
Theory of Linear Systems
This proves the two fundamental results concerning the theory of homogeneous linear systems

X ′ = A(t)X + f(t) .

The coefficient A(t) is given as a continuous N ×N matrix valued function on this interval and
f is continuous both for 0 ≤ t <∞.

1 No blow up theorem

Extending A to be independent of t for −∞ < t ≤ 0 and for T ≤ t < ∞ we may suppose
that A is defined and continuous for all t. The equation then has the form X ′ = F (t,X) with F
continuous in t and continuously differentiable in X on all of R×RN . The fundamental existence
and uniqueness theorem implies that for any X0 ∈ RN , the there is a unique maximal solution
X(t) defined for 0 ≤ t ≤ T∗ satisfying the initial condition X(0) = X0. In the nonlinear case one
can have T∗ <∞. For linear equations this cannot occur unless the coefficients are singular.

Theorem 1.1 T∗ = ∞. In particular the solution exists throughout the interval of interest
0 ≤ t ≤ T .

Proof. The fundamental existence theorem shows that if T∗ <∞ then for any closed bounded
set Γ ∈ RN there is a t < T∗ so that the solution takes values outside Γ for t ∈ [t, T∗[. We show
that this is not possible by finding an R so that for 0 ≤ t < T∗ one has ‖X(t)‖ ≤ R. With
Γ := {|X| ≤ R} the blow up criterion is violated.
The strategy is to bound the growth of the square of the norm. Toward that end compute the
derivative, 〈

X(t) , X(t)
〉′

=
〈
X ′(t) , X(t)

〉
+
〈
X(t) , X ′(t)

〉
.

Apply the Cauchy-Schwartz inequality twice to find〈
X(t) , X(t)

〉′ ≤ 2 ‖X‖ ‖X ′‖ .

Estimate
‖X ′‖ = ‖AX + f‖ ≤ ‖AX‖ + ‖f‖ ≤ ‖A(t)‖‖X‖ + ‖f(t)‖ .

Define
a := max

[0,T∗]
‖A(t)‖ , b := max

[0,T∗]
‖f(t)‖

Combining yields 〈
X(t) , X(t)

〉′ ≤ 2a‖X(t)‖2 + 2b‖X‖ .

Estimate
2b‖X‖ ≤ b2 + ‖X‖2

so ϕ(t) :=
〈
X(t) , X(t)

〉
satisfies

ϕ′ ≤ (2a + 1)ϕ + b2 .
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Employing the method of integrating factors,(
e−(2a+1)tϕ

)′
= e−(2a+1)tϕ′ − (2a + 1)e−(2a+1)tϕ = e−(2a+1)t

(
ϕ′ − (2a + 1)ϕ

)
≤ b2e−(2a+1)t.

Integrate from t = 0 to t to find

e−(2a+1)tϕ(t) − ϕ(0) ≤
∫ t

0
b2e−(2a+1)t dt .

Therefore for 0 ≤ t < T∗ multiplying by e(2a+1)t shows that

‖X(t)‖2 = ϕ(t) ≤ e(2a+1)T∗
(
ϕ(0) +

∫ T∗

0
b2e−(2a+1)t dt

)
:= R2 .

completing the proof.

Alternate Proof. The fundamental existence theorem shows that if T∗ <∞ then for any closed
bounded set Γ ∈ RN there is a t < T∗ so that the solution takes values outside Γ for t ∈ [t, T∗[.
We show that this is not possible by finding an R so that for 0 ≤ t < T∗ one has ‖X(t)‖ ≤ R.
With Γ := {|X| ≤ R} the blow up criterion is violated.
The fundamental theorem of calculus implies that for 0 ≤ t < T∗

X(t)−X(0) =

∫ t

0
X ′(s) ds =

∫ t

0
A(s)X(s) ds .

The triangle inequality then implies that

‖X(t)‖ ≤ ‖X0‖+ ‖
∫ t

0
A(s)X(s) ds‖ ≤ ‖X0‖+

∫ t

0
‖A(s)X(s)‖ ds .

Let
K := max

0≤t≤T
‖A(t)‖ <∞, and C := ‖X0‖ .

K is finite because of the continuity of A and the fact that [0, T ] is closed and bounded. Then
‖A(s)X(s)‖ ≤ K‖X(s)‖ so u(t) := ‖X(t)‖ satisfies for 0 ≤ t < T∗

u(t) ≤ C + K

∫ t

0
u(s) ds .

Since u is continuous and nonnegative Gronwall’s lemma implies that for 0 ≤ t < T∗ one has

u(t) ≤ C eKt .

Setting R := C eKT∗ proves the desired conclusion.

2 Theorem on general solutions

The superposition principal asserts that if Φj(t) for 1 ≤ j ≤ k are k solutions and cj are k scalars
then

c1Φ1(t) + c2Φ2(t) + · · ·+ ckΦk(t)

is a k parameter family of solutions. The general solution is determined by its initial condition
so is an N parameter family of solutions suggesting that for k = N one might get the general
solution. The next result tells under what conditions, k = N solutions yield the general solution
of the homogeneous linear system.
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Theorem 2.1 If Φj(t) is a solution for 1 ≤ j ≤ N then the following are equivalent.
1. For some t0 ∈ [0, T ] the N vectors Φ1(t0),Φ2(t0), . . . ,ΦN (t0) are linearly independent in RN .
2. The general solution is

∑
cjΦj(t) with scalar cj.

3. For all t ∈ [0, T ], the vectors Φ1(t),Φ2(t), . . . ,ΦN (t) are linearly independent in RN .

Remark 2.1 When the conditions hold, every solution is of the form
∑

cjΦj for a unique choice
of cj. The uniqueness of the cj follows upon representing X(t0) =

∑
cjΦj(t0). Thanks to 1, the

vector X(t0) has only one such representation.

Proof. Prove that 3⇒ 1⇒ 2⇒ 3. That 3⇒ 1 is trivial.

1⇒ 2. The superposition principal shows that each
∑

cjΦj is a solution.
Conversely if X is a solution consider the vector X(t0). Since the Φj(t0) are N linearly indepen-
dent vectors in RN they span so there are scalars cj so that

X(t0) = c1ϕ1(t0) + c2Φ2(t0) + · · ·+ cNΦn(t0) .

Define
Z(t) := c1ϕ1(t) + c2Φ2(t) + · · ·+ cNΦn(t) .

Then Z is a solution and Z(t0) = X(t0) because of the choice of the cj . Uniqueness implies that
Z = X so X is one the solutions

∑
cjΦj . This completes the proof of 2.

2 ⇒ 3. Fix t ∈ [0, T ]. For any W ∈ RN let X(t) be the unique solution with X(t) = W .
Property 2 implies that there are constants cj so that X =

∑
j cjΦj .

Evaluating at t = t implies that
∑

j cjΦ(t) = X(t) = W . Since W is arbitrary this shows that
the set of vectors Φj(t) spans RN . A set of N vectors in RN that spans is independent. This
proves 3.
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