Theory of Linear Systems

This proves the two fundamental results concerning the theory of homogeneous linear systems
X' = A)X + f(t).

The coefficient A(t) is given as a continuous N x N matrix valued function on this interval and
f is continuous both for 0 < ¢ < co.

1 No blow up theorem

Extending A to be independent of ¢ for —oco < ¢t < 0 and for T' < t < 0o we may suppose
that A is defined and continuous for all ¢. The equation then has the form X' = F (¢, X) with F'
continuous in ¢ and continuously differentiable in X on all of R x RV, The fundamental existence
and uniqueness theorem implies that for any Xy € RY, the there is a unique maximal solution
X (t) defined for 0 < t < T satisfying the initial condition X (0) = Xy. In the nonlinear case one
can have T, < oo. For linear equations this cannot occur unless the coefficients are singular.

Theorem 1.1 T, = oo. In particular the solution exists throughout the interval of interest
0<t<T.

Proof. The fundamental existence theorem shows that if T, < oo then for any closed bounded
set T' € RY there is a t < T, so that the solution takes values outside I" for ¢ € [t, T[. We show
that this is not possible by finding an R so that for 0 < ¢t < T} one has || X (¢)|| < R. With
I' := {| X| < R} the blow up criterion is violated.

The strategy is to bound the growth of the square of the norm. Toward that end compute the
derivative,

(X(1), X(1) = (X'(), X(1)) + (X(0), X'(2)).
Apply the Cauchy-Schwartz inequality twice to find

(X, X)) < 20X/ 1x').

Estimate
X' = [[AX + fIl < [[AX]] + [Ifl < [A@ONX] + NF@)]-
Define
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Combining yields
/
(X(t), X(1)) < 2a]|X@)|” + 2] X]| -

Estimate
20 X < b° 41X

so p(t) == (X(t), X(t)) satisfies

¢ < (2a+1)p+b2.



Employing the method of integrating factors,
(6—(2a+1)t(p)’ _ 6—(2a+1)t¢/ —(2a+ 1)6—(2a+1)t90 — o (2a41)t (SO/ — (2a + 1)@) < pRe~(atD)t

Integrate from ¢t = 0 to ¢ to find

t
67(2a+1)t¢(t) _ S0(0) < / 6267(2a+1)t dt .
0
Therefore for 0 < ¢t < T, multiplying by e(*t1? shows that

T*
IXOI? = ¢(t) < o (so(o) + / b2e*<2a+1>tdt) = R%.
0
completing the proof. [ ]

Alternate Proof. The fundamental existence theorem shows that if T < oo then for any closed
bounded set I' € RY there is a ¢ < T} so that the solution takes values outside I" for ¢ € [t, T%].
We show that this is not possible by finding an R so that for 0 < ¢ < T} one has || X (¢)| < R.
With I' := {|X| < R} the blow up criterion is violated.

The fundamental theorem of calculus implies that for 0 < ¢ < T

:/OtX'(s)ds:/OtA(s)Xs ds

The triangle inequality then implies that

IX @) < 1 Xo] + | / 8)ds|) < ||Xo]| + / | A(s) X (5)]] ds

Let
K := max ||A(t)]] < oo, and C = | Xol| -
0<t<T

K is finite because of the continuity of A and the fact that [0,7] is closed and bounded. Then
|A(s)X (s)|| < K[| X (s)]| so u(t) := || X (t)|| satisfies for 0 < ¢ < T

t
ut)SC—i—K/us ds
0

Since v is continuous and nonnegative Gronwall’s lemma implies that for 0 < ¢ < T} one has
u(t) < C et

Setting R := C eX™* proves the desired conclusion. |

2 Theorem on general solutions

The superposition principal asserts that if ®;(¢) for 1 < j < k are k solutions and ¢; are k scalars
then
Cl‘bl(t) + CQ(I)Q(t) + .-+ Ck(I)k(t>

is a k parameter family of solutions. The general solution is determined by its initial condition
so is an N parameter family of solutions suggesting that for kK = N one might get the general
solution. The next result tells under what conditions, £ = NN solutions yield the general solution
of the homogeneous linear system.



Theorem 2.1 If ®;(t) is a solution for 1 < j < N then the following are equivalent.

1. For some tg € [0,T) the N vectors ®1(tg), ®a(to), ..., Pn(to) are linearly independent in RN .
2. The general solution is Y c;P;(t) with scalar c;.

3. For allt € [0,T), the vectors ®1(t), ®2(t), ..., Pn(t) are linearly independent in RY.

Remark 2.1 When the conditions hold, every solution is of the form Y ¢;®; for a unique choice
of ¢j. The uniqueness of the c; follows upon representing X (to) =Y ¢;j®;(to). Thanks to 1, the
vector X (to) has only one such representation.

Proof. Prove that 3 =1 = 2 = 3. That 3 = 1 is trivial.

1 = 2. The superposition principal shows that each ) ¢;®; is a solution.

Conversely if X is a solution consider the vector X (tp). Since the ®;(¢y) are N linearly indepen-
dent vectors in RN they span so there are scalars c¢;j so that

X (to) = crp1(to) + ca®a(to) + - + enPulto) -

Define
Z(t) = 614,01(25) + ng)g(t) + 4 CNq)n(t) .

Then Z is a solution and Z(tg) = X (t9) because of the choice of the ¢;. Uniqueness implies that
Z = X so X is one the solutions ) ¢;®;. This completes the proof of 2.

2 = 3. Fixt € [0,7]. For any W € R™ let X(t) be the unique solution with X () = W.
Property 2 implies that there are constants c¢; so that X = Zj c; ;.
Evaluating at ¢ = ¢ implies that >, c¢;®(t) = X(t) = W. Since W is arbitrary this shows that

the set of vectors ®;(¢) spans RY. A set of N vectors in RY that spans is independent. This
proves 3. |



