The Lyapunov and Lasalle Theorems

Hypothesis Suppose that X^* is an equilibrium of the system X' = F(x) with F continuously differentiable.

Definition 1 A continuously differentiable real valued function L from on an open neighborhood $\mathcal{O} \ni X^*$ is a **lyapunov function** when it has the following two properties.

i. L > 0 on $\mathcal{O} \setminus X^*$ and $L(X^*) = 0$.

ii $\nabla_X L(X) \cdot F(X) \leq 0$ on \mathcal{O} .

It is a strict lyapunov function when in addition

iii.
$$\nabla_X L(X) \cdot F(X) < 0$$
 on $\mathcal{O} \setminus X^*$.

Property **ii** asserts that L is nondecreasing on orbits in \mathcal{O} . Property **iii** asserts that the time derivative of L on orbits in $\mathcal{O} \setminus X^*$ is strictly negative.

The first two theorems are due to Lyapunov. The last two are called LaSalle's Invariance Principal.

Theorem 1 If there exists a lyapunov function, then the equilibrium X^* is stable

Theorem 2 If there exists a strict lyapunov function, then the equilibrium X^* is asymptotically stable

Theorem 3 Suppose that L is a Lyapunov functional on \mathcal{O} and X(t) is an orbit lying in a closed bounded set $K \subset \mathcal{O}$. If Z_0 is an ω -limit point of X(t) and Z(t) is the orbit with $Z(0) = Z_0$, then Z(t) lies in K and L(Z(t)) is independent of t for $t \geq 0$.

Theorem 4 Suppose that L is a lyapunov functional on \mathcal{O} and that $\mathcal{P} \subset \mathcal{O}$ is a closed bounded set satisfying

- **i.** For each $t \geq 0$, $\Phi_t(\mathcal{P}) \subset \mathcal{P}$ where Φ_t is the flow of the differential equation.
- **ii.** X^* is the only orbit in \mathcal{P} along which L is constant for $t \geq 0$.

Then every orbit starting in \mathcal{P} converges to X^* as $t \to \infty$.

Equivalently, the basin of attraction of X^* contains \mathcal{P} . In many examples the set \mathcal{P} is of the form $\{L \leq \alpha\}$.

Theorem 4 and Theorem 2 follow quickly from Theorem 3