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This Garding inequality has been improved to a sharp Garding inequality, of
the form

(6.7) Re (p(x, D)u, u) > —C||u||iz when Re p(x,§) >0,

first for scalar p(x,§) € S 11’0, by Hormander, then for matrix-valued symbols,
with Re p(x, £) standing for (1/2)(p(x, &) + p(x, S)*), by P. Lax and L. Niren-
berg. Proofs and some implications can be found in Vol. 3 of [Ho5], and in [T1]
and [Tre]. A very strong improvement due to C. Fefferman and D. Phong [FP]
is that (6.7) holds for scalar p(x,§) € S 12,0. See also [Ho5] and [F] for further
discussion.

Exercises

1. Suppose m > 0 and p(x, D) € OPST, has a symbol satisfying (6.1). Examine the
solvability of

e

for u = u(t,x), u(0,x) = f € HS(R").
(Hint: Look ahead at §7 for some useful techniques. Solve

ou
8_[8 = Jgp(x, D)Jgug

and estimate (d/dt)|| A® ue (1) ”iZ’ making use of Garding’s inequality.)

7. Hyperbolic evolution equations

In this section we examine first-order systems of the form

Bu_

(7.1) o

L(t,x,Dyx)u+ g(t,x), u(0)=f
We assume L(t,x,£) € S 11,0, with smooth dependence on ¢, so

72 D! DEDEL(.x,6)] < Crup(6)' .

Here L(z, x, &) is a K x K matrix-valued function, and we make the hypothesis
of symmetric hyperbolicity:

(7.3) L(t,x,6)* + L(1,x,§) € S7,.

We suppose f € H*(R"),s € R, g € C(R, H(R")).
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Our strategy will be to obtain a solution to (7.1) as a limit of solutions u, to

ou
(7.4) a—; = JeLJsus + g, ug(0) = f,
where
(7.5) Je = @(eDy),

for some ¢(§) € S(R"), ¢(0) = 1. The family of operators J, is called a
Friedrichs mollifier. Note that, for any ¢ > 0, J. € OPS™°°, while, for ¢ € (0, 1],
J¢ is bounded in OPS? .

For any ¢ > 0, J.LJ, is a bounded linear operator on each H*, and solvability
of (7.4) is elementary. Our next task is to obtain estimates on u,, independent of
¢ € (0, 1]. Use the norm ||u||gs = || A®u| ;2. We derive an estimate for

(7.6) %uz\sug(z)niz = 2Re (ASJoLJsug, ASug) + 2Re (ASg, ASu,).
Write the first two terms on the right as the real part of

(7.7) 2(LA° Jeug, N Jeug) + 2([A°, L)Jeug, A* Jeug).

By (7.3),L + L* = B(t,x,D) € OPS?’O, so the first term in (7.7) is equal to
(7.8) (B(t,x, D)A® Joug, A Joute) < C || Jotts %y

Meanwhile, [A*, L] € OPS f,0= so the second term in (7.7) is also bounded by the
right side of (7.8). Applying Cauchy’s inequality to 2(A®g, A®u.), we obtain

d
(7.9) E”Asue(t)”iz < CIA us(0)|7> + Clig)ls-
Thus Gronwall’s inequality yields an estimate

(7.10) lue ) Zrs < CONSNGrs + 181z o, 15

independent of ¢ € (0, 1]. We are now prepared to establish the following exis-
tence result.

Proposition 7.1. If (7.1) is symmetric hyperbolic and
fe H*R"), geCR,H*R")), seR,
then there is a solution u to (7.1), satisfying

(7.11) ue LR, HS(R™) N Lip (R, HS~YR")).

loc
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Proof. Take I = [T, T']. The bounded family
u € C(UI,HHYNCYI, H ™)

will have a weak limit point u satisfying (7.11), and it is easy to verify that such u
solves (7.1). As for the bound on [T, 0], this follows from the invariance of the
class of hyperbolic equations under time reversal.

Analogous energy estimates can establish the uniqueness of such a solution u
and rates of convergence of u; — u as ¢ — 0. Also, (7.11) can be improved to

(7.12) ue CR, H*R™) N CYR, HLR")).

To see this, let f; € HT1, f; — f in H, and let u; solve (7.1) with u;(0) =
/7. Then each u; belongs to L2 (R, H**1) N Lip(R, H*), so in particular each
uj € C(R,H%). Now v; = u — u; solves (7.1) with v;(0) = f — f;, and
| f — fillas — 0as j — oo, so estimates arising in the proof of Proposition 7.1
imply that ||v; (t)|| s — 0 locally uniformly in ¢, giving u € C(R, H*).

