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This Gårding inequality has been improved to a sharp Gårding inequality, of
the form

(6.7) Re
!
p.x;D/u; u

"
! "Ckuk2

L2 when Re p.x; !/ ! 0;

first for scalar p.x; !/ 2 S11;0, by Hörmander, then for matrix-valued symbols,
with Re p.x; !/ standing for .1=2/

!
p.x; !/ C p.x; !/!

"
, by P. Lax and L. Niren-

berg. Proofs and some implications can be found in Vol. 3 of [Ho5], and in [T1]
and [Tre]. A very strong improvement due to C. Fefferman and D. Phong [FP]
is that (6.7) holds for scalar p.x; !/ 2 S21;0. See also [Ho5] and [F] for further
discussion.

Exercises

1. Suppose m > 0 and p.x;D/ 2 OPSm1;0 has a symbol satisfying (6.1). Examine the
solvability of

@u
@t

D p.x;D/u;

for u D u.t; x/, u.0; x/ D f 2 H s.Rn/.
(Hint: Look ahead at "7 for some useful techniques. Solve

@u"
@t

D J"p.x;D/J"u"

and estimate .d=dt/kƒsu!.t/k2L2 , making use of Gårding’s inequality.)

7. Hyperbolic evolution equations

In this section we examine first-order systems of the form

(7.1)
@u
@t

D L.t; x;Dx/u C g.t; x/; u.0/ D f:

We assume L.t; x; !/ 2 S11;0, with smooth dependence on t , so

(7.2) jDj
t D

ˇ
xD

˛
" L.t; x; !/j # Cj˛ˇ h!i1"j˛j:

Here L.t; x; !/ is a K $ K matrix-valued function, and we make the hypothesis
of symmetric hyperbolicity:

(7.3) L.t; x; !/! CL.t; x; !/ 2 S01;0:

We suppose f 2 H s.Rn/, s 2 R, g 2 C.R;H s.Rn//.
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Our strategy will be to obtain a solution to (7.1) as a limit of solutions u" to

(7.4)
@u"
@t

D J"LJ"u" C g; u".0/ D f;

where

(7.5) J" D '."Dx/;

for some '.!/ 2 S.Rn/, '.0/ D 1. The family of operators J" is called a
Friedrichs mollifier. Note that, for any " > 0, J" 2 OPS"1, while, for " 2 .0; 1#,
J" is bounded in OPS01;0.

For any " > 0, J"LJ" is a bounded linear operator on eachH s , and solvability
of (7.4) is elementary. Our next task is to obtain estimates on u", independent of
" 2 .0; 1#. Use the norm kukH s D kƒsukL2 . We derive an estimate for

(7.6)
d

dt
kƒsu".t/k2L2 D 2Re .ƒsJ"LJ"u"; ƒsu"/C 2Re .ƒsg;ƒsu"/:

Write the first two terms on the right as the real part of

(7.7) 2.LƒsJ"u"; ƒsJ"u"/C 2.Œƒs ; L#J"u"; ƒsJ"u"/:

By (7.3), LC L! D B.t; x;D/ 2 OPS01;0, so the first term in (7.7) is equal to

(7.8)
!
B.t; x;D/ƒsJ"u"; ƒsJ"u"

"
# CkJ"u"k2H s :

Meanwhile, Œƒs ; L# 2 OPS s1;0, so the second term in (7.7) is also bounded by the
right side of (7.8). Applying Cauchy’s inequality to 2.ƒsg;ƒsu"/, we obtain

(7.9)
d

dt
kƒsu".t/k2L2 # Ckƒsu".t/k2L2 C Ckg.t/k2H s :

Thus Gronwall’s inequality yields an estimate

(7.10) ku".t/k2H s # C.t/
#
kf k2H s C kgk2C.Œ0;t #;Hs/

$
;

independent of " 2 .0; 1#. We are now prepared to establish the following exis-
tence result.

