
Phase Planes for Two by Two Linear Systems

1 Introduction.

Consider linear constant coefficient systems

X ′ = AX , (1.1)

where A is a real matrix with distinct non zero eigenvalues. This is an open dense subset of
the set of four dimensional set of 2 × 2 real matrices. The complementary set is a closed set of
dimension three, hence consists of rare occurences defined by,

detA = 0, or, discrimnant = 0.

The condition of distinct nonzero eigenvalues is stable under small perturbations of A which is
another way of saying that the set is open. In class we proved the the complementary set is
closed and of four dimensional volume equal to zero. The systems studied here are generic.

2 Change of variables

A sub theme in these computations is the behavior of a linear constant coefficient system

X ′ = AX

when one makes a linear change of variable Tα = X where T is an invertible matrix. This
computation is valid for general N ×N systems in which case the matrix T is also N ×N . It is
found in §3.4 of HSD.
Writing X(t) = Tα(t), the differential equation for the α(t) is(

Tα
)′

= ATα .

The left hand side is equal to Tα′ so multiplying on the left by T−1 yields

α′ = T−1ATα . (2.1)

The new variables satisfy a system of the same form with the matrix A changed by a similarity
to T−1AT .
If you understand the T−1AT differential equation then you understand the original problem.
The strategy is to make T−1AT as simple as possible so the transformed problem is easier. It is
also true that T−1AT is the matrix of A in the new variables Y defined by X = TY , equivalently
in the new basis whose elements are the columns of the matrix T . In linear algebra A 7→ T−1AT
is called a similarity transformation and the problem of equivalence of matrices under similarity
is often discussed.

Exercise 2.1 Prove that if two matrices A and B have N distinct eigenvalues then they are
similar if and only if they have the same eigenvalues.
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3 Saddles. Real eigenvalues of opposite signs.

If A has real eigenvalues of opposite signs λ− < 0 < λ+ then choosing nonzero real eigenvectors
v− and v+ the general solution is

X(t) = α−e
λ1t v− + α+e

λ+t v+ .

The line Rv+ is invariant under the flow. The flow at time t simply multiplies by eλ+t so points
move outward exponentially. As t → −∞ they converge exponentially to 0. This line is called
the unstable manifold.
The line Rv− is also invariant and the flow is multiplication by eλ−t so contracts exponentially
toward the origin. As t→ −∞ the flow expands exponentially toward infity. This line is called
the stable manifold.
Since Av+ = λ+v+, the vector field on Rv+ points parallel to the line and away from the origin.
The length is proportional to the distance from the origin.
The vector fields along Rv− is similar except pointing inward.
As t→∞ the c+eλ+t term is dominant and integral curves are asymptotic to the line Rv+.
As t→ −∞ integral curves are asymptotic to the line Rv−.
An integral curve off the stable and unstable manifolds comes in from the direction of Rv− turns
and leaves approaching Rv+ as t→∞. They have an aspect that is roughly hyperbolic.
To see that they are NOT hyperbolas when the modulus of the λ’s are not equal note that the
approach to the asymptote correponding to the eigenvalue with smaller modulus is more rapid
than the approach to the other since the decay of the negligible term is more rapid.
Consider the example

X ′ =

(
λ− 0
0 λ+

)
X .

The general solution is
x1 = c1e

λ−t , x2 = c2e
λ+t .

Therefore on orbits one has

|x1|λ+/|x2|λ− = independent of time.

Since λ− < 0, |x1|λ+/|x2|λ− = |x1|λ+ |x2||λ−|. Therefore the continuous function

ϕ(x1, x2) := |x1|λ+ |x2||λ−| (3.1)

is constant on orbits. When |λ+| = |λ−| this shows that the orbits are hyperbolas. And when
the lambdas are not of equal magnitude the orbits are not hyperbolas.
Next show by a change of basis that there is always a continuous quantity like (3.1) that is
constant on orbits. Introduce the components v+ = (v+,1 , v+,2) and the matrix(

v−,1 v+,1
v−,2 v+,2

)
whose first (resp. second) column is v− (resp. v+). The columns being linearly independent this
is a nonsingular matrix so we can define

T :=

(
v−,1 v+,1
v−,2 v+,2

)
, T−1 :=

(
v−,1 v+,1
v−,2 v+,2

)−1
.
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Then

T (1, 0) = v−, T (0, 1) = v+ , T−1v− = (1, 0), T−1v+ = (0, 1) , (3.2)

where the last two follow from the first two upon multiplying by T−1.
For X ∈ R2 denote by (α−, α+) := α the coordinates of X in the basis v−, v+ that is

X = α1 v− + α+ v+ =

(
v−,1 v+,1
v−,2 v+,2

)
α = T α , α = T−1X .

Equation (3.2) shows that

T−1AT (1, 0) = T−1Av− = T−1 λ−v− = λ−(1, 0) .

