
Perturbations of Linear Sinks

Summary. Small perturbations of linear sinks yield globally defined expo-

nentially decreasing solutions. In particular an equilibrium whose lineariza-

tion is asymptotically stable is itself asymptotically stable.

1 The main result.

The following result which includes the possibility of nonautonomous pertur-
bations has a simple elegant proof and several distinct applications. Denote
by V a real or complex finite dimensional normed vector space with norm
‖ · ‖. The linear asymptotically stable dynamics is

X ′ = AX (1.1)

where A : V → V is a linear transformation with eigenvalues with strictly
negative real part so there exist strictly positive K and ρ so that for all
t ≥ 0,

∥

∥eAt
∥

∥ ≤ K e−ρt . (1.2)

Here and in the following the norm of a linear transformation is taken as

‖B‖ := max
‖X‖≤1

‖BX‖ .

Consider the perturbed dynamics

X ′ = AX + f(t,X) (1.3)

where f is continuous in t,X and uniformly Lipschitzean in X in the sense
that there is a Λ so that for all t,X, Y , ‖f(t, x)−f(t, Y )‖ ≤ Λ‖X−Y ‖. This
implies uniqueness and existence for 0 ≤ t < ∞ for the initial value problem.
The next result shows that if f is sufficiently small then (1.3) inherits the
asymptotic stability of (1.1).

Theorem 1.1 Suppose that there is an η > 0 so that

K η < ρ, and ∀t, x, ‖f(t,X)‖ ≤ η ‖X‖ . (1.4)

Then there is a ρ̃ > 0 so that solutions of (1.3) satisfy for all t ≥ 0,

‖X(t)‖ ≤ K e−ρ̃t ‖X(0)‖ . (1.5)
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Proof. The variation of parameters formula implies that for t ≥ 0

X(t) = eAtX(0) +

∫ t

0
eA(t−s) f(s,X(s)) ds .

Using estimates (1.2) (1.4) together with the triangle inequality for sums
and for integrals implies that

‖X(t)‖ ≤ K e−ρt ‖X(0)‖ +

∫ t

0
K e−ρ(t−s) η ‖X(s)‖ ds .

Multiply through by eρt to find

eρt ‖X(t)‖ ≤ K ‖X(0)‖ + K η

∫ t

0
eρs ‖X(s)‖ ds .

Then φ(t) := eρt ‖X(t)‖ satisfies,

φ(t) ≤ K ‖X(0)‖ + K η

∫ t

0
φ(s) ds .

Gronwall’s inequality implies that

φ(t) ≤ K ‖X(0)‖ eKη t .

Multiply through by e−ρt to find

‖X(t)‖ ≤ K ‖X(0)‖ e(Kη−ρ)t .

This proves the desired result with ρ̃ := ρ − Kη > 0 thanks to (1.4). �

2 Application to linear equations.

Consider the linear equation

X ′ = AX + B(t)X , (2.1)

with B(t) a continuouos function valued in the linear transformations on V.

Theorem 2.1 Suppose that A, K, and ρ satisfy (1.2). Suppose in addition

that there is an η > 0 and T ≥ 0 so that

K η < ρ, and ∀t ≥ T, ‖B(t)‖ ≤ η . (2.2)
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Then there are strictly positive constants K̃ and ρ̃ so that solutions of (2.1)
satisfy for all t ≥ 0

‖X(t)‖ ≤ K̃ e−ρ̃t ‖X(0)‖ . (2.3)

Proof. Theorem 1.1 implies that for t ≥ T one has

‖X(t)‖ ≤ K e−ρ̃(t−T ) ‖X(T )‖ . (2.4)

Let Ψ(t) the fundamental matrix for (2.1) with Ψ(0) = I. By continuity
define

M := max
0≤t≤T

‖Ψ(t)‖ < ∞ .

Then
sup

0≤t≤T

‖X(t)‖ ≤ M ‖X(0)‖ . (2.5)

Estimates (2.4) and (2.5) imply the desired estimate (2.3). �

3 Asymptotic stability of nonlinear equilibria.

Consider the nonlinear autonomous system

X ′ = F (X) (3.1)

with equilibrium X0. Suppose that F is a twice continuously differentiable
function on the ball {‖X − X0‖ ≤ R1}.

Theorem 3.1 If the linearization

Y ′ = AY , A := DXF (X0)

has Y = 0 as an asmyptotically stable equilibrium, then X0 is an asymptot-

ically stable equilibrium of (3.1).

We will prove a more precise stability estimate. It starts with some prepara-
tion. Translating coordinates we may suppose that X0 = 0. Then Taylor’s
Theorem with remainder implies that

F (X) = AX + g(X) on ‖X‖ ≤ R1 (3.2)
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and there is a C > 0 so that g satisfies

‖g(X)‖ ≤ C ‖X‖2 on ‖X‖ ≤ R1 .

Choose K and ρ so that (1.2) holds. Choose 0 < η so that Kη < ρ and
choose 0 < R2 ≤ R1 so that

C R2 < η . (3.3)

Then
‖g(X)‖ ≤ η ‖X‖ for ‖X‖ ≤ R1 . (3.4)

Theorem 3.2 Suppose that R1, R2, C, η are as above. Then there is an

0 < R3 ≤ R2 and strictly positive K̃ and ρ̃ so that solutions of (3.1) with

‖X(0)‖ ≤ R3 exist for all t ≥ 0, take values in ‖X‖ ≤ R1, and satisfies

‖X(t)‖ ≤ K̃ e−ρ̃t ‖X(0)‖ . (3.5)

Proof. The function g is only defined for ‖X‖ ≤ R1. Extend it to all X

so that for ‖X‖ ≥ R1, g is constant on rays through the origin. That is for
‖X‖ ≥ R1,

g(X) := g

(

R1 X

‖X‖

)

.

Then ‖g(X)‖ ≤ η‖X‖ for all X. (Exercise. Verify this.) Therefore Theo-
rem 1.1 with f(t,X) := g(X) implies that the equation

X ′ = AX + g(X) (3.6)

is globally solvable and solutions satisfy (3.5).

Choose 0 < R3 ≤ R2 so that K̃R3 ≤ R1. Then if ‖X(0)‖ ≤ R3, (3.5)
implies that for t ≥ 0, ‖X(t)‖ ≤ R1. Equations (3.2) and (3.6) imply that
(3.1) holds.

X(t) is therefore the unique solution of (3.1) with initial value X(0). There-
fore that solution takes values in ‖X‖ ≤ R1 and satisfies (3.5). �
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