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Reflection of Singularities of Solutions 
to Systems of Differential Equations* 

MICHAEL E. TAYLOR 

1. Introduction 

In this paper we shall examine reflection of singularities of solutions of first- 
order equations of the form 

in a region 9 with boundary given by y=O; say 9 = X a9. Here 
G = G ( y )  = G ( y , x ,  0,) is a smooth one-parameter family of pseudo-differential 
operators of order one on a 9, G (y) E PS( 1); u takes on values in a vector space, 
@, and G is a k X k  matrix of operators, with principal symbol G,(y,x,t), 
homogeneous of degree one in 5. On the boundary y = 0, a boundary condition is 
prescribed : 

where P EPS(0) is a pseudo-differential operator of order zero. 
We make the assumption that P(y,x,q,t)=det(q- iG, (y ,x , t ) )  is real and has 

simple characteristics. Then, as is well known (see [ 1 I), singularities of solutions to 
(1.1) propagate along the null bicharacteristic strips of p in the interior of 9. 
Actually, the reference does not quite apply, since a/ay- G is not a pseudo- 
differential operator on 9 (see the appendix). 

Suppose ( x o , t o )  E T*( a s2)  - 0 and that j null-bicharacteristic strips of p pass 
over (xo,to).  That means there a r e j  real solutions q,,. . . ,q, of p ( O , ~ ~ , q , [ ~ ) = 0 .  The 
associated bicharacteristics y, ( t) = (y (t), x ( t ) ,  (t), t( t)) solve the equations 
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with initial condition y,(O) = (O,xo,q,,to). We make the assumption that 

(1.3) the bicharacteristc curves intersect a D transversally. 

Thus we are only considering the case of non-glancing rays. This means that 
j =  ap/aq#O at (O,xo,q,,[o), which implies that all the real zeros q1; . .,ql $re 
simple. 

Now, for ( x , ( )  in a small conic neighborhood of ( x o , t o )  and for JJ 2 0 small, 
p ( y , x , q , t )  must have exactly j simple roots q , ( x , t ) .  This is due to the fact that 
complex zeros q of p must occur in complex conjugate pairs; thus a root cannot 
wander off the real axis without splitting, which is impossible if it is simple. 

It follows that, in a conic neighborhood of (xo, to)  and for y 2 0 small, 
C,(y,x, t )  has j simple pure imaginary eigenvalues iX,(y,x,[), . . . , iAJ(y,x,[), 
homogeneous of degree one in 5. Here A" = - q,. 

The problem we wish to treat is the following: given u which is smooth along 
the bicharacteristics associated with A,; * ,A, lying over (xo,Eo), determine when u 
is smooth along the rest of the bicharacteristics lying over (xo, to) ,  those associated 
with A,+,;. . , A j ,  

We can define a smooth invertible matrix U(y ,x , [ ) ,  homogeneous of degree 
zero in [, such that, on a conic neighborhood of (xo,Eo),  fory 2 0 small, UG,U-' 
= G, with 
I 

iA , 
I 

G, = 
iAj 

E+ 
E-  

Here E +  is a square matrix whose eigenvalues have positive real part, and E -  one 
whose eigenvalues have negative real part. If we extend the symbol G, over all 
(%,[)ED, 0 2 y 2 yo, keeping the form (1.4) with the A's distinct, then (1.1) can 
be reduced to a simpler equation, in the following fashion. 

Let + ( x , [ )  be a zero-order symbol supported in a small conic neighborhood Uo 
of ( xo, to) and equal to one on a smaller conic neighborhood U,. Let 
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Then u solves the system 

with boundary condition 

(1.7) upu-'u(o)= f 

Here G"= UGU-'+ L$U-'EPS(l) has a principal symbol G"l(y,x,Q, and U- '  
stands for a smooth family of parametrices of U ( y ) .  Moreover, F =  U [ $ , G ] u  and 
f = U [  p , $ ] u ( O )  plus smooth functions; we regard these as inhomogeneous terms. 

We shall analyze the system (1.6) in the next couple of sections, settling the 
problem of reflection of singularities in the non-glancing ray case. Section 4 will 
investigate H' estimates, and then we shall look at some examples, particularly in 
the case of hyperbolic mixed problems. Finally, in Section 6 we shall consider the 
problem of obtaining smoothness up to the boundary. We obtain generalizations 
of the results of Povzner and Sukharevskii [7], and give examples of some 
grazing-ray flavored phenomena that can occur. 

Prior to this work, Andy Majda and Stan Osher had solved such a problem as 
dealt with in Sections 2-5, for scalar equations, using and extending earlier work 
of Lax and Nirenberg, as described in [6]. I am grateful to them for conversations 
which stimulated my interest in this problem. 

WARNING. In the text, we shall often call a null bicharacteristic strip, which 
is a curve in T*Q, a ray. Its projection onto Q and, in the case of hyperbolic mixed 
problems where Q = ( O ,  T ) X  8 , its projection onto 8 ,  will also be called a ray. 
"Smooth along a ray" will mean smooth on a conic neighborhood of the ray in 
T*Q. 