Proposition 7.1. If (7.1) is symmetric hyperbolic and

f 2 H s.Rn/; g 2 C.R;H s.Rn//; s 2 R;

then there is a solution u to (7.1), satisfying

(7.11) u 2 L1
loc.R;H

s.Rn// \ Lip .R;H s"1.Rn//:
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Proof. Take I D Œ"T; T #. The bounded family

u" 2 C.I;H s/ \ C 1.I;H s"1/

will have a weak limit point u satisfying (7.11), and it is easy to verify that such u
solves (7.1). As for the bound on Œ"T; 0#, this follows from the invariance of the
class of hyperbolic equations under time reversal.

Analogous energy estimates can establish the uniqueness of such a solution u
and rates of convergence of u" ! u as " ! 0. Also, (7.11) can be improved to

(7.12) u 2 C.R;H s.Rn// \ C 1.R;H s"1.Rn//:

To see this, let fj 2 H sC1, fj ! f in H s , and let uj solve (7.1) with uj .0/ D
fj . Then each uj belongs to L1

loc.R;H
sC1/ \ Lip.R;H s/, so in particular each

uj 2 C.R;H s/. Now vj D u " uj solves (7.1) with vj .0/ D f " fj , and
kf " fj kH s ! 0 as j ! 1, so estimates arising in the proof of Proposition 7.1
imply that kvj .t/kH s ! 0 locally uniformly in t , giving u 2 C.R;H s/.

There are other notions of hyperbolicity. In particular, (7.1) is said to be sym-
metrizable hyperbolic if there is a K $ K matrix-valued S.t; x; !/ 2 S01;0 that
is positive-definite and such that S.t; x; !/L.t; x; !/ D QL.t; x; !/ satisfies (7.3).
Proposition 7.1 extends to the case of symmetrizable hyperbolic systems. Again,
one obtains u as a limit of solutions u! to (7.4). There is one extra ingredient
in the energy estimates. In this case, construct S.t/ 2 OPS01;0, positive-definite,
with symbol equal to S.t; x; !/ mod S"1

1;0. For the energy estimates, replace the
left side of (7.6) by

(7.13)
d

dt

!
ƒsu!.t/; S.t/ƒsu!.t/

"
L2 ;

which can be estimated in a fashion similar to (7.7)–(7.9).
A K $ K system of the form (7.1) with L.t; x; !/ 2 S1cl is said to be strictly

hyperbolic if its principal symbol L1.t; x; !/, homogeneous of degree 1 in !, has
K distinct, purely imaginary eigenvalues, for each x and each ! ¤ 0. The results
above apply in this case, in view of:

Proposition 7.2. Whenever (7.1) is strictly hyperbolic, it is symmetrizable.

Proof. If we denote the eigenvalues of L1.t; x; !/ by i$$.t; x; !/, ordered so
that $1.t; x; !/ < % % % < $K.t; x; !/, then $$ are well-defined C1-functions of
.t; x; !/, homogeneous of degree 1 in !. If P$.t; x; !/ are the projections onto the
i$$-eigenspaces of L1,

(7.14) P$.t; x; !/ D 1

2% i

Z

%!

!
& " L1.t; x; !/

""1
d&;
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where '$ is a small circle about i$$.t; x; !/, then P$ is smooth and homogeneous
of degree 0 in !. Then

(7.15) S.t; x; !/ D
X

j

Pj .t; x; !/
!Pj .t; x; !/

gives the desired symmetrizer.

Higher-order, strictly hyperbolic PDE can be reduced to strictly hyperbolic,
first-order systems of this nature. Thus one has an analysis of solutions to such
higher-order hyperbolic equations.

