This Gårding inequality has been improved to a sharp Gårding inequality, of the form

(6.7)
$$\operatorname{Re}(p(x, D)u, u) \ge -C \|u\|_{L^2}^2 \text{ when Re } p(x, \xi) \ge 0,$$

first for scalar $p(x,\xi) \in S^1_{1,0}$, by Hörmander, then for matrix-valued symbols, with Re $p(x,\xi)$ standing for $(1/2)(p(x,\xi)+p(x,\xi)^*)$, by P. Lax and L. Nirenberg. Proofs and some implications can be found in Vol. 3 of [Ho5], and in [T1] and [Tre]. A very strong improvement due to C. Fefferman and D. Phong [FP] is that (6.7) holds for scalar $p(x,\xi) \in S^2_{1,0}$. See also [Ho5] and [F] for further discussion.

Exercises

1. Suppose m>0 and $p(x,D)\in OPS_{1,0}^m$ has a symbol satisfying (6.1). Examine the solvability of

$$\frac{\partial u}{\partial t} = p(x, D)u,$$

for $u = u(t, x), u(0, x) = f \in H^{s}(\mathbb{R}^{n}).$

(Hint: Look ahead at §7 for some useful techniques. Solve

$$\frac{\partial u_{\varepsilon}}{\partial t} = J_{\varepsilon} p(x, D) J_{\varepsilon} u_{\varepsilon}$$

and estimate $(d/dt)\|\Lambda^s u_{\epsilon}(t)\|_{L^2}^2$, making use of Gårding's inequality.)

7. Hyperbolic evolution equations

In this section we examine first-order systems of the form

(7.1)
$$\frac{\partial u}{\partial t} = L(t, x, D_x)u + g(t, x), \quad u(0) = f.$$

We assume $L(t, x, \xi) \in S^1_{1,0}$, with smooth dependence on t, so

$$(7.2) |D_t^j D_x^{\beta} D_{\varepsilon}^{\alpha} L(t, x, \xi)| \le C_{j\alpha\beta} \langle \xi \rangle^{1-|\alpha|}.$$

Here $L(t, x, \xi)$ is a $K \times K$ matrix-valued function, and we make the hypothesis of symmetric hyperbolicity:

(7.3)
$$L(t, x, \xi)^* + L(t, x, \xi) \in S_{1,0}^0.$$

We suppose $f \in H^s(\mathbb{R}^n)$, $s \in \mathbb{R}$, $g \in C(\mathbb{R}, H^s(\mathbb{R}^n))$.

Our strategy will be to obtain a solution to (7.1) as a limit of solutions u_{ε} to

(7.4)
$$\frac{\partial u_{\varepsilon}}{\partial t} = J_{\varepsilon} L J_{\varepsilon} u_{\varepsilon} + g, \quad u_{\varepsilon}(0) = f,$$

where

$$(7.5) J_{\varepsilon} = \varphi(\varepsilon D_{x}),$$

for some $\varphi(\xi) \in \mathcal{S}(\mathbb{R}^n)$, $\varphi(0) = 1$. The family of operators J_{ε} is called a *Friedrichs mollifier*. Note that, for any $\varepsilon > 0$, $J_{\varepsilon} \in OPS^{-\infty}$, while, for $\varepsilon \in (0, 1]$, J_{ε} is bounded in $OPS_{1,0}^0$.

For any $\varepsilon > 0$, $J_{\varepsilon}LJ_{\varepsilon}$ is a bounded linear operator on each H^s , and solvability of (7.4) is elementary. Our next task is to obtain estimates on u_{ε} , independent of $\varepsilon \in (0, 1]$. Use the norm $||u||_{H^s} = ||\Lambda^s u||_{L^2}$. We derive an estimate for

(7.6)
$$\frac{d}{dt} \|\Lambda^{s} u_{\varepsilon}(t)\|_{L^{2}}^{2} = 2 \operatorname{Re} \left(\Lambda^{s} J_{\varepsilon} L J_{\varepsilon} u_{\varepsilon}, \Lambda^{s} u_{\varepsilon}\right) + 2 \operatorname{Re} \left(\Lambda^{s} g, \Lambda^{s} u_{\varepsilon}\right).$$