2. Uncoupling First-Order Systems - 
The system (1.6) is decoupled in its principal part into j + 2 pieces, since GI 

has the form (1.4). However, one can expect there to be coupling by terms of order 
zero. The purpose of this section is to show that we can decouple such a system 
completely, except for a remainder of order - 00. We consider a slightly more 
general problem. Let u solve the system 

where G = ( E )  has symbol homogeneous of degree one in 6 and A = A ( y )  E 

PS(0) has symbol which is an asymptotic sum of terms of order 0,  - 1 ,  - 2, etc. 
The assumption we shall make on the symbols F ( y , x , ( )  and E ( y , x , t )  is that these 
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two matrices, of order n X n and m X m, respectively, have disjoint sets of eigen- 
values, for each (y,x,E) E !R+ X ( T*( a 8) - 0) .  

We first try for a modest goal, to decouple terms of order zero. Let w( l )=  

( 1  + K,)v with K ,  EPS( - 1 )  to be determined. We have 

- w ( l ) =  a (1 + K , ) G ( ~  + K , ) - w ) + ( I  + K , ) A ( ~  + K , ) - w ) + .  
aY 

= G ~ ~ ) + ( K , G - G K , + A ) ~ ( ~ ) +  . . .  , 

where the remainder involves terms of order at most - 1 operating on w(l). We 

would like to be able to pick ( and K ,  such that, on the symbol level, 

A , )  
K,G-  GK, + A =  

We take K ,  to be of the form ( L2, :I2). This will force solutions of (2 .1)  to be 

(2:: 2::). unique, and hence depend smoothly on parameters. Indeed, if A =  

the left side of (2.1) is 

Thus we must choose symbols A1,A2,K12 and K,, such that 

A,=A, , ,  

A2=A22, 

K12F-EK12= - A l 2 ,  

K2 ,E-  FK2,= -A2,.  

Of these, (2.2) and (2.3) are obvious. We shall show that (2.4) has a unique 
solution; (2.5) follows similarly. 

LEMMA 2.1. Let F E M n x n ,  the set of matrices of order n by n ,  and E E Mmxm. 
Define 9: Mnx,,,-+Mnx,,, by 

+( T ) =  T F -  E T .  

Then 9 is bijective, if E and F have disjoint spectra. 
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Proof: It suffices to show is injective; so suppose TF= ET. Write T= 

' Tl ' 

, T m  , 

, 

where each 7; is a row of T. We may suppose E is in Jordan 'normal form, say 

J 

1 

Assume the first block is v by v. We get 

in particular, T,F=A,T,. But A, cannot be an eigenvalue of F;  so T,=O. A 
simple induction shows that T=O. 

With such a choice of the symbol of K,, we have 

with B EPS(-1). To decouple the part of order -1,  we try w(')=(l +K,)w(') 
with K ,  E PS( - 2). We get 
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if K,, B , ,  and B, are chosen so that, on the symbol level, 

This problem was solved just above, so we are in good shape. 
From here, you continue, ,defining dJ)= (1 + K)w(-’-  ’ )  with 5 EPS( -j) ,  

decoupling further out along the line; letting w = ( l  + K ) u  with K EPS( - 1 )  and 
1 + K given by an asymptotic infinite product 

J 

we have 

with oJ EPS(O), R = R ( y )  E P S (  - 00). 

If v solves a boundary problem, it is supposed that uE C([O,yo],H‘(aO)) 
for some s; thus vE C”([O, yo],H”-’(aS22)) for Y =  1 , 2 , 3 ; .  * . Consequently, 
Rw E C m([O,yo] X a a). The system is now completely decoupled. 

3. Reflection of Singularities 

Applying the decoupling procedure of Section 2 inductively, we can write 
w = ( l + K ) v  with K E P S ( - 1 )  so that (1.6),  (1.7) becomes 

where a Y , a , P  EPS(0) and y = ( l + K ) U P U - ’ ( l + K ) - ’ .  F = ( l + K ) U [ + , G ] u  and 
f= ( 1  + K )  U [ p,# ]u (O) ,  plus smooth functions. 

Obviously, there is a small conic neighborhood of ( x o , t 0 )  disjoint from the 
wave front set of f. We also have the following. Let + ( x , ( )  be a zero-order symbol 
supported on the conic neighborhood U ,  of (xo,&,), where += 1. 

LEMMA 3.1. $ ( x , ~ ) ~  E cm([o, x an). 
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W' 

W" 
w I I I  

W 'V ,  

Proof: Modulo a smooth function, 

' 

where R ( y )  is a smooth one-parameter family of elements of PS( - co). Since 
u E C"([O, yo],H"-"(a Q ) ) ,  the desired conclusion is immediate. 

Tackling the problem of reflection of singularities is now a simple matter. 
Write 

W =  

where w' consists of the first 1 entries of w, corresponding to ih,, . . a ,  ih,, w'' consists 
of the next j - 1 entries, corresponding to A,+ ', * * , ihj, w"' is acted on by E+,  and 
wIV is acted on by E - . 