Exercises

1. Carry out the reduction of a strictly hyperbolic PDE of order m to a first-order system
of the form (7.1). Starting with

Lu D @mu
@ym

C
m"1X

jD0
Aj .y; x;Dx/

@j u
@yj

;

where Aj .y; x;D/ has order # m" j , form v D .v1; : : : ; vm/
t with

v1 D ƒm"1u; : : : ; vj D @
j"1
y ƒm"j u; : : : ; vm D @m"1

y u;

to pass from Lu D f to
@v

@y
D K.y; x;Dx/v C F;

with F D .0; : : : ; 0; f /t . Give an appropriate definition of strict hyperbolicity in this
context, and show that this first-order system is strictly hyperbolic provided L is.

2. Fix r > 0. Let 'r 2 E 0.R2/ denote the unit mass density on the circle of radius r :

hu; 'r i D 1

2%

Z &

"&
u.r cos (; r sin (/ d(:

Let )ru D 'r & u. Show that there exist Ar .!/ 2 S"1=2.R2/ and Br .!/ 2 S1=2.R2/,
such that

(7.16) )r D Ar .D/ cos r
p

"*C Br .D/
sin r

p
"*p

"*
:

(Hint: See Exercise 1 in "7 of Chap. 6.)

8. Egorov’s theorem

We want to examine the behavior of operators obtained by conjugating a pseudod-
ifferential operator P0 2 OPSm1;0 by the solution operator to a scalar hyperbolic
equation of the form

(8.1)
@u
@t

D iA.t; x;Dx/u;
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where we assume A D A1 C A0 with

(8.2) A1.t; x; !/ 2 S1cl real; A0.t; x; !/ 2 S0cl :

We suppose A1.t; x; !/ is homogeneous in !, for j!j ! 1. Denote by S.t; s/ the
solution operator to (8.1), taking u.s/ to u.t/. This is a bounded operator on each
Sobolev space H' , with inverse S.s; t/. Set

(8.3) P.t/ D S.t; 0/P0S.0; t/:

We aim to prove the following result of Y. Egorov.

Theorem 8.1. If P0 D p0.x;D/ 2 OPSm1;0, then for each t , P.t/ 2 OPSm1;0,
modulo a smoothing operator. The principal symbol of P.t/ (mod Sm"1

1;0 ) at a
point .x0; !0/ is equal to p0.y0; +0/, where .y0; +0/ is obtained from .x0; !0/ by
following the flow C.t/ generated by the (time-dependent) Hamiltonian vector
field

(8.4) HA1.t;x;"/ D
nX

jD1

%
@A1

@!j

@

@xj
" @A1

@xj

@

@!j

&
:

To start the proof, differentiating (8.3) with respect to t yields

(8.5) P 0.t/ D i ŒA.t; x;D/; P.t/#; P.0/ D P0:

We will construct an approximate solutionQ.t/ to (8.5) and then show thatQ.t/"
P.t/ is a smoothing operator.

So we are looking for Q.t/ D q.t; x;D/ 2 OPSm1;0, solving

(8.6) Q0.t/ D i ŒA.t; x;D/;Q.t/#CR.t/; Q.0/ D P0;

where R.t/ is a smooth family of operators in OPS"1. We do this by construct-
ing the symbol q.t; x; !/ in the form

(8.7) q.t; x; !/ ' q0.t; x; !/C q1.t; x; !/C % % % :

Now the symbol of i ŒA;Q.t/# is of the form

(8.8) HA1
q C fA0; qg C i

X

j˛j#2

i j˛j

˛Š

'
A.˛/q.˛/ " q.˛/A.˛/

(
;

where A.˛/ DD˛
"
A, A.˛/ DD˛

xA, and so on. Since we want the difference be-
tween this and @q=@t to have order "1, this suggests defining q0.t; x; !/ by

(8.9)
' @
@t

"HA1

(
q0.t; x; !/ D 0; q0.0; x; !/ D p0.x; !/:



28 7. Pseudodifferential Operators

Thus q0.t; x0; !0/ D p0.y0; +0/, as in the statement of the theorem; we have
q0.t; x; !/ 2 Sm1;0. Equation (8.9) is called a transport equation. Recursively, we
obtain transport equations

(8.10)
' @
@t

"HA1

(
qj .t; x; !/ D bj .t; x; !/; qj .0; x; !/ D 0;

for j ! 1, with solutions in Sm"j
1;0 , leading to a solution to (8.6).

