Theory of Linear Systems

This proves the two fundamental results concerning the theory of homogeneous linear systems

$$
X^{\prime}=A(t) X+f(t)
$$

The coefficient $A(t)$ is given as a continuous $N \times N$ matrix valued function on this interval and f is continuous both for $0 \leq t<\infty$.

1 No blow up theorem

Extending A to be independent of t for $-\infty<t \leq 0$ and for $T \leq t<\infty$ we may suppose that A is defined and continuous for all t. The equation then has the form $X^{\prime}=F(t, X)$ with F continuous in t and continuously differentiable in X on all of $\mathbb{R} \times \mathbb{R}^{N}$. The fundamental existence and uniqueness theorem implies that for any $X_{0} \in \mathbb{R}^{N}$, the there is a unique maximal solution $X(t)$ defined for $0 \leq t \leq T_{*}$ satisfying the initial condition $X(0)=X_{0}$. In the nonlinear case one can have $T_{*}<\infty$. For linear equations this cannot occur unless the coefficients are singular.

Theorem 1.1 $T_{*}=\infty$. In particular the solution exists throughout the interval of interest $0 \leq t \leq T$.

Proof. The fundamental existence theorem shows that if $T_{*}<\infty$ then for any closed bounded set $\Gamma \in \mathbb{R}^{N}$ there is a $\underline{t}<T_{*}$ so that the solution takes values outside Γ for $t \in\left[\underline{t}, T_{*}[\right.$. We show that this is not possible by finding an R so that for $0 \leq t<T_{*}$ one has $\|X(t)\| \leq R$. With $\Gamma:=\{|X| \leq R\}$ the blow up criterion is violated.
The strategy is to bound the growth of the square of the norm. Toward that end compute the derivative,

$$
\langle X(t), X(t)\rangle^{\prime}=\left\langle X^{\prime}(t), X(t)\right\rangle+\left\langle X(t), X^{\prime}(t)\right\rangle .
$$

Apply the Cauchy-Schwartz inequality twice to find

$$
\langle X(t), X(t)\rangle^{\prime} \leq 2\|X\|\left\|X^{\prime}\right\|
$$

Estimate

$$
\left\|X^{\prime}\right\|=\|A X+f\| \leq\|A X\|+\|f\| \leq\|A(t)\|\|X\|+\|f(t)\|
$$

Define

$$
a:=\max _{\left[0, T_{*}\right]}\|A(t)\|, \quad b:=\max _{\left[0, T_{*}\right]}\|f(t)\|
$$

Combining yields

$$
\langle X(t), X(t)\rangle^{\prime} \leq 2 a\|X(t)\|^{2}+2 b\|X\|
$$

Estimate

$$
2 b\|X\| \leq b^{2}+\|X\|^{2}
$$

so $\varphi(t):=\langle X(t), X(t)\rangle$ satisfies

$$
\varphi^{\prime} \leq(2 a+1) \varphi+b^{2} .
$$

Employing the method of integrating factors,

$$
\left(e^{-(2 a+1) t} \varphi\right)^{\prime}=e^{-(2 a+1) t} \varphi^{\prime}-(2 a+1) e^{-(2 a+1) t} \varphi=e^{-(2 a+1) t}\left(\varphi^{\prime}-(2 a+1) \varphi\right) \leq b^{2} e^{-(2 a+1) t}
$$

Integrate from $t=0$ to t to find

$$
e^{-(2 a+1) t} \varphi(t)-\varphi(0) \leq \int_{0}^{t} b^{2} e^{-(2 a+1) t} d t
$$

Therefore for $0 \leq t<T_{*}$ multiplying by $e^{(2 a+1) t}$ shows that

$$
\|X(t)\|^{2}=\varphi(t) \leq e^{(2 a+1) T_{*}}\left(\varphi(0)+\int_{0}^{T_{*}} b^{2} e^{-(2 a+1) t} d t\right):=R^{2}
$$

completing the proof.
Alternate Proof. The fundamental existence theorem shows that if $T_{*}<\infty$ then for any closed bounded set $\Gamma \in \mathbb{R}^{N}$ there is a $\underline{t}<T_{*}$ so that the solution takes values outside Γ for $t \in\left[\underline{t}, T_{*}[\right.$. We show that this is not possible by finding an R so that for $0 \leq t<T_{*}$ one has $\|X(t)\| \leq R$. With $\Gamma:=\{|X| \leq R\}$ the blow up criterion is violated.
The fundamental theorem of calculus implies that for $0 \leq t<T_{*}$

$$
X(t)-X(0)=\int_{0}^{t} X^{\prime}(s) d s=\int_{0}^{t} A(s) X(s) d s
$$

The triangle inequality then implies that

$$
\|X(t)\| \leq\left\|X_{0}\right\|+\left\|\int_{0}^{t} A(s) X(s) d s\right\| \leq\left\|X_{0}\right\|+\int_{0}^{t}\|A(s) X(s)\| d s
$$

