
Professor Jeffrey RAUCH Dynamical Systems

Bifurcation Theory

Summary. The first three sections treat problems in dimension 1. A final section shows that
for N > 1 a reduction to the scalar case is possible. The Hopf-Andreev bifurcation is special to
N > 1. The main tool is the Implicit Function Theorem. This is an excellent opportunity to
learn that Theorem.

1 The single bifurcation curve case

This section title looks like a nonsequitor since bifurcation is about more than one solution. That
is what the "bi" indicates. However, a curve in (a, x)-space which doubles back on itself can
have more than one point for a given parameter value a.

x

a

Study equilibria of x′ = f(a, x) and their dependence on a. The equilibria are the zero set{
(a, x) : f(a, x) = 0

}
.

Suppose that (a, x) is an equilibrium, that is

f(a, x) = 0 . (1.1)

The Implicit Function Theorem asserts the following things.
i. If

∇a,xf(a, x) 6= 0 (1.2)

then near (a, x) the zero set is a smooth curve in a, x-space.
ii. The normal vectors to the curve are parallel to ∇a,xf(a, x).
iii. The curve is locally a graph x = k(a) near a when fx(a, x) 6= 0. It is locally a graph a = h(x)
when fa(a, x) 6= 0.

The derivatives of h or k can be computed by implicit differentiation.
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1.1 The no bifurcation case

If
∂f(a, x)

∂x
6= 0 (1.3)

the Implicit Function Theorem implies that {f = 0} is locally a graph

x = k(a) , k(a) = x .

a

x=k(a)

x

No bifurcation

For each a ≈ a there is one equilibrium x = k(a) so there is no bifurcation.
Differentiate f(a, k(a)) = 0 with respect to a to find fa + fx k

′ = 0. The slope is given by

k′(a) =
−fa(a, k(a))
fx(a, k(a))

. (1.4)

Next compute the stability of the equilibria so long as (1.3) holds, The linearized equation at
the equilibrium x = k(a) is y′ = fx(a, k(a))y. The coefficient, fx(a, k(a)) is not equal to zero.
The equilibrium x of x′ = f(a, x) is asymptotically stable when fx(a, x) < 0. In the opposite
case fx(a, x) > 0, orbits converge to x as t → −∞. Since fx(a, x) 6= 0 its sign does not change.
The nearby equilibria remain either attracting or repelling. They can change stability only if fx
vanishes.

1.2 The bifurcation case

A more interesting case is when (1.2) holds and

fx(a, x) = 0 . (1.5)

Then fa(a, x) 6= 0 so the Implicit Function Theorem implies that there is a curve of equilibrium
given by

a = h(x), with h(x) = a, h′(x) = 0, h′′ =
−fxx(a, x)
fa(a, x)

. (1.6)

To compute the last formulas, differentiate f(h(x), x) = 0 with respect to x to find

fa(h(x), x)h
′(x) + fx(h(x), x) = 0 .

implying h′(x) = 0. Differentiate again with respect to x to find,(
faah

′ + fax

)
h′ + fa h

′′ + fxah
′ + fxx = 0 .

At x = x, h′(x) = 0 eliminates three of the five terms. This yields the formula for h′′(x).
The figure at the start of §1 is such a curve with h′ = 0 at the point with the vertical tangent
and h′′ < 0 at that point so the curve lies (locally) to the left of this vertical tangent. This is a
subcritical bifurcation since the equilibria exists for parameter values a smaller than a.
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Exercise 1.1 Suppose that the hypotheses of this section hold and that h′′(x) 6= 0. Show that for
x ≈ x the equilibria on {f = 0} have opposite stabilities for x > x and x < x. Hint. Show that
the leading order of the Taylor expansion is fx(h(x), x) ≈ fxx(a, x)(x− x). Discussion. At the
bifurcation point a stable and unstable branch meet and annihilate.

2 Two curves crossing

In order to have a more complicated zero set near a, x, one must have ∇a,xf(a, x) = 0. Then
the leading order Taylor expansion of f near a, x is

f(a, x) =

〈(
faa(a, x) fax(a, x)
fax(a, x) fxx(a, x)

)(
a− a
x− x

)
,

(
a− a
x− x

)〉
+ higher order terms .