Write the first two terms on the right as the real part of

$$(7.7) 2(L\Lambda^{s}J_{\varepsilon}u_{\varepsilon},\Lambda^{s}J_{\varepsilon}u_{\varepsilon}) + 2([\Lambda^{s},L]J_{\varepsilon}u_{\varepsilon},\Lambda^{s}J_{\varepsilon}u_{\varepsilon}).$$

By (7.3), $L + L^* = B(t, x, D) \in OPS_{1,0}^0$, so the first term in (7.7) is equal to

(7.8)
$$(B(t, x, D)\Lambda^{s} J_{\varepsilon} u_{\varepsilon}, \Lambda^{s} J_{\varepsilon} u_{\varepsilon}) \leq C \|J_{\varepsilon} u_{\varepsilon}\|_{H^{s}}^{2}.$$

Meanwhile, $[\Lambda^s, L] \in OPS_{1,0}^s$, so the second term in (7.7) is also bounded by the right side of (7.8). Applying Cauchy's inequality to $2(\Lambda^s g, \Lambda^s u_{\varepsilon})$, we obtain

(7.9)
$$\frac{d}{dt} \|\Lambda^{s} u_{\varepsilon}(t)\|_{L^{2}}^{2} \leq C \|\Lambda^{s} u_{\varepsilon}(t)\|_{L^{2}}^{2} + C \|g(t)\|_{H^{s}}^{2}.$$

Thus Gronwall's inequality yields an estimate

independent of $\varepsilon \in (0, 1]$. We are now prepared to establish the following existence result.

Proposition 7.1. If (7.1) is symmetric hyperbolic and

$$f \in H^s(\mathbb{R}^n), g \in C(\mathbb{R}, H^s(\mathbb{R}^n)), s \in \mathbb{R},$$

then there is a solution u to (7.1), satisfying

$$(7.11) u \in L^{\infty}_{loc}(\mathbb{R}, H^{s}(\mathbb{R}^{n})) \cap Lip(\mathbb{R}, H^{s-1}(\mathbb{R}^{n})).$$

Proof. Take I = [-T, T]. The bounded family

$$u_{\varepsilon} \in C(I, H^s) \cap C^1(I, H^{s-1})$$

will have a weak limit point u satisfying (7.11), and it is easy to verify that such u solves (7.1). As for the bound on [-T, 0], this follows from the invariance of the class of hyperbolic equations under time reversal.

Analogous energy estimates can establish the uniqueness of such a solution u and rates of convergence of $u_{\varepsilon} \to u$ as $\varepsilon \to 0$. Also, (7.11) can be improved to

$$(7.12) u \in C(\mathbb{R}, H^s(\mathbb{R}^n)) \cap C^1(\mathbb{R}, H^{s-1}(\mathbb{R}^n)).$$

To see this, let $f_j \in H^{s+1}$, $f_j \to f$ in H^s , and let u_j solve (7.1) with $u_j(0) = f_j$. Then each u_j belongs to $L^{\infty}_{loc}(\mathbb{R}, H^{s+1}) \cap Lip(\mathbb{R}, H^s)$, so in particular each $u_j \in C(\mathbb{R}, H^s)$. Now $v_j = u - u_j$ solves (7.1) with $v_j(0) = f - f_j$, and $||f - f_j||_{H^s} \to 0$ as $j \to \infty$, so estimates arising in the proof of Proposition 7.1 imply that $||v_j(t)||_{H^s} \to 0$ locally uniformly in t, giving $u \in C(\mathbb{R}, H^s)$.

There are other notions of hyperbolicity. In particular, (7.1) is said to be *symmetrizable hyperbolic* if there is a $K \times K$ matrix-valued $S(t, x, \xi) \in S_{1,0}^0$ that is positive-definite and such that $S(t, x, \xi)L(t, x, \xi) = \tilde{L}(t, x, \xi)$ satisfies (7.3). Proposition 7.1 extends to the case of symmetrizable hyperbolic systems. Again, one obtains u as a limit of solutions u_{ϵ} to (7.4). There is one extra ingredient in the energy estimates. In this case, construct $S(t) \in OPS_{1,0}^0$, positive-definite, with symbol equal to $S(t, x, \xi) \mod S_{1,0}^{-1}$. For the energy estimates, replace the left side of (7.6) by

(7.13)
$$\frac{d}{dt} \left(\Lambda^s u_{\epsilon}(t), S(t) \Lambda^s u_{\epsilon}(t) \right)_{L^2},$$

which can be estimated in a fashion similar to (7.7)–(7.9).