Exercise 3.1 Show that T−1AT (0, 1) = λ+(0, 1), and,

T−1AT =

(
λ− 0
0 λ+

)
.

The differential equation satisfied by the coordinates α is

α′ =

(
λ− 0
0 λ+

)
α , α′− = λ−α− , α′+ = λ+α+ .

This is the example analysed earlier so we know that ϕ(α) = ϕ(T−1X) is a continuous conserved
quantity. Also called an integral of motion.
The figure on page 92 of Brauer and Nohel and page 41 of Hirsch-Smale-Devaney are exactly for
the exceptional case of λ− = −λ+ with hyperbolic orbits. The reader is encouraged to plot (using
pplane in Matlab) an example where this condition is violated to see the symmetry breaking
which is typical.
In terms of the original coordinates and the matrix elements T−1ij one has

α− = T−111 x1 + T−112 x2, α+ = T−121 x1 + T−122 x2,

so a conserved quantity is

ϕ(α) = |α1|λ+ |α|λ−|2 = |T−111 x1 + T−112 x2|
λ+ |T−121 x1 + T−122 x2|

|λ−| .

Summary. There are two invariant lines, in the directons of the eigenvectors. The flow is out-
ward (resp. inward) in the direction of the eigenvector with positive (resp. negative) eigenvalues.
The equilibrium is unstable. The other integral curves are asymptotic to the to these two lines
and resemble hyperbolas, but lacking their symmetry and quadric equation (unless λ− = −λ+).
There is a nontrivial continuous integral of motion.

4 Improper nodes. Distinct real roots of the same sign.

Consider the case of positive roots 0 < λ1 < λ2. The general solution is

c1 e
λ1t v1 + c2 e

λ2t v2 .
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The lines in the directions of vj are invariant and the flow is outward on both. The invariant
lines correspond to one or the other of c1, c2 vanishing. The expansion on the v2 line is more
rapid so that orbits tend in the limit t → ∞ to be nearly parallel to v2. For t → −∞ the eλ1t

term is dominant and the orbits approach the origin tangent to the v1 line.
Introducing the basis v1, v2 and corresponding coordinates α1, α2 and matrices T−1, T as in the
preceding section one has

T−1AT =

(
λ1 0
0 λ2

)
, α =

(
c1e

λ1t , c2e
λ2t

)
.

The quantity
|α2|λ1
|α1|λ2

=
cλ12 eλ1λ2t

cλ21 eλ1λ2t
=

cλ12
cλ21

is constant on orbits. Since λ2 > 0 this is discontinous along the line α1 = 0.
The orbits in α coordinates are as in figure 2.9 of Brauer and Nohel and figure 3.3.b of Hirsch-
Smale-Devaney. The orbits in X space are their image by the linear transformation T−1. Qual-
itatively they look like figure 3.7 in HSD with arrows reversed.
Orbits move away from the origin growing infinitely large. The origin is a source or repellor.

Proposition 4.1 If the eigenvalues of A both have strictly positive (resp. negative) real part,
then the only continuous conserved quantities are constants.

Proof. We treat the case of postive real part. Suppose that ϕ is a continuous conserved
quantity. If P is any point, Denote by X(t) the orbit with X(0) = P . Then for all t,

ϕ(P ) = ϕ(X(0)) = ϕ(X(t)) .

As t→ −∞, X(t)→ 0. By continuity of ϕ at the origin,

ϕ(0) = lim
t→∞

ϕ
(
X(t)

)
= ϕ

(
lim

t→−∞
X(t)

)
= ϕ(P ).

Therefore ϕ is constant.

The case of distinct negative real eigenvalues is analogous to the case of postive distinct eigen-
values generating a sink which is an attractor. The negative case behaves as the positive case
with time reversed.

Summary. There are two invariant lines. For positive real part, the flow is outgoing on both.
The equilibrium is unstable. The line corresponding to the larger eigenvalue dominates for t large
positive, while the other dominates for t→ −∞. There are no nonconstant continuous conserved
quantitites.

5 Centers and spirals. Complex conjugate eigenvalues.

Solutions are generated by
eλtv, eλtv .
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Equivalently, by the real and imaginary parts of eλtv. Write

λ = a+ ib, v = r + is,

in terms of their real and imaginary parts. Then

eλtv = eat eibt v .

The term eibtv is of constant magnitude so there is exponential growth (resp. exponential decay)
when a > 0 (resp. a < 0). The analysis is most conveniently done by considering first the case
a = 0.
An exponential in time change of variable reduces to the case a = 0. Indeed, the function X(t)
satisfies X ′ = AX if an only if Y (t) = e−atX(t) satisfies Y ′ = (A− aI)Y . Therefore is X ′ = AX
has spiral solutions, then Y ′ = (A − (trA)/2)I)Y is the associated system that has a = 0 so
is a center. The spirals are exactly the solution of the system with a center times the purely
exponential factor et trA/2.