Finally, we show that P.t/ " Q.t/ is a smoothing operator. Equivalently, we
show that, for any f 2 H ' .Rn/,

(8.11) v.t/ " w.t/ D S.t; 0/P0f "Q.t/S.t; 0/f 2 H1.Rn/;

whereH1.Rn/ D \sH s.Rn/. Note that

(8.12)
@v

@t
D iA.t; x;D/v; v.0/ D P0f;

while use of (8.6) gives

(8.13)
@w

@t
D iA.t; x;D/w C g; w.0/ D P0f;

where

(8.14) g D R.t/S.t; 0/w 2 C1.R;H1.Rn//:

Hence

(8.15)
@

@t
.v " w/ D iA.t; x;D/.v " w/ " g; v.0/ " w.0/ D 0:

Thus energy estimates for hyperbolic equations yield v.t/"w.t/ 2 H1, for any
f 2 H ' .Rn/, completing the proof.

A check of the proof shows that

(8.16) P0 2 OPSmcl H) P.t/ 2 OPSmcl :

Also, the proof readily extends to yield the following:

Proposition 8.2. With A.t; x;D/ as before,

(8.17) P0 2 OPSm(;ı H) P.t/ 2 OPSm(;ı

provided

(8.18) - >
1

2
; ı D 1 " -:
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One needs ı D 1" - to ensure that p.C.t/.x; !// 2 Sm
(;ı

, and one needs - > ı
to ensure that the transport equations generate qj .t; x; !/ of progressively lower
order.

Exercises

1. Let . W Rn ! Rn be a diffeomorphism that is a linear map outside some compact set.
Define .! W C1.Rn/ ! C1.Rn/ by .!f .x/ D f

!
..x/

"
. Show that

(8.19) P 2 OPSm1;0 H) ..&/"1P.! 2 OPSm1;0:

(Hint: Reduce to the case where . is homotopic to a linear map through diffeomor-
phisms, and show that the result in that case is a special case of Theorem 8.1, where
A.t; x;D/ is a t-dependent family of real vector fields on Rn:)

2. Let a 2 C1
0 .Rn/, ' 2 C1.Rn/ be real-valued, and r' ¤ 0 on supp a. If P 2

OPSm, show that

(8.20) P
!
a ei)'

"
D b.x;$/ ei)'.x/;

where

(8.21) b.x;$/ ' $m
#
b˙
0 .x/C b˙

1 .x/$
"1 C % % %

$
; $ ! ˙1:

(Hint: Using a partition of unity and Exercise 1, reduce to the case '.x/ D x % ! , for
some ! 2 Rn n 0:)

3. If a and ' are as in Exercise 2 above and )r is as in Exercise 2 of "7, show that, mod
O.$"1/,

(8.22) )r
!
a ei)'

"
D cos r

p
"*

!
Ar .x;$/e

i)'"C sin r
p

"*p
"*

!
Br .x;$/e

i)'";

where
Ar .x;$/ ' $"1=2#a˙

0r .x/C a˙
1r .x/$

"1 C % % %
$
;

Br .x;$/ ' $1=2
#
b˙
0r .x/C b˙

1r .x/$
"1 C % % %

$
;

as $ ! ˙1.

9. Microlocal regularity

We define the notion of wave front set of a distribution u 2 H"1.Rn/ D
[sH s.Rn/, which refines the notion of singular support. If p.x; !/ 2 Sm has
principal symbol pm.x; !/, homogeneous in !, then the characteristic set of
P D p.x;D/ is given by

(9.1) Char P D f.x; !/ 2 Rn $ .Rn n 0/ W pm.x; !/ D 0g:


