1 Continuity of pseudodifferential operators

The continuity of pseudodifferential operators is a consequence, by an elegant argument of Hörmander, of the pseudodifferntial calculus.

Theorem 1.1 Operators with symbols in S^{0} are bounded operators on L^{2}.
Lemma 1.1 Operators with symbols in S^{m} with $m<-d$ are bounded operators on L^{2}.
Proof. Formally the Schwartz kernel of $p(x, D)$ is given by the integral

$$
K(x, y)=\int p(x, \xi) e^{i(x-y) \xi} d x
$$

When $m<d$ the integral is absoluely convergent, K is continuous, the formal computation is rigorous, and, $K \in L^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.
An integration by parts shows that

$$
\int e^{i(x-y) \xi} D_{\xi}^{\alpha} p(x, \xi) d \xi=\int(x-y)^{\alpha} e^{i(x-y) \xi} p(x, \xi) d \xi=(x-y)^{\alpha} K(x, y)
$$

Therefore $(x-y)^{\alpha} K \in L^{\infty}$ for all α, so

$$
\forall N, \quad \exists C_{N}, \quad|K(x, y)| \left\lvert\, \leq \frac{C_{N}}{1+|x-y|^{N}}\right.
$$

Choose $N>d$ to find the pointwise estimate

$$
|p(x, D) f| \leq\left(\frac{C_{N}}{1+|x|^{N}}\right) *|f|
$$

Since $1 /\left(1+|x|^{N}\right) \in L^{1}$, Young's inequality implies Lemma 1.1.

Lemma 1.2 Operators with symbols in S^{m} with $m<0$ are bounded operators on L^{2}.
Proof. Given Lemma 1.1, if suffices to show that if operators in $\mathrm{Op} S^{a}$ with $a<0$ are bounded then operators in $\mathrm{Op} S^{a / 2}$ are bounded. Supppse that $p(x, \xi) \in S^{a / 2}$. The product rule shows that $p(x, D)^{*} p(x, D) \in \mathrm{Op} S^{a}$ so is bounded. This is equivalent to the boundedness of $p(x, D)$.

Proof of Theorem. Define

$$
M:=1+\max _{x, \xi \in \mathbb{R}^{2 d}}\left\|p(x, \xi)^{*} p(x, \xi)\right\| .
$$

A direct verification shows that

$$
q(x, \xi):=\left(M-p(x, \xi)^{*} p(x, \xi)\right)^{1 / 2} \in S^{0}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)
$$

Then $q(x, D)^{*} q(x, D) \in \mathrm{Op} S^{0}$ with symbol

$$
\left(M-p(x, \xi)^{*} p(x, \xi)\right)^{1 / 2}\left(M-p(x, \xi)^{*} p(x, \xi)\right)^{1 / 2}+S^{-1}=\left(M-p(x, \xi)^{*} p(x, \xi)\right)+S^{-1}
$$

Therefore

$$
0 \leq\left(q(x, D)^{*} q(x, D) u, \mu\right)=\left(\left[\left(M-p(x, D)^{*} p(x, D)\right)+\mathrm{Op} S^{-1}\right] u, u\right)
$$

Lemma 1.2 implies that the $\mathrm{Op} S^{-1}$ term is $\leq C\|u\|^{2}$ as is the $(M u, u)$ term. Therefore

$$
\left(p(x, D)^{*} p(x, D) u, u\right) \leq C\|u\|^{2}
$$

equivalent to the boundedness of $p(x, D)$.
Remark 1.1 This elegant argument proves without explaining.
Corollary 1.2 For any s, m operators in $\mathrm{Op} S^{m}$ are continuous from $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{s-m}\left(\mathbb{R}^{d}\right)$.
Proof. The operator $\langle D\rangle^{a} \in \mathrm{Op} S^{a}$ is an isometry from $H^{\sigma} \rightarrow H^{\sigma-a}$. The conclusion of the Corollary asserts that $\langle D\rangle^{-m+s} p(x, D)\langle D\rangle^{-s}$ is bounded from $L^{2} \rightarrow L^{2}$. The product rule implies that the operator belongs to $\mathrm{Op} S^{0}$ so Theorem 1.1 implies Corollary 1.2.