The matrix of second derivatives of f is real and symmetric. It therefore has two real eigenvalues,
possibly equal. Since singular matrices are rare it is expected that neither of the two eigenvalues
is equal to zero.
If both are positive then f has a strict local minimum at a, x so f > 0 on a punctured neighbor-
hood of a, x and the equilibrium is isolated. Similarly the equilibrium is isolated if the matrix
has two negative eigenvalues.
The remaining expected case is when the matrix of second derivatives has one positive and one
negative real eigenvalue. Then the graph z = f(a, x) near a, x is saddle shaped and the level set
at height z = 0 consists of two curves crossing transversally at a, x. The zero set is a curvy X
shaped figure. This shows that after a single smooth curve the next expected behavior for the
set {f = 0} is an X shaped crossing.

Example 2.1 The function f(a, x) = x(x?a) has zero set that is the union of the lines {x = 0}
and {x = a} that cross at the origin.

Continuing with the general situation, translate coordinates so that a, x is the origin and intro-
duce an eigenbasis vj for the matrix of second derivatives and corresponding coordinates

X = α1 v1 + α2 v2 .

Suppose that the eigenvalues satisfy λ1 < 0 < λ2. Then to leading order the zero set is given by

λ2α
2
1 + λ2α

2
2 = 0, α1 = ±

√
λ2
λ1
α2 .

Note that though the eigendirections of the matrix of second derivatives are orthogonal, the two
lines from the zero set are usually not orthogonal.

Exercise 2.1 Find necessary and sufficient conditions on the eigenvalues to that the to curves
of the X cross at a right angle.

3 Transcritical and pitchfork

The analysis of the X shaped crossings is easiest when one of the branches is known. There are
many applications, where x = x is an equilibrium for all values of a. The study of the X shape
in this case reduces to studying the second branch near (a, x). We analyze that branch.
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Translating x coordinates we may suppose that x = 0. Seek a second curve of equilibria through
(a, x) = (a, 0). We are given that

f(a, 0) = 0 for all a . (3.1)

In order for there to be two branches intersecting at (a, x) is it necessary that (1.2) be violated,
that is

∇a,xf(a, x) = 0 . (3.2)

That fa = 0 follows from (3.1). The second condition

fx(a, x) = 0 (3.3)

is a necessary condition for a to be the intersection point of two curves of equilibria.
To analyze further, the strategy is to separate out the root x = 0 using the identity

f(a, x) = x g(a, x), g(a, x) :=

∫ 1

0

∂f(a, θx)

∂x
dθ . (3.4)

This special case of Taylor’s Theorem follows from the Fundamental Theorem of Calculus applied
to

κ(θ) := f(a, θx) , with
dκ

dθ
= fx(a, θx)x .

Then

f(a, x) = κ(1) = κ(1)− κ(0) =
∫ 1

0

dκ

dθ
dθ =

∫ 1

0

∂f(a, θx)

∂x
x dθ ,

proving (3.4).
If f ∈ Ck with k ≥ 1, then g ∈ Ck−1. The set {f = 0} is the union of {x = 0} and the set
{g = 0}.
Differentiating with respect to x yields fx = g+xgx. Therefore fx(a, 0) = g(a, 0). The necessary
condition fx(a, x) = 0 for an X-bifurcation is equivalent to g(a, x) = 0.

3.1 The second branch

To investigate {g = 0} using the Implicit Function Theorem, need to compute the partial deriva-
tives of g. Suppose that f ∈ Ck that is its derivatives up to order k are continuous with k ≥ 3.
Differentiating the identity f = xg yields

fx = g + xgx, fa = xga, faa = xgaa, fax = xgax + ga, fxx = 2gx + xgxx .

Evaluating at (a, 0) using (3.1) yields the values

g, 0, 0, ga, 2gx .

Therefore
ga(a, 0) = fax(a, 0) , gx(a, 0) = fxx(a, 0)/2 . (3.5)

The Implicit Function Theorem implies the set {g = 0} near (a, 0) is a Ck−1 curve a = h(x)
provided that ga(a, x) 6= 0. For the original problem this yields the following result.

