Perturbations of Linear Sinks

Summary. Small perturbations of linear sinks yield globally defined exponentially decreasing solutions. In particular an equilibrium whose linearization is asymptotically stable is itself asymptotically stable.

1 The main result.

The following result which includes the possibility of nonautonomous perturbations has a simple elegant proof and several distinct applications. Denote by \mathbb{V} a real or complex finite dimensional normed vector space with norm $\|\cdot\|$. The linear asymptotically stable dynamics is

$$X' = AX \tag{1.1}$$

where $A: \mathbb{V} \to \mathbb{V}$ is a linear transformation with eigenvalues with strictly negative real part so there exist strictly positive K and ρ so that for all $t \geq 0$,

$$||e^{At}|| \le K e^{-\rho t}$$
. (1.2)

Here and in the following the norm of a linear transformation is taken as

$$||B|| := \max_{||X|| \le 1} ||BX||.$$

Consider the perturbed dynamics

$$X' = AX + f(t, X) \tag{1.3}$$

where f is continuous in t, X and uniformly Lipschitzean in X in the sense that there is a Λ so that for all t, X, Y, $||f(t, x) - f(t, Y)|| \le \Lambda ||X - Y||$. This implies uniqueness and existence for $0 \le t < \infty$ for the initial value problem. The next result shows that if f is sufficiently small then (1.3) inherits the asymptotic stability of (1.1).

Theorem 1.1 Suppose that there is an $\eta > 0$ so that

$$K \eta < \rho$$
, and $\forall t, x, \|f(t, X)\| \le \eta \|X\|$. (1.4)

Then there is a $\tilde{\rho} > 0$ so that solutions of (1.3) satisfy for all $t \geq 0$,

$$||X(t)|| \le K e^{-\tilde{\rho}t} ||X(0)||.$$
 (1.5)

Proof. The variation of parameters formula implies that for $t \geq 0$

$$X(t) = e^{At}X(0) + \int_0^t e^{A(t-s)} f(s, X(s)) ds.$$

Using estimates (1.2) (1.4) together with the triangle inequality for sums and for integrals implies that

$$||X(t)|| \le K e^{-\rho t} ||X(0)|| + \int_0^t K e^{-\rho(t-s)} \eta ||X(s)|| ds.$$

Multiply through by $e^{\rho t}$ to find

$$e^{\rho t} \|X(t)\| \le K \|X(0)\| + K \eta \int_0^t e^{\rho s} \|X(s)\| ds.$$

Then $\phi(t) := e^{\rho t} ||X(t)||$ satisfies,

$$\phi(t) \leq K \|X(0)\| + K \eta \int_0^t \phi(s) \ ds.$$

Gronwall's inequality implies that

$$\phi(t) \leq K \|X(0)\| e^{K\eta t}.$$

Multiply through by $e^{-\rho t}$ to find

$$||X(t)|| \le K ||X(0)|| e^{(K\eta - \rho)t}$$
.

This proves the desired result with $\tilde{\rho} := \rho - K\eta > 0$ thanks to (1.4).

2 Application to linear equations.

Consider the linear equation

$$X' = AX + B(t)X, (2.1)$$

with B(t) a continuous function valued in the linear transformations on \mathbb{V} .

Theorem 2.1 Suppose that A, K, and ρ satisfy (1.2). Suppose in addition that there is an $\eta > 0$ and $T \ge 0$ so that

$$K \eta < \rho$$
, and $\forall t \ge T$, $||B(t)|| \le \eta$. (2.2)

Then there are strictly positive constants \tilde{K} and $\tilde{\rho}$ so that solutions of (2.1) satisfy for all $t \geq 0$

$$||X(t)|| \le \tilde{K} e^{-\tilde{\rho}t} ||X(0)||.$$
 (2.3)

Proof. Theorem 1.1 implies that for $t \geq T$ one has

$$||X(t)|| \le K e^{-\tilde{\rho}(t-T)} ||X(T)||.$$
 (2.4)

Let $\Psi(t)$ the fundamental matrix for (2.1) with $\Psi(0) = I$. By continuity define

$$M \; := \; \max_{0 \le t \le T} \| \Psi(t) \| \; < \; \infty \, .$$

Then

$$\sup_{0 < t < T} \|X(t)\| \le M \|X(0)\|. \tag{2.5}$$

Estimates (2.4) and (2.5) imply the desired estimate (2.3).

3 Asymptotic stability of nonlinear equilibria.

Consider the nonlinear autonomous system

$$X' = F(X) \tag{3.1}$$

with equilibrium X_0 . Suppose that F is a twice continuously differentiable function on the ball $\{\|X - X_0\| \le R_1\}$.

Theorem 3.1 If the linearization

$$Y' = AY, \qquad A := D_X F(X_0)$$

has Y = 0 as an asymptotically stable equilibrium, then X_0 is an asymptotically stable equilibrium of (3.1).

We will prove a more precise stability estimate. It starts with some preparation. Translating coordinates we may suppose that $X_0 = 0$. Then Taylor's Theorem with remainder implies that

$$F(X) = AX + g(X)$$
 on $||X|| \le R_1$ (3.2)

and there is a C > 0 so that g satisfies

$$||g(X)|| \le C ||X||^2$$
 on $||X|| \le R_1$.

Choose K and ρ so that (1.2) holds. Choose $0<\eta$ so that $K\eta<\rho$ and choose $0< R_2 \le R_1$ so that

$$CR_2 < \eta. (3.3)$$

Then

$$||g(X)|| \le \eta ||X|| \quad \text{for} \quad ||X|| \le R_1.$$
 (3.4)

Theorem 3.2 Suppose that R_1, R_2, C, η are as above. Then there is an $0 < R_3 \le R_2$ and strictly positive \tilde{K} and $\tilde{\rho}$ so that solutions of (3.1) with $||X(0)|| \le R_3$ exist for all $t \ge 0$, take values in $||X|| \le R_1$, and satisfies

$$||X(t)|| \le \tilde{K} e^{-\tilde{\rho}t} ||X(0)||.$$
 (3.5)

Proof. The function g is only defined for $||X|| \leq R_1$. Extend it to all X so that for $||X|| \geq R_1$, g is constant on rays through the origin. That is for $||X|| \geq R_1$,

$$g(X) := g\left(\frac{R_1 X}{\|X\|}\right).$$

Then $||g(X)|| \le \eta ||X||$ for all X. (**Exercise.** Verify this.) Therefore Theorem 1.1 with f(t,X) := g(X) implies that the equation

$$X' = AX + g(X) \tag{3.6}$$

is globally solvable and solutions satisfy (3.5).

Choose $0 < R_3 \le R_2$ so that $\tilde{K}R_3 \le R_1$. Then if $||X(0)|| \le R_3$, (3.5) implies that for $t \ge 0$, $||X(t)|| \le R_1$. Equations (3.2) and (3.6) imply that (3.1) holds.

X(t) is therefore the unique solution of (3.1) with initial value X(0). Therefore that solution takes values in $||X|| \leq R_1$ and satisfies (3.5).