an R so that for $0 \le t < T_*$ one has $||X(t)|| \le R$. With $\Gamma := \{|X| \le R\}$ the blow up criterion is violated.

The strategy is to bound the growth of the square of the norm. Toward that end compute the derivative,

$$\langle X(t), X(t) \rangle' = \langle X'(t), X(t) \rangle + \langle X(t), X'(t) \rangle.$$

Apply the Cauchy-Schwartz inequality twice to find

$$\langle X(t), X(t) \rangle' \le 2 ||X|| ||X'||.$$

Estimate

$$||X'|| = ||AX + f|| \le ||AX|| + ||f|| \le ||A(t)|||X|| + ||f(t)||.$$

Define

$$a \; := \; \max_{[0,T_*]} \|A(t)\| \,, \qquad b \; := \; \max_{[0,T_*]} \|f(t)\|$$

Combining yields

$$\langle X(t), X(t) \rangle' \le 2a ||X(t)||^2 + 2b ||X||.$$

Estimate

$$2b||X|| \le b^2 + ||X||^2$$

so $\varphi(t) := \langle X(t), X(t) \rangle$ satisfies

$$\varphi' \le (2a+1)\varphi + b^2.$$

Employing the method of integrating factors,

$$\left(e^{-(2a+1)t}\varphi\right)' \ = \ e^{-(2a+1)t}\varphi' - (2a+1)e^{-(2a+1)t}\varphi \ = \ e^{-(2a+1)t}\left(\varphi' - (2a+1)\varphi\right) \ \le \ b^2e^{-(2a+1)t}.$$

Integrate from t = 0 to t to find

$$e^{-(2a+1)t}\varphi(t) - \varphi(0) \le \int_0^t b^2 e^{-(2a+1)t} dt$$
.

Therefore for $0 \le t < T_*$ multiplying by $e^{(2a+1)t}$ shows that

$$||X(t)||^2 = \varphi(t) \le e^{(2a+1)T_*} \Big(\varphi(0) + \int_0^{T_*} b^2 e^{-(2a+1)t} dt \Big) := R^2.$$

completing the proof.

Alternate Proof. The fundamental existence theorem shows that if $T_* < \infty$ then for any closed bounded set $\Gamma \in \mathbb{R}^N$ there is a $\underline{t} < T_*$ so that the solution takes values outside Γ for $t \in [\underline{t}, T_*[$. We show that this is not possible by finding an R so that for $0 \le t < T_*$ one has $||X(t)|| \le R$. With $\Gamma := \{|X| \le R\}$ the blow up criterion is violated.

The fundamental theorem of calculus implies that for $0 \le t < T_*$

$$X(t) - X(0) = \int_0^t X'(s) \, ds = \int_0^t A(s) \, X(s) \, ds \, .$$

The triangle inequality then implies that

$$||X(t)|| \le ||X_0|| + ||\int_0^t A(s) X(s) ds|| \le ||X_0|| + \int_0^t ||A(s) X(s)|| ds.$$

Let

$$K := \max_{0 \le t \le T} ||A(t)|| < \infty,$$
 and $C := ||X_0||$.

K is finite because of the continuity of A and the fact that [0,T] is closed and bounded. Then $||A(s)X(s)|| \le K||X(s)||$ so u(t) := ||X(t)|| satisfies for $0 \le t < T_*$

$$u(t) \le C + K \int_0^t u(s) \, ds \, .$$

Since u is continuous and nonnegative Gronwall's lemma implies that for $0 \le t < T_*$ one has

$$u(t) \le C e^{Kt}$$
.

Setting $R := C e^{KT_*}$ proves the desired conclusion.

2 Theorem on general solutions

The superposition principal asserts that if $\Phi_j(t)$ for $1 \leq j \leq k$ are k solutions and c_j are k scalars then

$$c_1\Phi_1(t) + c_2\Phi_2(t) + \dots + c_k\Phi_k(t)$$

is a k parameter family of solutions. The general solution is determined by its initial condition so is an N parameter family of solutions suggesting that for k = N one might get the general solution. The next result tells under what conditions, k = N solutions yield the general solution of the homogeneous linear system.

Theorem 2.1 If $\Phi_j(t)$ is a solution for $1 \leq j \leq N$ then the following are equivalent.

- **1.** For some $t_0 \in [0,T]$ the N vectors $\Phi_1(t_0), \Phi_2(t_0), \dots, \Phi_N(t_0)$ are linearly independent in \mathbb{R}^N .
- **2.** The general solution is $\sum c_j \Phi_j(t)$ with scalar c_j .
- **3.** For all $\underline{t} \in [0,T]$, the vectors $\Phi_1(\underline{t}), \Phi_2(\underline{t}), \dots, \Phi_N(\underline{t})$ are linearly independent in \mathbb{R}^N .

Remark 2.1 When the conditions hold, every solution is of the form $\sum c_j \Phi_j$ for a unique choice of c_j . The uniqueness of the c_j follows upon representing $X(t_0) = \sum c_j \Phi_j(t_0)$. Thanks to 1, the vector $X(t_0)$ has only one such representation.

Proof. Prove that $3 \Rightarrow 1 \Rightarrow 2 \Rightarrow 3$. That $3 \Rightarrow 1$ is trivial.

 $1 \Rightarrow 2$. The superposition principal shows that each $\sum c_i \Phi_i$ is a solution.

Conversely if X is a solution consider the vector $X(t_0)$. Since the $\Phi_j(t_0)$ are N linearly independent vectors in \mathbb{R}^N they span so there are scalars c_j so that

$$X(t_0) = c_1 \varphi_1(t_0) + c_2 \Phi_2(t_0) + \dots + c_N \Phi_n(t_0)$$
.

Define

$$Z(t) := c_1 \varphi_1(t) + c_2 \Phi_2(t) + \dots + c_N \Phi_n(t).$$

Then Z is a solution and $Z(t_0) = X(t_0)$ because of the choice of the c_j . Uniqueness implies that Z = X so X is one the solutions $\sum c_j \Phi_j$. This completes the proof of 2.

 $2 \Rightarrow 3$. Fix $\underline{t} \in [0,T]$. For any $W \in \mathbb{R}^N$ let X(t) be the unique solution with $X(\underline{t}) = W$. Property 2 implies that there are constants c_j so that $X = \sum_j c_j \Phi_j$.

Evaluating at $t = \underline{t}$ implies that $\sum_j c_j \Phi(\underline{t}) = X(\underline{t}) = W$. Since W is arbitrary this shows that the set of vectors $\Phi_j(\underline{t})$ spans \mathbb{R}^N . A set of N vectors in \mathbb{R}^N that spans is independent. This proves 3.