Theorem 3.1 If in addition to (3.1) and (3.3) one has fax(a, 0) 6= 0 then near (a, 0) the zero
set of f consists of {x = 0} and a Ck−1 curve a = h(x) intersecting x = 0 transversally at (a, 0).
Precisely, h(0) = a and h′(0) = −fxx(a, 0)/2fax(a, 0).

Exercise 3.1 . Derive the formula for h′(0). Hint. Differentiate g(h(x), x) = 0 with respect
to x then use (3.5).
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3.2 The transcritical case

The name derives from the fact that {g = 0} crosses the line a = a transversely with nonzero
and finite slope. There are subbranches on each side of {a = a}. The analysis is a series of
exercises.

Exercise 3.2 Suppose that fax(a, 0) > 0 and fxx(a, x) < 0. The curve g = 0 then has positive
slope so near (a, 0) the signs of x and a− a agree as in the figure.

x

a

a=h(x)

Transcritical Bifurcation

Show that the equilibrium x = 0 is asymptotically stable for a on the left of and near a. Show
that it is unstable for a ≈ a to the right. Hint. The stability is determined by considering the
linearized equation y′ = fx(h(x), x) y. One needs the sign of fx(a, 0). Expand about a = a.
Discussion. This equilibrium losses its stability as a passes through a from left to right. You
should think of fx(a, 0) as a 1 × 1 matrix with a negative eigenvalue for a < a that crosses to
positive when a increases past a.

Exercise 3.3 With the hypotheses of the preceding exercise, show that the equilibria on {g = 0}
are asymptotically stable for x small positive and unstable for x small negative. Draw sketches of
the branches indicating with an s or u stable and unstable branches. Hint. Expand fx(h(x), x)
about x = 0. Discussion. The stabilities of the two halves of {x = 0} (resp. {g = 0}) are
opposed on the opposite sides of the equilibrium. The {x = 0} branch is stable to the left and the
{g = 0} branch is stable to the right. This is called exchange of stability. There is an analogous
exchange result when {x = 0} is unstable to the left of (a, 0)

Remark. One has analogous results whenever fax(a, x) 6= 0 and fxx(a, x) 6= 0. This guarantees
that g = 0 has finite nonzero slope at a. The rest of the analysis is the same with care taken for
all sign possibilities. A model is Exercise 3.6.

3.3 The pitchfork

The pitchfork occurs when ∇a,xg(a, 0) 6= 0 so {g = 0} is locally smooth, and in addition {g = 0}
has vertical slope and nonvanishing curvature at (a, 0). The vertical slope holds if and only if the
normal to {g = 0} at this point is horizontal, if and only if gx(a, 0) = 0. Using (3.5) this holds
if and only if fxx(a, 0) = 0. Then thanks to (3.5), ∇a,xg 6= 0 holds if and only if fax(a, 0) 6= 0.
These conditions are assumed for the remainder of this section.
Then, {g = 0} is given locally as a graph a = h(x) with h(0) = a and h′(0) = 0. The sign of
h′′(0) predicts which way {g = 0} breaks in the generic case of nonvanishing curvature. The
supercritical case h′′ > 0 is sketched.
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Supercitical Pitchfork

x

a

a=h(x)

h’=0

h’’>0

Exactly as in the derivation of (1.6),

h′′(0) =
−gxx(a, 0)
ga(a, 0)

. (3.6)

Exercise 3.4 Continue the computation at the beginning of §3.1 to find a formula for

d3f(h(x), x)

d3x
.

Evaluate at x = 0 to show that fxxx(a, 0) = 3 gxx(a, 0). Using (3.5) and (3.6) show that

h′′(0) =
−fxxx(a, 0)
3 fax(a, 0)

.

The next exercise examines the stability of the equilibria on {g = 0}. The stability is determined
by the sign of fx.

Exercise 3.5 i. Compute the derivatives of fx(h(x), x) with respect to x. Evaluate at x = 0. ii.
Find the leading Taylor expansions of fx(a, 0) about a = a and fx(h(x), x) about x = 0. Ans. i.

dfx(h(x), x)

dx

∣∣∣∣
x=0

= 0,
d2fx(h(x), x)

dx2

∣∣∣∣
x=0

=
2

3
fxxx(a, 0) .

ii. fx(a, 0) ≈ fxa(a, 0)(a− a), fx(h(x), x) ≈ 2
3 fxxx(a, 0)x

2/2 .