Since propagation of singularities inside i'l is well understood, we take yo to be 
so small that the bicharacteristic strips lying over (xo,Eo)  aty = O  all lie over U,  for 
yEIO,yo ] .  Suppose now that the solution u to (1.1) is smooth near the bichar- 
acteristic strips associated with A,,. * , A l .  Then so is w'. But w' satisfies a 
hyperbolic equation all by itself, so 

(3.3) w'(0) is smooth near ( x ~ , [ ~ ) .  

In addition, w'" solves a backward parabolic equation, so 

( 3.4 1 ~ " ' ( 0 )  is smooth near (xo,Eo) .  

Now w'' solves a hyperbolic equation and wIV a forward parabolic equation; 
so if the system of pseudo-differential equations (3.2)-(3.4) leads to smoothness of 
w''(O), we get w smooth near ( x o , t 0 )  for yE(O,yo], and, if it also leads to 
smoothness of wIV(O), we get w smooth near ( x ~ , , $ ~ )  fory E [O,yO]. 

We now translate back to the systems ( 1 .  l ) ,  (1.2) and state our main theorem. 
Let P'U= u-'(I  +K)- 'w ' ,  P%= u-'(I  +K)- 'w",  P I % =  u-'(I +K)-'w"'. 
Thus P'=P'(y,x,D,)EPS(O), as are P'I and PI''. 

THEOREM 3.2. Let the solution to (1. l) ,  (1.2) be smooth along those bicharacteristics 
lying ouer (xo,E0) E T*(a Q)\O associated with h,;.-,h,. If the vstem of pseudo-differential 
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operators 

(3.5) P'U(o)=f,  f'"'u(O)=g, p ~ ( O ) = h  smooth near ( x o , t 0 ) ,  
implies smoothness of P"u(0) near (xo,tO), then u is smooth along the rest of the 
bicharacteristic strips over (xo,t0),  in the interior of 8. If the system (3.5) has the regularity 
property for u ( 0 )  near ( x ~ , [ ~ ) ,  then in addition +(x,D)u is smooth on [ O , y o ) X  aa, where 
the symbol + ( x , [ )  is supported in the small neighborhood U ,  of (xo, t0) .  

All this has been proved for w ( y ) = ( l +  K ) U # ( x , D ) u ,  and it is necessary only 
to apply a smooth family of parametrices to (1 + K )  U#(x,  D ) ,  which is elliptic 

The principal symbols of P' and PI" are simply the projections onto the linear 
span 'in C k  of the eigenspaces associated with the eigenvalues iX,;..,iX, of 
C,(O,x,t) and onto the linear span of the generalized eigenspaces corresponding to 
eigenvalues of GI (O,x,  t )  with positive real part, respectively. Thus ellipticity of 
(3.5) near (xo,t0) is easy to investigate. If one is to investigate hypoellipticity of 
(3.5), with loss of at  least one derivative, some untangling is required. Lower order 
terms in (1.1) make their presence felt in (3.5) via the operator K .  We shall not 
make a more explicit analysis of hypoellipticity here. A number of examples in the 
scalar case are given in [5]. 

The technique we have used of breaking our system up into a forward 
evolution and backward evolution part is familiar in the theory of elliptic 
boundary value problems and was introduced by Calderon; see [8]. 

near (xo,to> fory E [O,yol. 

4. H'Theory 

We restrict our attention to [O,yO] X a 8, where yo is chosen small, as before. 
Suppose the solution u to ( l . l ) ,  (1.2) has the following smoothness along the 

null bicharacteristics y, lying over ( xo , to )  E T*( a Q)\O associated with the eigen- 
values ih, v =  1,. * * , I :  uE H s  in a conic neighborhood 8, of the y,, foryE(y,,y,) 
with 0 <yl <y2 2 yo. Now w = (1 + K ( y ) )  U ( y ) # ( x ,  D,)u is obtained from u by 
applying an operator of order zero. This operator is not a pseudo-differential 
operator on because its symbol, 

is singular at t=0.  However, the conic subsets of T*Q\O we are considering here 
are disjoint from this set, so u(y,x,D,) behaves like a pseudo-differential operator 
there. Thus w E H" on 8,, v =  1,. * , l .  Propagating this down close to a 8 
according to [ l ] ,  Proposition 3.5.1, we see that foryE(O,y,),y, small, w E H i ,  on 
Tv, the subset of T*((O,y,) X aa)\O lying over a conic neighborhood U ,  of (xo, t0) .  
In particular we apply this to w', which solves a hyperbolic equation. 
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LEMMA 4.1. w ' E  C((O,y,),H;,(aQ)). Here H i ( M )  denotes the space of distribu- 
tions on M which belong to H' on the conic subset r of T*M\O. 

Proof: First suppose s = 0. That w ' ( y )  E H:,( a Q )  and is continuous in y (say 
for y < ay,) follows from the formula 

where E ( y , ~ )  is the solution operator for the hyperbolic equation 

1 iX , 
I w ' +  . l  w'+ F' 

a1 

taking data at  "time" 7 into data a t  "time"y. This would also work for s 2 0; but 
for general s we make the transformation w'=h"wI, where h" is an elliptic 
operator of order s on a a, and apply the s = 0 result to wl. 

From Lemma 4.1 we conclude that w l ( 0 ) E H S  near (xo,&),  since w1 solves 
(4.1). It is now easy to put the main theorem of the previous section in an H' 
setting. 

THEOREM 4.2. Assume the solution u to ( l . l ) ,  (1.2) belongs locally to H" in a 
neighborhood of the null bicharacteristic strips y,; ' . , y,. I f  the system of pseudo-differential 
equations 

(4.2) P'u(o),  PII'u(o), P u ( o )  EH' near (xo ,so)  

implies that P"u(0)  E H a  near ( x ~ , . $ ~ ) ,  then u E  H a  in a neighborhood of the rest of the null 
bicharacteristic strips passing over ( x ~ , . $ ~ ) .  I f  in addition the system (4.2) implies that 
P'"u(0) E Ha-'/'  on a neighborhood U,  of (xo,Eo), then + ( x , D ) u  E Ha([O,yo] X aa), 
where 9 E SEo is supported in U,. 

Proof: The regularity properties above imply, respectively, that w"(0)  E H a  
and w1"(O)EHa near ( x ~ , . $ ~ ) ,  from which the associated regularity of w is 
immediate. 

Now since w ( y ) =  V ( y ) u ( y )  with VEPS(0) elliptic near ( x o , t 0 )  for each 
yEIO,yo], letting W(y)EPS(O) be a parametrix for V near (xo , t0)  depending 
smoothly ony, we have 

U(Y)  = W ( Y ) W ( Y )  + R ( y ) u ( y ) ,  

where the symbol of R ( y )  is of order - co in a conic neighborhood of ( x , , ~ ~ ) .  
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From the fact that W ( y )  and R ( y )  act on w like pseudo-differential operators 
on (O,y,) X a L?, follows the stated regularity of u on the interior. The formula 

yields the final assertion of the theorem. 
The above regularity assumptions on (4.2) are also necessary for the con- 

clusions on u. For wlI this is immediate; wlI solves a hyperbolic equation. The 
necessity for wIV is well known in the elliptic theory. The case s = a is the case of 
no loss of derivatives for the solution u. It is interesting that something less than 
ellipticity of the system (4.2) is needed here. Since ellipticity is the “natural” 
hypothesis to make and the one we shall see arising in examples, this is slightly 
mysterious. 

5. Examples 

We look now at certain examples of systems where the results of Theorems 3.2 
and 4.2 apply. In all of our examples, the system (4.2) will be elliptic. The first 
example we consider is that of a strictly hyperbolic system, of order k, 

R 

where u = u ( t , x , y )  is defined on L?= R x  8 = R X  a 8 X !R+; aL?= IRX a 8 .  We 
assign a boundary condition 

(5.2) pu=O on aL? 
which we assume satisfies Kreiss’ condition for well-posedness, described in [ 41. We 
assume (5.1) is non-characteristic, i.e., A - exists. 

Over lo = ( to,xo, T ~ ,  5,) E T*( a Q)\O pass a number of null bicharacteristic 
strips, say y , ;  . . ,yJ,  which we assume to be non-glancing. Suppose y l ;  + * , y ,  go 
off into L? in the negative t direction ( i < O )  and yr+ . * , y, go off into L? in the 
positive t direction ( i > O ) .  The convention in both cases i s j  > O .  

PROPOSITION 5.1. If u E  H” along yl; * * ,y,, then u E H *  along Y , + ~ , *  * ,y j  ( a t  
least until they hit again). 

Proof: We verify that the system (4.2) is elliptic. Our system is 

= Gu, 
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where the principal symbol of G is 

which has near So pure imaginary eigenvalues ih,; . . ,ihj to which correspond the 
bicharacteristic strips y,, * , yj, and k - j  eigenvalues with nonzero real pa,rt. If 
E'( So) is the span of the eigenvectors of G, corresponding to ih,, . - . , ihl and El', 
E"', and Elv are defined in an analogous fashion, then ellipticity of (4.2) is 
equivalent to the condition: for wEker&, the projection of w on E' and E"' 
determines w E Ck (where Po is the symbol of p). This is equivalent to saying 

E1l$E'Vn kerbo= {O}. (5.3) 

Let us compare this to the Kreiss condition. Take q < O  and consider (at 
( t , x , 7 , 0 =  So) 

j = O  

All the eigenvalues of this matrix have nonzero real part, and if V ( q )  denotes the 
linear span of the generalized eigenvectors of M ( q )  with negative real part, the 
Kreiss condition implies 

V ( q )  is bounded away from ker Po as qT0. (5.4) 

To relate (5.3) and (5.4), note that along a null bicharacteristic strip y,,i= 
- a & / & =  - ( l / i )a&/aq;  thus if i < O ,  we must have %eih,>O for small q < O ,  
while if i > O ,  we have %ez&<O for small q < O .  It follows that V ( q )  approaches 
E"CBE'V as qT0, so (5.4)=3(5.3). 

To deduce ellipticity for the system (4.2), relation (5.4) had only to hold in 
those directions where G, can be decoupled, since we are only obtaining results for 
non-glancing rays. For our problem, the rest of the directions (the "characteristic 
variety", on which Kreiss had to work so hard) plays no role, though it would be 
expected to do so if one were to treat glancing rays. Thus Proposition 5.1 can be 
generalized to many problems which do not satisfy Kreiss' conditions, such as the 
Neumann bouhdary condition for the operator a */ at2 - A (which is dealt with in 
[51). 

Another class of examples is given by higher-order scalar equations 

m - 1  

(DT+ 2 x a,,D,/D,ol 
J = o  l a l + J = m  

Bf=O at y=O. 
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This can be converted into a first-order equation for an m-vector-valued function u 
with components uJ = Dj A-Jf, j = 0,. . . , m - 1, where A is a pseudo-differential 
operator on as2 with principal symbol /(I. When Theorem 4.2 is applied to the 
resulting system, the system (4.2) can be analyzed in the same fashion as are 
elliptic boundary value problems (see [ l  11, Chapter V, especially Section 3). We 
shall not carry this out, since the scalar case is examined in detail, by another 
method, in [5]. Higher-order systems can also be converted to first-order systems 
and analyzed. 

Next we examine reflection of singularities for solutions to Maxwell’s equa- 
tions in a vacuum region % bounded by a perfect conductor, in the case of 
non-glancing rays. The electric and magnetic fields, E and B,  solve eight equa- 
tions: 

a 
(5.5) at 

- E - curl B = 0, 

a 
at 
- B +curl E = 0, 

div E = 0, 

div B = 0, 

(5.7) 

(5.8) 

and, on the boundary of the conductor, E is normal and B is tangential. It is 
convenient to write boundary value problems for E and B,  separately, as follows: 

a 2  

a t 2  
-E-AE=O, 

(5.9) divE=O and E X u = O  on a % ,  
a 2  

a t 2  
-B-AB=O, 

(5.10) B u=O and uxcurl  B=O on 3 %  

We need only analyze reflection of singularities for equations (5.9) and (5.10), 
with their associated boundary conditions. We may regard (5.5)-(5.8) as com- 
patibility conditions which must be satisfied by the Cauchy data, at  time to, and 
which then are automatically satisfied for all t .  

One can convert (5.9) and (5.10) to first-order systems, but indeed the results 
of [5] apply, since the wave operator is scalar, even though it is acting on 
vector-valued quantities whose boundary values are coupled. Either way, it is 
easily verified that reflection of singularities results, analogous to those of Proposi- 
tion 5.1, hold. 
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Another interesting example is provided by a transmission problem for the 
wave equation with different sound speeds in two adjacent regions, Q ,  and Qz,  
separated by a smooth surface S. For example one can take (D? - A). = 0 on Q ,  
and (B?/c2 - A + u a /  a t ) u  = 0 on Qz while the values of u and its normal deriva- 
tives match up on the two sides of S. 

This can be converted into a boundary value problem by identifying Q2 with 
a,, smoothly in a neighborhood of S. We are led to a second-order system of the 
form 

(5.11) 

with boundary conditions 

(5.12) 

(q a t  - A l ( x , ~ x ) j u = o ,  

($- 1 A z ( x , D x )  u = o ,  

u = u  on S, 

on S, a a 
aY aY 

u =  - - v  - 

where y is the normal coordinate to S, A,(x,D,) are second-order differential 
operators with principal symbols A , ( x , [ )  =< - C,1[1*, for some C, > O .  The 
boundary value problem (5.12) does not satisfy the Kreiss condition, but the 
remark following the proof of Proposition 5.1 can be applied to show that if 
(:) is smooth along the rays coming in from negative time and lying over 

po E T*(W X S)\O, both assumed to be non-grazing, then (:) is smooth along the 
corresponding rays issuing forth into positive time. (Note that over any po E T* 
(IR X S)\O pass either 0, 2, or 4 rays.) 

If only two rays pass over Po, they must be incident and reflected rays for the 
slow speed region ( Q ,  if c >  1). This is the case of total internal reflection. If four 
rays pass over p,, all non-grazing, then one can check that smoothness over any 
pair leads to smoothness over the other pair, with no loss of derivatives. From this 
it follows that if u is smooth along one ray coming in from negative time and 
belongs to H" along the other ray, but not to Hsfe, then along the two rays over po 
going into positive time, u belongs to H s  but not to H"+'. 

It is possible that one pair of rays passing over po is non-grazing and the other 
pair is grazing. The theorems we have proved do not cover this case, which will be 
discussed further in the next section. 

An interesting contrast occurs if we take c~ I .  Then the transmission problem 
is merely the wave equation with a discontinuous "friction" term u a / a t .  In this 
case, if u E H' along one incident ray and smooth along the other, then u E H" 
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along the transmitted ray, but u E H S + l  along the reflected ray, i.e., reflected 
waves are relatively weak. 

6. Smoothness up to the Boundary 

In this section we consider solutions to a hyperbolic mixed problem on 
52 = 8 X (0, T ) .  Our purpose is to give a precise characterization of the singulari- 
ties of such solutions u ,  for t E (0, T ) ,  given that, for t E ( o , ~ ) ,  u is only singular on 
rays that pass over points P o€  T*(aG?)\O with the property that all null 
bicharacteristics passing over this point are non-grazing, and that the reflected 
rays have a similar property, at  least up to time T. In  fact, we suppose that all 
such rays are bounded away from grazing directions. We shall refer to this as the 
“non-grazing hypothesis”. 

For convenience we shall suppose that 6 is compact, although this restriction 
may be relaxed by finite propagation speed. 

THEOREM 6.1. Suppose that u E C([O, TI, H‘( 8 )) solves a Kreiss well posed mixed 
problem for a first-order strictly hyperbolic system ( a /  at - H ) u  = 0,  with p u  = 0 on a 52. 
Suppose u is singular onb along a set of null bicharacteristic curves S and is smooth near a 8 
f o r  t E(O,r), and satisfies the non-grazing hypothesis. Then we have the following con- 
clusions: 

(a) In the interior of 52, u is singular only along the set of rays i arising from S upon 
propagation and reflection at a 52 (each ray hitting a G? giving rise to perhaps several reflected 
rays). 

and let Sp be the image in T*(a52) of s” intersected with a small 
neighborhood of p .  (Think of a small neighborhood of 352 as (O,yo) X an).) Then 
$(x , t ,D, , , )uECm on [O,y,)X a52 for any $EPS(O,a52) with symbol supported on ( x , t )  
close to p and vanishing in a conical neighborhood of Sp. ( I t  need not vanish on the 
“characteristic variety”.) 

In  particular, if no element of i lies over p E a 52, u is smooth in a neighborhood of p .  

(b) Take p E  

Proof: What we shall do is construct a u E C([O, T ] , H J (  8 )) with the proper- 
ties: 

(a) ( a p t -  H ) ~  E cw((o, T )  x 6), 
( B )  p V E C m ( a Q ) ,  
( y )  u -  u E CoO((O,7) x G ) ,  
(6)  u obviously satisfies conclusions (a) and (b). 

From (a)-(y) it follows that u - u E Cm((O, T )  X s). This is easy to see if H is 
elliptic and the boundary conditions are coercive. In general it follows from [lo]. 
Then the theorem follows from (6). 

Near a 52, the equation for u can be written as a boundary value problem for a 
system of the form ( a / a y - G ) u = O ,  with 8 5 2 = { ( y , x , t ) :  y=O}. (We set z = ( x , t ) . )  
We can cover the complement of the characteristic variety in T*(aG?)\O with 
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conic open sets Iu, with the property that the symbol of G can be put in the form 
(1.4) on each Iua fory E [O,y,]. The non-glancing hypothesis in u allows us to write 
u as a finite sum Z i , , u v  with the property that, for fixed J ,  all the null- 
bicharacteristic strips carrying WF( u,) on ( 0 , ~ )  X 8 propagate along to a &? along 
a very narrow conic neighborhood of a single ray and pass over some 
Z C  T*(a&?)\O with Z contained in some one Iu,, say 3,. We may suppose 
( x ,  t ,  1 ) € Z only if t E ( 7,, T~ + i E )  and that for t E ( T , ,  T ~ )  all the reflected rays lie in 
the interior of &?. Each such ray hitting a &? gives rise to, say, J - 1 reflected rays, 
and furthermore we may assume that each bunch of reflected rays so produced 
enjoys a similar property, and so on, up to time T. We do this in order to localize 
the construction of u. 

The behavior of WF(uv) for t € ( O , T ~ )  is clear. What we now do is construct u, 
for t€ ( O , ? ,  + r ) ,  with properties analogous to (a) - (6) .  This will completely 
describe the singularities of uv for ~ € ( O , T * ) ,  and repeating such a procedure will 
get us up to time T, so the proof will be complete. 

Recall that if +(t,{) is a zero-order symbol supported in 2fl and equal to one 
in a conic neighborhood 6, of C, then the construction of Sections 1-3 yields 
equation (3.1) for w= (1 + K)U+(t,D,)u,, with boundary condition (3.2). We 
suppose that A,; * - ,A, represents incoming modes, i.e., i =  - i3AV/a7<0,  and 
A,, ,,* . . ,A. represent reflected waves. Thus, for t < T, ,  WF(w) is contained in the 
null bicharacteristic strips associated with A,; * . ,A,, passing over Z. 