Example 5.1 For

A =

(
3 5
−2 −2

)
,

trA = 3− 2 = 1, so

A− (trA/2)I =

(
2.5 5
−2 −2.5

)
is the trace free matrix whose motion is a center. It is further analyzed in the Ellipse Axes
Handout.

5.1 Analysis of Centers. Eigenvalues 0 6= ±bi.

The solution eλtv is,(
cos bt+ i sin bt

)
(r + is) =

(
r cos bt− s sin bt

)
+ i

(
r sin bt+ s cos bt

)
.

Real solutions are generated by the real and imaginary parts,

r cos bt− s sin bt , r sin bt+ s cos bt .

Introduce the basis r, s and corresponding coordinates and the notation T following the case of
saddles,

X = α1 r + α2 s =

(
r1 s1
r2 s2

)
α := Tα , α = T−1X .

Therefore
T (1, 0) = r, T (0, 1) = s . (1, 0) = T−1r, (0, 1) = T−1s, (5.1)

Compute
T−1AT (1, 0) = T−1Ar . (5.2)

Use
A(r + is) = ib((r + is), equivalently, Ar + iAs = −bs+ ibr .
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Taking the real and imaginary parts yield

Ar = −bs , and, As = br .

Continuing with (5.2) and using (5.1) yields

T−1AT (1, 0) = T−1Ar = T−1(−bs) = −b(0, 1) .

Exercise 5.1 Show that T−1AT (0, 1) = b(1, 0), and,

T−1AT =

(
0 b
−b 0

)
. (5.3)

The equations for the α coordinates are

α′ =

(
0 b
−b 0

)
α , α′1 = b α2, α′2 = −b α1, . (5.4)

Multiply the first equation in (5.4) by α1, the second by α2, and add to find that

α1α
′
1 + α2α

′
2 = α1 b α2 − α2 b α1 = 0 . This is cool and clever.

This shows that α2
1 + α2

2 has vanishing derivative so is constant on orbits. Therefore the orbits
are circles in the α coordinates. Since ‖α‖ is constant on orbits and ‖α′ = |b|‖α the derivative
is also constant. The orbits are circles of radius r traversed as speed |b|r. See figure 2.11 in
Brauer and Nohel and 3.4 in Hirsch-Smale-Devaney. The conserved quantity in X coordinates
is computed using

α1 = T−111 x1 + T−112 x2 , α2 = T−121 x1 + T−122 x2 ,

to be (
T−111 x1 + T−112 x2

)2
+

(
T−121 x1 + T−122 x2

)2
.

Its level sets are bounded conic sections, hence ellipses. The orbits in the X coordinates are
ellipses. In a separate handout we address the question of computing the principal axes, eccen-
tricity, and direction of rotation for the elliptical orbits.

Summary. For nonzero purely imaginary eigenvalues, the orbits are ellipses. There is a posi-
tive definite quadratic conserved quantity. The origin is a stable equilibrium. Under small real
perturbations of A, the eigenvalues will typically leave the imaginary axis remaining a complex
conjugate pair

5.2 Spirals. Eigenvalues a± ib, a 6= 0 6= b.

The solutions are exactly as in the preceding section just multiplied by eat. For a > 0 the orbits
are ellipses amplified by an exponentially growing factor. They spiral out. For a < 0 they
spiral in. The orbits in α coordinates are given in figure 2.10 of Brauer and Nohel and fig 3.5 of
Hirsch-Smale-Devaney.
Proposition 4.1. shows that there are no non constant continuous conserved quantities.
Summary For a > 0 the orbits are elliptical spirals growing exponentially called a spiral source.
For a < 0 they are elliptical spirals shrinking exponenetially, a spiral sink. There are no noncon-
stant continuous integrals of motion.
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Example 5.2 The vibrating spring with spring constant k has equation x′′ + k x = 0. The
restoring force is k > 0 times the displacement x from equilibrium. If the force is repulsive the
equation is x′′ − k x = 0. Conservation of energy in both cases yields the continuous conserved
quantity

ẋ2

2
± k x2

2
.

For the plus sign the phase plane is a center with elliptical obits. For the minus sign the orbits
are hyperbolas, the eigenvalues in that case being ±k1/2 so of equal magnitude. Saddles and
centers are the only cases with conserved quantities and these basic example fall in those classes.
For generic saddles the opposite sign eigenvalues will not be of equal amplitude and the orbits
will not be hyperbolas.

Exercise 5.2 Show that for any real a 6= 0

x′′ + a x′ + k x = 0

yields a saddle. Show that the eigenvalues of opposite sign have equal amplitude if and only if
a = 0. Discussion. The orbits are hyperbolas and the conserved quantity quadratic if and only
if a = 0.
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