Exercise 3.6 i. Use the preceding exercises together with formula (3.5) to show that the equilib-
ria on {x = 0} near and on opposite sides of (a, 0) have opposite asymptotic stabilities. ii. Show
that the equilibria near (a, 0) on {g = 0} have the same asymptotic stability as the equilibria
(a, 0) on the opposite side of {a = a}. Hint. The pitchfork can face left or right. The equilibria
on the handle can be stable or unstable. Thus there are four possibilities. Sketch some of the
possibilities indicating with an s or u the stable and unstable branches. Discussion. Replacing
f by −f does not change the set of equilibria and corresponds to reversing the direction of time.
It changes stable equilibria to unstable and vice versa. This remark reduces the set of possibilities
from four to two.

6



4 The case N > 1

Surprisingly, a large part of the multidimensional case can be reduced to the scalar analysis.
Consider a system of N nonlinear equations

X ′ = F (a,X), F (a,X) = 0 .

Here a is a real parameter and X takes values in RN .
Equilibria satisfy

F (a,X) = 0 . (4.1)

This is an N -vector equation that is equivalent to N scalar equations. There are N equations
for the N + 1 unknowns a,X. The solutions set is usually a one dimensional object, a curve in
(N +1)-space. The Implicit Function Theorem is the result that translates these equation count
arguments into solid criteria.
The first two sections below are dedicated to the study of a single curve of equilibria. The final
section describes Hopf-Andreev bifurcation which is a phenomenon not present in the scalar case
N = 1.

4.1 The no bifurcation case

Continuing the equation count started above, for each fixed a equation (4.1) is N equations
for the N unknowns. In unexceptional cases one expects to have unique solutions K(a) ≈ X
for a ≈ a. If the resulting curve of solutions (a,X(a)) were differentiable, then differentiating
F (a,X(a)) = 0 with respect to a using the chain rule yields

Fa + FX
dK

da
= 0 ,

dK

da
= −(FX)−1Fa ,

involving the N × N matrix valued function FX(a,X(a)). If the N × N matrix FX(a,X) is
invertible, then the Implicit Function Theorem asserts that the set {F = 0} of equilibria is given
in a neighborhood of (a,X) by such a smooth curve

X = K(a) ,
dK

da
= −(FX(a,K(a))−1Fa(a,K(a)) ,

This is the vector version of the scalar no bifurcation result.The criterion guaranteeing that there
is no bifurcation is the invertibility of FX .

4.2 One curve of sub critical or super critical solutions

There is a surprising reduction to the scalar case. When FX is not invertible, the zero set can
still be a smooth curve of equilibria. The implicit function theorem assures that this is so when

rankFa,X(a,X) = N . (4.2)

On the other hand one always has

rankFX(a,X) ≤ rankFa,X(a,X) ≤ rankFX(a,X) + 1

When FX is not invertible it has rank < N so for (4.2) to hold one must have

rankFX(a,X) = N − 1 (4.3)
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Hypothesis (4.2)-(4.3) is equivalent to the assumption that there is a subset of N −1 coordinates

X̂ := x1, . . . , xj−1, xj+1, . . . , xN

and a set of N − 1 equations

F̂ := F1, . . . , Fm−1, Fm+1, . . . , FN

so that the N − 1 × N − 1 matrix F̂X̂(a,X) is invertible. In that case the Implicit Function
Theorem asserts that the set of points F̂ (a,X) = 0 is locally two dimensional parametrized by
(a, xj) ≈ (a, xj),

X̂ = H(a, xj) :=
(
h1(a, xj), . . . , hj−1(a, xj) , hj+1(a, xj), . . . , hN (a, xj)

)
.

The equation F (a,X) = 0 is equivalent to F̂ (a, X̂) = 0 together with the additional equation
Fm(a,X) = 0. Define

γ(a, xj) := Fm

(
a, h1(a, xj), . . . , hm−1(a, xj) , xj , hm+1(a, xj), . . . , hN (a, xj)

)
.