Let

$$
K:=\max _{0 \leq t \leq T}\|A(t)\|<\infty, \quad \text { and } \quad C:=\left\|X_{0}\right\| .
$$

K is finite because of the continuity of A and the fact that $[0, T]$ is closed and bounded. Then $\|A(s) X(s)\| \leq K\|X(s)\|$ so $u(t):=\|X(t)\|$ satisfies for $0 \leq t<T_{*}$

$$
u(t) \leq C+K \int_{0}^{t} u(s) d s
$$

Since u is continuous and nonnegative Gronwall's lemma implies that for $0 \leq t<T_{*}$ one has

$$
u(t) \leq C e^{K t}
$$

Setting $R:=C e^{K T_{*}}$ proves the desired conclusion.

2 Theorem on general solutions

The superposition principal asserts that if $\Phi_{j}(t)$ for $1 \leq j \leq k$ are k solutions and c_{j} are k scalars then

$$
c_{1} \Phi_{1}(t)+c_{2} \Phi_{2}(t)+\cdots+c_{k} \Phi_{k}(t)
$$

is a k parameter family of solutions. The general solution is determined by its initial condition so is an N parameter family of solutions suggesting that for $k=N$ one might get the general solution. The next result tells under what conditions, $k=N$ solutions yield the general solution of the homogeneous linear system.

Theorem 2.1 If $\Phi_{j}(t)$ is a solution for $1 \leq j \leq N$ then the following are equivalent.

1. For some $t_{0} \in[0, T]$ the N vectors $\Phi_{1}\left(t_{0}\right), \Phi_{2}\left(t_{0}\right), \ldots, \Phi_{N}\left(t_{0}\right)$ are linearly independent in \mathbb{R}^{N}.
2. The general solution is $\sum c_{j} \Phi_{j}(t)$ with scalar c_{j}.
3. For all $\underline{t} \in[0, T]$, the vectors $\Phi_{1}(\underline{t}), \Phi_{2}(\underline{t}), \ldots, \Phi_{N}(\underline{t})$ are linearly independent in \mathbb{R}^{N}.

Remark 2.1 When the conditions hold, every solution is of the form $\sum c_{j} \Phi_{j}$ for a unique choice of c_{j}. The uniqueness of the c_{j} follows upon representing $X\left(t_{0}\right)=\sum c_{j} \Phi_{j}\left(t_{0}\right)$. Thanks to $\mathbf{1}$, the vector $X\left(t_{0}\right)$ has only one such representation.

Proof. Prove that $3 \Rightarrow 1 \Rightarrow 2 \Rightarrow 3$. That $3 \Rightarrow 1$ is trivial.
$1 \Rightarrow 2$. The superposition principal shows that each $\sum c_{j} \Phi_{j}$ is a solution.
Conversely if X is a solution consider the vector $X\left(t_{0}\right)$. Since the $\Phi_{j}\left(t_{0}\right)$ are N linearly independent vectors in \mathbb{R}^{N} they span so there are scalars c_{j} so that

$$
X\left(t_{0}\right)=c_{1} \varphi_{1}\left(t_{0}\right)+c_{2} \Phi_{2}\left(t_{0}\right)+\cdots+c_{N} \Phi_{n}\left(t_{0}\right)
$$

Define

$$
Z(t):=c_{1} \varphi_{1}(t)+c_{2} \Phi_{2}(t)+\cdots+c_{N} \Phi_{n}(t)
$$

Then Z is a solution and $Z\left(t_{0}\right)=X\left(t_{0}\right)$ because of the choice of the c_{j}. Uniqueness implies that $Z=X$ so X is one the solutions $\sum c_{j} \Phi_{j}$. This completes the proof of 2 .
$2 \Rightarrow 3$. Fix $\underline{t} \in[0, T]$. For any $W \in \mathbb{R}^{N}$ let $X(t)$ be the unique solution with $X(\underline{t})=W$. Property 2 implies that there are constants c_{j} so that $X=\sum_{j} c_{j} \Phi_{j}$.
Evaluating at $t=\underline{t}$ implies that $\sum_{j} c_{j} \Phi(\underline{t})=X(\underline{t})=W$. Since W is arbitrary this shows that the set of vectors $\Phi_{j}(\underline{t})$ spans \mathbb{R}^{N}. A set of N vectors in \mathbb{R}^{N} that spans is independent. This proves 3 .