A $K \times K$ system of the form (7.1) with $L(t, x, \xi) \in S^1_{cl}$ is said to be *strictly hyperbolic* if its principal symbol $L_1(t, x, \xi)$, homogeneous of degree 1 in ξ , has K distinct, purely imaginary eigenvalues, for each x and each $\xi \neq 0$. The results above apply in this case, in view of:

Proposition 7.2. Whenever (7.1) is strictly hyperbolic, it is symmetrizable.

Proof. If we denote the eigenvalues of $L_1(t, x, \xi)$ by $i\lambda_{\nu}(t, x, \xi)$, ordered so that $\lambda_1(t, x, \xi) < \cdots < \lambda_K(t, x, \xi)$, then λ_{ν} are well-defined C^{∞} -functions of (t, x, ξ) , homogeneous of degree 1 in ξ . If $P_{\nu}(t, x, \xi)$ are the projections onto the $i\lambda_{\nu}$ -eigenspaces of L_1 ,

(7.14)
$$P_{\nu}(t,x,\xi) = \frac{1}{2\pi i} \int_{\gamma_{\nu}} \left(\zeta - L_{1}(t,x,\xi) \right)^{-1} d\zeta,$$

(7.15)
$$S(t, x, \xi) = \sum_{j} P_{j}(t, x, \xi)^{*} P_{j}(t, x, \xi)$$

gives the desired symmetrizer.

Higher-order, strictly hyperbolic PDE can be reduced to strictly hyperbolic, first-order systems of this nature. Thus one has an analysis of solutions to such higher-order hyperbolic equations.

Exercises

1. Carry out the reduction of a strictly hyperbolic PDE of order m to a first-order system of the form (7.1). Starting with

$$Lu = \frac{\partial^m u}{\partial y^m} + \sum_{j=0}^{m-1} A_j(y, x, D_x) \frac{\partial^j u}{\partial y^j},$$

where $A_j(y, x, D)$ has order $\leq m - j$, form $v = (v_1, \dots, v_m)^t$ with

$$v_1 = \Lambda^{m-1} u, \dots, v_j = \partial_y^{j-1} \Lambda^{m-j} u, \dots, v_m = \partial_y^{m-1} u,$$

to pass from Lu = f to

$$\frac{\partial v}{\partial v} = K(y, x, D_x)v + F,$$

with $F = (0, ..., 0, f)^t$. Give an appropriate definition of strict hyperbolicity in this context, and show that this first-order system is strictly hyperbolic provided L is.

2. Fix r > 0. Let $\gamma_r \in \mathcal{E}'(\mathbb{R}^2)$ denote the unit mass density on the circle of radius r:

$$\langle u, \gamma_r \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(r \cos \theta, r \sin \theta) d\theta.$$

Let $\Gamma_r u = \gamma_r * u$. Show that there exist $A_r(\xi) \in S^{-1/2}(\mathbb{R}^2)$ and $B_r(\xi) \in S^{1/2}(\mathbb{R}^2)$, such that

(7.16)
$$\Gamma_r = A_r(D)\cos r\sqrt{-\Delta} + B_r(D) \frac{\sin r\sqrt{-\Delta}}{\sqrt{-\Delta}}.$$

(*Hint*: See Exercise 1 in §7 of Chap. 6.)

8. Egorov's theorem

We want to examine the behavior of operators obtained by conjugating a pseudodifferential operator $P_0 \in OPS_{1,0}^m$ by the solution operator to a scalar hyperbolic equation of the form

(8.1)
$$\frac{\partial u}{\partial t} = iA(t, x, D_x)u,$$

where we assume $A = A_1 + A_0$ with

(8.2)
$$A_1(t, x, \xi) \in S_{cl}^1 \text{ real}, \quad A_0(t, x, \xi) \in S_{cl}^0.$$

We suppose $A_1(t, x, \xi)$ is homogeneous in ξ , for $|\xi| \ge 1$. Denote by S(t, s) the solution operator to (8.1), taking u(s) to u(t). This is a bounded operator on each Sobolev space H^{σ} , with inverse S(s, t). Set

(8.3)
$$P(t) = S(t,0)P_0S(0,t).$$

We aim to prove the following result of Y. Egorov.