There are other notions of hyperbolicity. In particular, (7.1) is said to be sym-
metrizable hyperbolic if there is a K x K matrix-valued S(z,x,§) € S {),0 that
is positive-definite and such that S(z, x, £)L(¢, x,§) = L(z, x, £) satisfies (7.3).
Proposition 7.1 extends to the case of symmetrizable hyperbolic systems. Again,
one obtains u as a limit of solutions u. to (7.4). There is one extra ingredient
in the energy estimates. In this case, construct S(#) € OPS {)’0, positive-definite,
with symbol equal to S(z, x, §) mod S’ o- For the energy estimates, replace the
left side of (7.6) by

(7.13) %(Asue(l‘),S(I)Asuf(t))Lz,
which can be estimated in a fashion similar to (7.7)—(7.9).

A K x K system of the form (7.1) with L(¢,x,§) € S(}l is said to be strictly
hyperbolic if its principal symbol L (¢, x, §), homogeneous of degree 1 in £, has
K distinct, purely imaginary eigenvalues, for each x and each ¢ # 0. The results
above apply in this case, in view of:

Proposition 7.2. Whenever (7.1) is strictly hyperbolic, it is symmetrizable.

Proof. If we denote the eigenvalues of Lq(z,x,§) by iA, (¢, x, &), ordered so
that A1 (¢, x,§) < --- < Ag(t, x,§), then A, are well-defined C°°-functions of
(z, x, £), homogeneous of degree 1 in &. If P, (¢, x, §) are the projections onto the
i A,-eigenspaces of L1,

(7.14) Polt.x.£) = ﬁf(;—w,x,s))‘l a,
Yv
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where y,, is a small circle about i A, (¢, x, £), then P, is smooth and homogeneous
of degree 0 in £. Then

(7.15) S(t.x.§) =) Pj(t.x.£)*P;(t.x.§)
J

gives the desired symmetrizer.

Higher-order, strictly hyperbolic PDE can be reduced to strictly hyperbolic,
first-order systems of this nature. Thus one has an analysis of solutions to such
higher-order hyperbolic equations.

Exercises

1. Carry out the reduction of a strictly hyperbolic PDE of order m to a first-order system
of the form (7.1). Starting with

oy 3 u
Lu= g+ Z Aj(y,x,Dx)W,
Jj=0
where A (y, x, D) has order <m — j, formv = (V1. ....vm)" with
v = Am_lu,...,vj = 8§_1Am_ju,...,vm = 8;”_1u,
to pass from Lu = f to 5
v
_:K(yaanx)v+F7
dy

with F = (0,...,0, ). Give an appropriate definition of strict hyperbolicity in this
context, and show that this first-order system is strictly hyperbolic provided L is.
2. Fixr > 0. Let y, € £ (R?) denote the unit mass density on the circle of radius r:

1 T
(u, yr) = —/ u(r cos 6, rsinf) do.

2 J_x

Let I'yu = y; * u. Show that there exist A, (§) € S~1/2(R2) and Br(§) € S1/2(R2),
such that

(7.16) T, = Ay (D)cosrv—A + By (D) % ”A_A.

(Hint: See Exercise 1 in §7 of Chap. 6.)

8. Egorov’s theorem

We want to examine the behavior of operators obtained by conjugating a pseudod-
ifferential operator Py € OPS{" by the solution operator to a scalar hyperbolic
equation of the form

9
8.1) a—;‘ — i A(t, x, D),
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where we assume A = A; + Ao with
(8.2) Ai(t,x,8) € S} real,  Ao(t,x,§) € SY.

We suppose A1 (t, x, §) is homogeneous in &, for |§| > 1. Denote by S(¢, s) the
solution operator to (8.1), taking u(s) to u(¢). This is a bounded operator on each
Sobolev space H?, with inverse S(s, ). Set

(8.3) P(t) = S(@,0)PpS(0,1).
We aim to prove the following result of Y. Egorov.

Theorem 8.1. If Py = po(x, D) € OPSY, then for each t, P(t) € OPSY,
modulo a smoothing operator. The principal symbol of P(t) (mod S{'fo_l) at a
point (xo, &) is equal to po(yo, No), where (yg, No) is obtained from (xg, &o) by
following the flow C(t) generated by the (time-dependent) Hamiltonian vector
field

n 047 0 dA; 0
(84) HA](I,X,E) = Z (aé] 8XJ - an %) '

Jj=1

To start the proof, differentiating (8.3) with respect to ¢ yields
(8.5) P'(t) = i[A(t,x, D), P(t)], P(0) = Py.

We will construct an approximate solution Q(7) to (8.5) and then show that Q (¢)—
P(¢) is a smoothing operator.
So we are looking for Q(7) = ¢(¢, x, D) € OPSY),, solving

(8.6) Q/(t) = i[A(f,X, D)’ Q(Z)] + R(t)’ Q(O) = Po,

where R(t) is a smooth family of operators in OPS~°°. We do this by construct-
ing the symbol ¢(z, x, &) in the form

(8.7) q(t,x, &) ~qo(t,x,&) +q1(t,x, &) +---.

Now the symbol of i [4, Q(t)] is of the form

il
) i
(8.8) Hayq +{Ao.q} +i ) U(A(Q)Q(a) —q(a)A(a))’

loe|>2

where A@ = D?A, A@) = D% A, and so on. Since we want the difference be-
tween this and d¢q/dt to have order —oo, this suggests defining go(z, x, £) by

d
B9 (5~ Ha)do(t.x.§) = 0. 4o(0.x.8) = po(x.§).
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Thus qo(¢, x0,&0) = po(yo,no), as in the statement of the theorem; we have
qo(t,x,&) € STy Equation (8.9) is called a transport equation. Recursively, we
obtain transport equations

0
B10) (5~ Ha)a, (050 = b; (2.8, q;0.%.8) =0,

for j > 1, with solutions in S {"0_ J , leading to a solution to (8.6).
Finally, we show that P(z) — Q(t) is a smoothing operator. Equivalently, we
show that, for any f € H?(R"),

(8.11) v(t) —w(t) =St 0Py f — Q@)S(,0)f € H®[R"),

where H*°(R") = Ny H*(R"). Note that

(8.12) ?)—1; =iA(t,x,D)v, v(0) = Pof,

while use of (8.6) gives

(8.13) %—If =iA(lt,x,D)w+g, w() = Pyf,

where

(8.14) g = R()S(t, 0w e C®([R, H*(R")).

Hence

(8.15) %(v—w) =iAt,x,D)(v—-—w)—g, v(0)—w()=0.

Thus energy estimates for hyperbolic equations yield v(¢) — w(z) € H®°, for any
f € H?(R"™), completing the proof.
A check of the proof shows that

(8.16) Py € OPS™ = P(1) € OPS”.

Also, the proof readily extends to yield the following:
Proposition 8.2. With A(t, x, D) as before,

(8.17) Py € OPS™y = P(1) € OPS™,

provided

(8.18) p>—=, 6=1—p.
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One needs § = 1 — p to ensure that p(C(¢)(x,§)) € S;” , and one needs p > &

to ensure that the transport equations generate g (¢, x, §) of progressively lower
order.

Exercises

1. Let y : R® — R" be a diffeomorphism that is a linear map outside some compact set.
Define y* : C®(R") — C°(R") by x* f(x) = f(x(x)). Show that

(8.19) P € OPST'y = (x»)~' Px* € OPSY,,.

(Hint: Reduce to the case where y is homotopic to a linear map through diffeomor-
phisms, and show that the result in that case is a special case of Theorem 8.1, where
A(t,x, D) is a t-dependent family of real vector fields on R”.)

2. Leta € Cg°(R"), ¢ € C*(R") be real-valued, and V¢ # 0 on supp a. If P €
OPS™, show that

(8.20) P(a ™) = b(x,1) e+,
where
8.21) b(x, A) ~ A [bif(x) + bEA 4], A — oo

(Hint: Using a partition of unity and Exercise 1, reduce to the case ¢(x) = x - &, for
some £ € R\ 0.)
3. If a and ¢ are as in Exercise 2 above and I is as in Exercise 2 of §7, show that, mod

0(A™),

sinr«~/—A

(822)  Ty(ae*®) = cosrv/=A(Ar(x, 1)e'*?) + =

(By(x, 2)e'*),
where

Ap(x,A) ~ A_l/z[a(:)tr(x) + af':r(x)k_l + ]’

Br(x,2) ~ AV2[bE (x) + bE (AT 441,

as A — Z+oo.

9. Microlocal regularity

We define the notion of wave front set of a distribution u € H~°(R") =
Us H*(R™), which refines the notion of singular support. If p(x,&) € S™ has
principal symbol p,,(x,§), homogeneous in &, then the characteristic set of
P = p(x, D) is given by

(9.1) Char P = {(x,&) €e R" x (R"\ 0) : pm(x,&) = 0}.