Then F (a,X) = 0 is equivalent to
γ(a, xj) = 0 . (4.4)

Equation (4.4) is a scalar equation in two variables that is analysed exactly as in §3. When the
solution set is of the form a = h(xj) with h′(xj) = 0 and h′′(xj) > 0 one finds supercritical
bifurcation. The subcritical case is h′′(xj) < 0.
The analysis of stability of the equilibria is somewhat more subtle. The matrix of the linearization
is FX(a,X). By hypothesis, 0 is an eigenvalue of multiplicity one at a,X. Using perturbation
theory of eigenvalues one can show that a real eigenvalue crosses the imaginary axis as a increases
through a. If the equilibrium is stable for a < a, a ≈ a one concludes instability for a just to
the right of a. In general the stable manifold has dimension that increases or decreases by one
when a passes through a. The interested reader is referred to texts on Bifurcation Theory for
this perturbation theory computation.

4.3 Transcritical and pitchfork bifurcations

Continuing the reduction from the last subsection, one can consider the case where X = 0 is an
equilibrium for all a. Then one must have H(a, 0) = 0 and γ(a, 0) = 0 for all a. One can then
factor γ(a, xj) = xjg(a, xj) and any second branch of equilibria is defined by g(a, xj) = 0. This
is analyzed as in the one dimensional case to reveal transcritical and pitchfork bifurcations.
Using perturbation theory of eigenvalues one can show that the N > 1 analogue of exchange of
stability in the one dimensional case is that FX has a real eigenvalue that changes sign at a.

Example 4.1 A saddle can turn to a sink or a source. This is called a saddle-node bifurca-
tion.

4.4 The Hopf-Andreev Bifurcation

There is a phenomenon that can occur for N > 1 and not for N = 1. The dimension of the
stable manifold is the number of eigenvalues of FX that lie in {Re z < 0}. This can change by an
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eigenvalue passing through 0. This is analogous to the dimension 1 case and is discussed in the
preceding subsections. There is a second mechanism when N > 1. A pair of complex conjugate
eigenvalues can cross the imaginary axis while FX stays invertible. In this case no new equilibria
are born but the dimension of the stable manifold changes by two. If the eigenvalues cross from
left to right one expects a periodic orbit to be born as a increases. In the opposite direction a
periodic orbit is born as a decreases. This is called Hopf-Andreev Bifurcation.

4.4.1 Three examples of Hopf bifurcations

1. The youtube.com video: Vector Field: What is Hopf Bifurcation? and also HSD page 181-182
discuss the artificially simple system

X ′ =

(
0 −1
1 0

)
X + aX − |X|2X .

In the video, the coefficient a is called µ. The system is easily analysed since the polar coordinates
satisfy

r′ = 2 r(a− r2) , θ′ = 1 .

• For a < 0, r is strictly decreasing and all orbits converge to the origin.
• For a > 0 the r-phase line has a repellling equilibrium at r = 0 and an attracting equilibria at
r = ±

√
a.

r

−a^(1/2} a^(1/2}0

Oribtis starting in 0 < r <∞ spiral counterclockwise converging as t→∞ to the circle of radius√
a. This is an excellent example of an attracting periodic orbit.

The system is fatally damping for a < 0 and becomes a self exciting oscillator for a > 0.
• At a = 0 a pair of complex conjugate eigenvalues crosses from the left half plane to the right
through the eigenvalue pair ±i.

i

−i

eigenvalue plane

The figure shows this schematically. The eigenvalues move on complex conjugate curved paths.
For 0 < a << 1 a periodic orbit that is the circle r =

√
a emerges as a Hopf Bifurcation. The

video shows the phase plane as a increases passing through 0.

2. An interesting experiment is shown in the youtube.com video entitled "Sweet Hopf Bifur-
cation". I think that the interpretation of the video is as follows. There is a steady motion
consisting of the honey dropping vertically on a circularly symmetric pile of honey. That motion
is unstable and the motion that you see is periodic in time.
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If the honey were heated, the pile of honey at the bottom would become less high and the periodic
motions smaller in amplitude. At a critical temperature, the bifurcation value, the amplitude
of the periodic orbit would vanish and the steady circularly symmetric flow would become the
stable observed motion. This is a Hopf bifurcation for an infinite dimensional system. I would
like to see this more extended experiment to test my prediction.

3. A long important example is given in HSD §12.4.
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