Stable Manifold Difference Quotient Lemma

1 The setup

$$
x^{\prime}=\lambda x+f_{1}(x, y):=u(x, y), \quad y^{\prime}=-\mu y+f_{2}(x, y):=v(x, y)
$$

with $-\mu<0<\lambda, f_{j}$ continuously differentiable in a neighborhood of $(0,0)$ and $\nabla_{x, y} f_{j}(0,0)=0$. Work in $C_{M}^{+} \cap B_{\varepsilon}$ with

$$
C_{M}^{+}:=\{|x|<M y, y>0\}, \quad B_{\varepsilon}:=\left\{\left|x_{1}\right|<\varepsilon,\left|x_{2}\right|<\varepsilon\right\}
$$

Definition 1.1 For a function h defined on $C_{M}^{+} \cap B_{\varepsilon}$ we write $h=O(1)$ when there is a neighborhood of $(0,0)$ on which h is bounded. We write $h=o(1)$ when

$$
\lim _{\delta \rightarrow 0} \sup \left\{|h(x, y)|:(x, y) \in C_{M}^{+} \cap B_{\varepsilon}, 0<y<\delta\right\}=0
$$

Example 1.1

$$
f_{j}=r o(1), \quad \nabla_{x, y} f_{j}=o(1), \quad \frac{r}{y}=O(1)
$$

Define

$$
G(x, y):=\frac{\lambda x+f_{1}(x, y)}{-\mu y+f_{2}(x, y)}=\frac{u(x, y)}{v(x, y)} .
$$

2 Difference quotient estimate

For $-y / M<x_{1}<x_{2}<y / M$ estimate the difference quotient

$$
\frac{\Delta G}{\Delta x}=\frac{G\left(x_{2}, y\right)-G\left(x_{1}, y\right)}{x_{2}-x_{1}} .
$$

Lemma 2.1

$$
\frac{\Delta G}{\Delta x}=\frac{\lambda}{-\mu y}(1+o(1))
$$

Proof. Write $x_{2}=x_{1}+\Delta x, \Delta u:=u\left(x_{1}+\Delta x, y\right)-u\left(x_{1}, y\right)$ and similarly $\Delta v:=u\left(x_{1}+\Delta x, y\right)-$ $v\left(x_{1}, y\right)$. Then

$$
\Delta G=\frac{u+\Delta u}{v+\Delta v}-\frac{u}{v}=\frac{(u+\Delta u) v-u(v+\Delta v)}{v(v+\Delta v)}=\frac{v \Delta u-u \Delta v}{v(v+\Delta v)}
$$

where the two terms $u v$ in the numerator cancelled. Therefore

$$
\frac{\Delta G}{\Delta x}=\frac{v(\Delta u / \Delta x)-u(\Delta v / \Delta x)}{v(v+(\Delta v / \Delta x) \Delta x)} .
$$

Since $f=r o(1)$ and $r / y=O(1)$, one has

$$
u=\lambda x+r o(1)=r O(1), \quad v=-\mu y+r o(1)=-\mu y(1+(r / y) o(1))=-\mu y(1+o(1))
$$

$$
\frac{1}{v}=\frac{1}{-\mu y} \frac{1}{1+o(1)}=\frac{1}{-\mu y}(1+o(1)) .
$$

Since $\nabla_{x, y} f_{2}(0,0)=0$ it follows that $\Delta v / \Delta x=o(1)$. Using also $\Delta x / y=O(1)$ yields

$$
v+\frac{\Delta v}{\Delta x} \Delta x=-\mu y+o(1) \Delta x=-\mu y\left(1+o(1) \frac{\Delta x}{y}\right)=-\mu y(1+o(1)) .
$$

Similarly

$$
\frac{\Delta u}{\Delta x}=\lambda+\frac{\Delta f_{1}}{\Delta x}=\lambda+o(1)=\lambda(1+o(1)) .
$$

Therefore

$$
\frac{1}{v+(\Delta v / \Delta x) \Delta x}=\frac{1}{-\mu y} \frac{1}{1+o(1)}=\frac{1}{-\mu y}(1+o(1)) .
$$

Write

$$
\begin{equation*}
\frac{\Delta G}{\Delta x}=\frac{\Delta u}{\Delta x} \frac{1}{v+(\Delta v) / \Delta x) \Delta x}-\frac{u(\Delta v / \Delta x)}{v(v+(\Delta v) / \Delta x) \Delta x)} \tag{2.1}
\end{equation*}
$$

Then the first summand is the product of two terms that have already been estimated,

$$
\begin{equation*}
\frac{\Delta u}{\Delta x} \frac{1}{v+(\Delta v) / \Delta x) \Delta x}=\lambda(1+o(1)) \frac{1}{-\mu y}(1+o(1))=\frac{\lambda}{-\mu y}(1+o(1)) . \tag{2.2}
\end{equation*}
$$

The second term is similarly the product of four terms,

$$
u \frac{\Delta v}{\Delta x} \frac{1}{v} \frac{1}{v+(\Delta v) / \Delta x) \Delta x)}=r O(1) o(1) \frac{1}{-\mu y}(1+o(1)) \frac{1}{-\mu y}(1+o(1))
$$

Since r / y is bounded, this is equal to $1 /(-\mu y) o(1)$. Combining this with (2.1) and (2.2) proves the lemma.