Recall that we are writing a small neighborhood I of a&? as [O,y,] X a 52. We 
may suppose thaty, is so small that if ( y , x , t , q , [ , ~ ) €S ,  t<-r2, and i f y z y , ,  then 

t E (7, - E , T ~  + E )  and ( x , ~ , [ , T )  €3,. Also SupposeyZ iyl, t < 7, + r*t < 7,. I 

We define an approximate solution W= as follows. For y E [ iy , ,  yl], w"' 
1 w'" 1 

let W' be any smooth extension of w1 for tE(O,-r,) to t E ( 0 ,  T).  Then 

a - w'= 
aY 

iA , 

ih, 

w' + 

with 9 smooth, fory E [&yl, y,]. Now take any smooth extension of @ fory E [0, $yl] 
and extend W' to solve (6.1). Let W"'=O. We complete the prescription of W 6y 
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requiring that it satisfy 

ih 

iAj 

E +  
E -  

W +  

a 
P 

+ 
w +  [ o  0 

0 

=DW+@, 

with g some smooth function. This is possible because the system W'(O), W"'(O), 
and yW(0) given is elliptic on 3';  and thus we can solve for'W(0) cn a1, modulo 
a smooth function, and extend so that WF( W(0))  is contained in a1. Then W is 
obtained by solving a hyperbolic equation for W" and a parabolic equation for 
W'". 

ForyE[O,y,] and ~ E ( T ~ - E , T ~ + E ) ,  let u,=U-'(l+K)-'W= V-'W. Then 
&,(O)= V-'yW(O) and a/ayv,= V-'DVu,+(a/ayV-') W+ V- '@.  But by the 
construction of Sections 1-3, D = VGV- ' + V y  V - '  modP_S( - 00)  on G1 for y E 
[O,yl], which implies that, modulo Cm,  a/ayuv= Go, on 2l1 foryE[O,y,]. Now by 
construction, for yE(O,yl], t € ( r 1  - E , T ~ + E ) ,  (y,.x,t,q,&~)EWF(v,) implies 
( x , ~ , [ , T )  €3, .  Also for t E(T'  - E,T'), vy - u, is smooth. Thus v, can be smoothly 
extended to ( 0 , ~ '  + E) X f i  in such a fashion that (a)-(Q) are satisfied. The proof is 
complete. 

There are many ways to generalize this to higher-order systems; we just give 
one here. The main reason for mentioning it is that we want to relax the 
Kreiss-type condition, which, as remarked in Section 5, is not necessary for 
ellipticity of the system (3.5). The class we describe in the next theorem includes 
the Neumann problem for the wave equation, the boundary value problems (5.9) 
and (5.10) obtained from Maxwell's equations, and the system (5.1 1)-(5.12) 
obtained from transmission problems. The proof goes like that of Theorem 6.1, 
with the check that (3.5) is elliptic left to the reader. 

THEOREM 6.2. Suppose u = ( u l ,  * - . , uk) solues a second-order system 

j =  1;. . ,k, 
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1 A,  1 
defined the boundary condition (6.4) differs from a negative selfadj,int operator ly an 
operator of order one. Assume the boundary condition coercive. If u is smooth near a8 f o r  
t E (0,  r )  and satisfies the non-grazing hypothesis, then conclusions (a) and (b) of Theorem 
6.1 hold. 

Here we think of the rays of each 0:- A] being propagated separately, only 
interacting on aa. It is not necessary that (6.3) form a strictly hyperbolic system, 
since the various second-order wave equations are already completely decoupled. 

It should be pointed out that Theorems 6.1 and 6.2 are sharper than Theorem 
3.2, even in the interior of a. For example, if u solves the wave equation 
( 3  */ at2 - A ) u  = 0 on the exterior of a region K as presented in Figure 1, and if, for 
t < 0, u has a singularity only along the ray yI, then for t > 0 we know that u only 
has a singularity along y p  , but from Theorem 3.2 one could not deduce that u does 
not have a singularity along yJ, which grazes K.  

gives rise to a single non-grazing reflected ray. If u has a singularity only along 
such a ray y, this singularity propagates only along such a ray, reflected each time 
it hits a a. We can take u $Z H' along y to start with, i.e., u has infinite energy, and 
then u F H '  all along y .  If the boundary conditions and the coefficients of A are 
independent of t ,  we can smooth u out a little by convoluting with a highly 
localized smooth function of t ,  obtaining a solution to the given boundary value 
problem for ( a  '/ at2  - A ) v  = 0,  whose energy remains close to y for as long a time 
as desired. This generalizes the construction of Ralston in [9]. 

If 8 is strictly bicharacteristically convex, then Theorem 6.2 yields very sharp 
results for solutions to a scalar wave equation. In fact, any solution u smooth near 

For a single wave equation (a  '/ at2 - A ) .  = 0 ,  any non-grazing ray hitting a 

K 

Figure 1 .  
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an for small t satisfies the non-grazing hypothesis, so conclusions (a) and (b) 
apply, An example is the Riemann function, solving (a  '/ at2 - A ) R  = 0, the 
appropriate boundary condition, in a weak sense, and the initial value problem 
R (O)=O,  a,/atR (O)= SP, where p belongs to the interior of 8 . This generalizes 
the results of Povzner and Sukharevskii [7]. 

In the higher-order case things are not so simple, as we shall illustrate in a 
moment. But first we give an example to show that the full story has not been told, 
for scalar second-order equations, even in the convex case. 