Theorem 8.1. If $P_0 = p_0(x, D) \in OPS_{1,0}^m$, then for each t, $P(t) \in OPS_{1,0}^m$, modulo a smoothing operator. The principal symbol of P(t) (mod $S_{1,0}^{m-1}$) at a point (x_0, ξ_0) is equal to $p_0(y_0, \eta_0)$, where (y_0, η_0) is obtained from (x_0, ξ_0) by following the flow C(t) generated by the (time-dependent) Hamiltonian vector field

(8.4)
$$H_{A_1(t,x,\xi)} = \sum_{j=1}^{n} \left(\frac{\partial A_1}{\partial \xi_j} \frac{\partial}{\partial x_j} - \frac{\partial A_1}{\partial x_j} \frac{\partial}{\partial \xi_j} \right).$$

To start the proof, differentiating (8.3) with respect to t yields

(8.5)
$$P'(t) = i[A(t, x, D), P(t)], \quad P(0) = P_0.$$

We will construct an approximate solution Q(t) to (8.5) and then show that Q(t) – P(t) is a smoothing operator.

So we are looking for $Q(t) = q(t, x, D) \in OPS_{1,0}^m$, solving

(8.6)
$$Q'(t) = i[A(t, x, D), Q(t)] + R(t), \quad Q(0) = P_0,$$

where R(t) is a smooth family of operators in $OPS^{-\infty}$. We do this by constructing the symbol $q(t, x, \xi)$ in the form

(8.7)
$$q(t, x, \xi) \sim q_0(t, x, \xi) + q_1(t, x, \xi) + \cdots$$

Now the symbol of i[A, Q(t)] is of the form

(8.8)
$$H_{A_1}q + \{A_0, q\} + i \sum_{|\alpha| > 2} \frac{i^{|\alpha|}}{\alpha!} \Big(A^{(\alpha)}q_{(\alpha)} - q^{(\alpha)}A_{(\alpha)} \Big),$$

where $A^{(\alpha)} = D_{\xi}^{\alpha} A$, $A_{(\alpha)} = D_{x}^{\alpha} A$, and so on. Since we want the difference between this and $\partial q/\partial t$ to have order $-\infty$, this suggests defining $q_{0}(t, x, \xi)$ by

(8.9)
$$\left(\frac{\partial}{\partial t} - H_{A_1}\right) q_0(t, x, \xi) = 0, \quad q_0(0, x, \xi) = p_0(x, \xi).$$

Thus $q_0(t, x_0, \xi_0) = p_0(y_0, \eta_0)$, as in the statement of the theorem; we have $q_0(t, x, \xi) \in S_{1,0}^m$. Equation (8.9) is called a *transport equation*. Recursively, we obtain transport equations

(8.10)
$$\left(\frac{\partial}{\partial t} - H_{A_1}\right) q_j(t, x, \xi) = b_j(t, x, \xi), \quad q_j(0, x, \xi) = 0,$$

for $j \ge 1$, with solutions in $S_{1,0}^{m-j}$, leading to a solution to (8.6).

Finally, we show that P(t) - Q(t) is a smoothing operator. Equivalently, we show that, for any $f \in H^{\sigma}(\mathbb{R}^n)$,

$$(8.11) v(t) - w(t) = S(t,0)P_0f - Q(t)S(t,0)f \in H^{\infty}(\mathbb{R}^n),$$

where $H^{\infty}(\mathbb{R}^n) = \bigcap_s H^s(\mathbb{R}^n)$. Note that

(8.12)
$$\frac{\partial v}{\partial t} = iA(t, x, D)v, \quad v(0) = P_0 f,$$

while use of (8.6) gives

(8.13)
$$\frac{\partial w}{\partial t} = iA(t, x, D)w + g, \quad w(0) = P_0 f,$$

where

$$(8.14) g = R(t)S(t,0)w \in C^{\infty}(\mathbb{R}, H^{\infty}(\mathbb{R}^n)).$$

Hence

(8.15)
$$\frac{\partial}{\partial t}(v - w) = iA(t, x, D)(v - w) - g, \quad v(0) - w(0) = 0.$$

Thus energy estimates for hyperbolic equations yield $v(t) - w(t) \in H^{\infty}$, for any $f \in H^{\sigma}(\mathbb{R}^n)$, completing the proof.

