The Turing Instability

The Turing instability is elementary and surprising. It asserts that there are linear constant coefficient linear dynamics

$$
X^{\prime}=\widetilde{A} X, \quad \text { and, } \quad X^{\prime}=\widetilde{B} X
$$

both asymptotically stable, that is the eigenvalues of \widetilde{A} and \widetilde{B} lie in $\{\operatorname{Re} z<0\}$, and so that combining the effects to yield $X^{\prime}=(\widetilde{A}+\widetilde{B}) X$ yields an unstable equilibrium.
We construct examples with $d=2$. The key step is to construct A, B whose dynamics are centers and so that the sum dynamics is unstable. Let

$$
A:=\left(\begin{array}{cc}
0 & -\varepsilon \\
1 & 0
\end{array}\right), \quad 0<\varepsilon<1 .
$$

With $X=(x, y)$ the equation $X^{\prime}=A X$ is,

$$
x^{\prime}=-\varepsilon y, \quad y^{\prime}=x .
$$

Multiply the first equation by x and the second by εy and add to find,

$$
0=x x^{\prime}+\varepsilon y y^{\prime}=\frac{1}{2} \frac{d\left(x^{2}+\varepsilon y^{2}\right)}{d t} .
$$

On orbits, $x^{2}+\varepsilon y^{2}$ is constant. The dynamics is a center and the trajectories are ellipses, with the long axis along the y axis.
A second center is defined by,

$$
B:=\left(\begin{array}{cc}
0 & 1 \\
-\varepsilon & 0
\end{array}\right), \quad 0<\varepsilon<1
$$

On orbits,

$$
x^{\prime}=-y, \quad y^{\prime}=\varepsilon x, \quad \text { and }, \quad \frac{d\left(\varepsilon x^{2}+y^{2}\right)}{d t}=0 .
$$

The trajectories are ellipses, with the long axis along the x axis.
The matrix

$$
A+B=\left(\begin{array}{cc}
0 & 1-\varepsilon \\
1-\varepsilon & 0
\end{array}\right)
$$

is symmetric with eigenvalues $\pm(1-\varepsilon)$ of both signs so the sum dynamics is unstable. Two centers can sum to an unstable.
Define

$$
\widetilde{A}:=A-\delta I, \quad \widetilde{B}:=B-\delta I, \quad 0<\delta \ll 1 .
$$

The \widetilde{A} and \widetilde{B} have eigenvalues with real parts equal to $-\delta$. The eigenvalues of $\widetilde{A}+\widetilde{B}$ are equal to $-2 \delta \pm(1-\varepsilon)$ so for $\delta<(1-\varepsilon) / 2$, the larger is strictly positive. Two exponentially asymptotically stables can sum to an unstable.
Remark. If A and B are stable then $\operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B \leq 0$ so the sum cannot have both eigenvalues with positive real part.

The example is just as surprising viewed the other way. The sum of the two unstable dynamics $\widetilde{A}+\widetilde{B}$ and $-\widetilde{B}$ is stable. The sum of two unstables can be stable.

Exercise 1. Show that there are real diagonal matrices with unstable dynamics whose sum defines a stable dynamics. Discussion. This is much easier and less surprising than the Turing instability.

For the original A, B the matrix $A+B$ has an unstable manifold with exponential growth and that instabillity is stabilized by adding the neutrally stable $-B$. This is called dispersive stabillization. This phenomenon in the context of partial differential equations is studied in [1].
Summarizing, we have the the following principal.
Theorem 0.1 (Turing instability) If $d>1$ then knowing only the stability properties of the constant coefficient linear systems of ordinary differential equations $X^{\prime}=A X$ and $X^{\prime}=B X$ does not allow you to determine the stability of the system $X^{\prime}=(A+B) X$.

Turing encountered the sum of stables can be unstable in the context of reaction diffusion equations. He had a chemical reaction whose linearized behavior $u_{t}=A u$ at an equilibrium was stable. He added a stable but not scalar diffusion

$$
u_{t}(t, x)=\operatorname{diag}\left(\nu_{1}, \nu_{2}, \ldots, \nu_{d}\right) u_{x x}+A u, \quad \nu_{j}>0,
$$

and found instability for the sum of the two stable processes. His classic paper on morphogenisis in which this plays a central role is [2].
If one has additional information about the matrices A and B then sometimes one can predict the stability of the sum dynamics. Two such situations are described in the next exercises.

Exercise 2. Prove that if A and B have eigenvalues with strictly negative real parts then the same is true of $A+B$ if A and B commute.

Exercise 3. i. Show that if $A+A^{*}$ is a strictly negative hermitian symmetric matrix then $X^{\prime}=A X$ has 0 as an asymptotically stable equilibrium. Hint. Consider the time derivative of $\|X(t)\|^{2}$.
ii. Show that if A_{1} and A_{2} are matrices satisfying the criterion \mathbf{i} then the same is true of $A_{1}+A_{2}$.
iii. Show that if Q is a complex scalar product and that Q is strictly decreasing on the orbits of $X^{\prime}=A_{1} X$ and also $X^{\prime}=A_{2} X$ then Q is also strictly decreasing on the orbits of $X^{\prime}=\left(A_{1}+A_{2}\right) X$.
Discussion. Part ii is the special case where Q is the Euclidean scalar product.
Exercise 4. Let

$$
A=\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

The dynamics of A is exponentially decreasing. B has only zero as eigenvalue so its dynamics is neither strongly growing or decreasing. One might guess that adding B to A would not change much the stability of A. However, the sum $A+B$ has 0 as an eigenvalue. Adding B to A nearly compensates in part the decay from A. Starting from this observation show how to make small changes in A and/or B to construct a simple example of the Turing instability.

References

[1] G. Métivier and J. Rauch, Dispersive stabilization, London Math. J. 42(2010), 250-262.
[2] A. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. B 237(1952), 37-72.