A check of the proof shows that

$$(8.16) P_0 \in OPS_{cl}^m \Longrightarrow P(t) \in OPS_{cl}^m.$$

Also, the proof readily extends to yield the following:

Proposition 8.2. With A(t, x, D) as before,

$$(8.17) P_0 \in OPS^m_{\rho,\delta} \Longrightarrow P(t) \in OPS^m_{\rho,\delta}$$

provided

$$(8.18) \rho > \frac{1}{2}, \delta = 1 - \rho.$$

One needs $\delta = 1 - \rho$ to ensure that $p(\mathcal{C}(t)(x, \xi)) \in S^m_{\rho, \delta}$, and one needs $\rho > \delta$ to ensure that the transport equations generate $q_j(t, x, \xi)$ of progressively lower order.

Exercises

1. Let $\chi: \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism that is a linear map outside some compact set. Define $\chi^*: C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$ by $\chi^* f(x) = f(\chi(x))$. Show that

$$(8.19) P \in OPS_{1,0}^m \Longrightarrow (\chi*)^{-1} P \chi^* \in OPS_{1,0}^m.$$

(*Hint*: Reduce to the case where χ is homotopic to a linear map through diffeomorphisms, and show that the result in that case is a special case of Theorem 8.1, where A(t, x, D) is a t-dependent family of real vector fields on \mathbb{R}^n .)

2. Let $a \in C_0^{\infty}(\mathbb{R}^n)$, $\varphi \in C^{\infty}(\mathbb{R}^n)$ be real-valued, and $\nabla \varphi \neq 0$ on supp a. If $P \in OPS^m$, show that

(8.20)
$$P(a e^{i\lambda\varphi}) = b(x,\lambda) e^{i\lambda\varphi(x)},$$

where

(8.21)
$$b(x,\lambda) \sim \lambda^m \left[b_0^{\pm}(x) + b_1^{\pm}(x) \lambda^{-1} + \cdots \right], \quad \lambda \to \pm \infty.$$

(*Hint*: Using a partition of unity and Exercise 1, reduce to the case $\varphi(x) = x \cdot \xi$, for some $\xi \in \mathbb{R}^n \setminus 0$.)

3. If a and φ are as in Exercise 2 above and Γ_r is as in Exercise 2 of §7, show that, mod $O(\lambda^{-\infty})$,

(8.22)
$$\Gamma_r(a e^{i\lambda\varphi}) = \cos r \sqrt{-\Delta} \left(A_r(x,\lambda) e^{i\lambda\varphi} \right) + \frac{\sin r \sqrt{-\Delta}}{\sqrt{-\Delta}} \left(B_r(x,\lambda) e^{i\lambda\varphi} \right),$$

where

$$A_r(x,\lambda) \sim \lambda^{-1/2} \left[a_{0r}^{\pm}(x) + a_{1r}^{\pm}(x) \lambda^{-1} + \cdots \right],$$

$$B_r(x,\lambda) \sim \lambda^{1/2} \left[b_{0r}^{\pm}(x) + b_{1r}^{\pm}(x) \lambda^{-1} + \cdots \right],$$

as $\lambda \to \pm \infty$.

9. Microlocal regularity

We define the notion of wave front set of a distribution $u \in H^{-\infty}(\mathbb{R}^n) = \bigcup_s H^s(\mathbb{R}^n)$, which refines the notion of singular support. If $p(x,\xi) \in S^m$ has principal symbol $p_m(x,\xi)$, homogeneous in ξ , then the characteristic set of P = p(x,D) is given by

(9.1) Char
$$P = \{(x, \xi) \in \mathbb{R}^n \times (\mathbb{R}^n \setminus 0) : p_m(x, \xi) = 0\}.$$