In the following example, 8 will be a strictly convex bounded region in IR", 
with smooth boundary, and u will be a solution to the wave equation in IR X 8 
with Dirichlet boundary conditions on a 8 : 

($ - A ) u = O ,  

u = O  on 3 8 .  

Suppose u is smooth on the interior of X fl ; must u be smooth up to the 
boundary? The answer is no, and we proceed to construct an example. A related 
phenomenon has been studied by Keller and Rubinow [3] when 8 is an elliptical 
domain in the plane. 

To begin our construction, pick points x, E 8 tending to a point Po€  a 8 , and 
rays issuing from x,, pointing parallel to a given tangent to a 8 at po. We suppose 
these rays, y, , travel in straight lines at unit speed and bounce off a 8 according 
to the usual rule : angle of incidence equals angle of reflection. Exhaust 8 by open 
sets 8, c c 8 , ~  c . - with the property that y, lies in 8 \8, for a unit time 
interval. 

8 ) with wave front set consisting of just one ray 
lying over x, such that +, $E H ' (  8 ), i.e., $I, has infinite energy, and the solution UJ to 
the mixed problem 

Define functions $ E 

( $ - A ) ~ = O ,  ? = o  on a 8 ,  

a 
5 ( 0 )  = +j, UJ ( 0 )  = 0,  

has a singularity just along y, in the interior of 8 . That this can be done for small 
time follows from [l], and that it will hold for all time follows from reflection of 
singularities. In fact, the result of Lax and Nirenberg [6] suffices for the case 
considered here, but this example can be generalized. We also suppose suppe  
belongs to a small neighborhood 9, of xI.  
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Now we will want to smooth +j out just slightly and perhaps multiply by a 
small constant, say 

where pJ E CT(R ) has small support and 5 is chosen so that 

Let u=zF1uJ. By (6.6) and (6.8), uECm((O,l)X 8 )  and solves the mixed 
problem (6.5) there, in a weak sense. It follows that u continues to solve such a 
mixed problem for all time, and by reflection of singularities, u must be smooth on 
the interior of IK X 8 .  However, u ( 0 )  has infinite energy, by (6.7), so u cannot be 
smooth up to the boundary. 

In this example, one can see that the singularity of u on the boundary travels 
along a curve that is trying to be a ray, except that it is trapped on IK X a 0 . One 
might speculate that boundary singularities of solutions to boundary value prob- 
lems propagate along such “tangential bicharacteristics” in general. I would not 
venture to say whether this problem is as difficult as the general glancing ray 
problem, but the phenomenon described above seems not to be well understood at 
the present time. 

Finally, we give an example of how things can be even more mysterious in the 
case of higher-order systems. The phenomenon we consider is that u solves a 
hyperbolic mixed system and has a singularity along a single ray yo, for t < to, 
which hits a a, passing over po E T*( a a)\O. In the general case, several reflected 
rays could exist, and at least one of them could be grazing. In such a case, 
Theorems 3.2, 4.2, 6.1, and 6.2 would not apply. To take a particular example, let 
u solve a transmission problem 



476 MICHAEL E. TAYLOR 

8, being some convex region in R2 with smooth boundary. The boundary 
conditions are that u and V u  be continuous across a 8,. We suppose c >  1, i.e., 
sound speed is greater than one in 8,. Then, as mentioned in Section 5, a ray 
coming in from IR2\8, and hitting a 8, too obliquely produces a singularity along 
the reflected ray, but no singularity going into 8,. 

A ray just on the other side of the critical ray, produces reflected and refracted 
rays as indicated in Figure 2. If u is in L2 along the ray y1 but not in H ' ,  then u 
has the same property along all tHe rays indicated in Figure 2. 

Therefore, if we consider a sequence of such rays approaching a critical ray yo, 
then a simple modification of the construction in the previous example will 
produce an example of a solution u, with a singularity only along the ray yo for 
t < to, which spews off a two-dimensional sheet of singularities for t > 1,. 

1 
Figure 2. 

Appendix 
A Technicality 

In this appendix we take care of minor problems caused by the fact that a 
smooth family of pseudo-differential operators of order one on 352, K =  K ( y , x , D x ) ,  
is not a pseudo-differential operator on 52 = (O,yo) X a 52. Fortunately, K acts like a 
pseudo-differential operator on the types of functions and distributions we are 
interested in. Note that 

where 
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Thus the only thing that prevents K from being a pseudo-differential operator of 
order one on Q is that its symbol uK(y,x ,q ,[)= K ( y , x , ( )  fails to be smooth along 
the rays (y,x,q,O), where (=O.  

We could alter uK in a :mall conic neighborhood r of such rays to be smooth, 
obtaining L E PS( 1) and iff were rapidly decreasing in a neighborhood of r, then 
Kf-  Lf E C",  by (A.1). We have proved the following: 

LEMMA A. l .  If r is a conic neighborhood in T*Q\O of the set Z of rays (y,x,q,O),  
then there is an L E PS( 1) such that Kf - Lf E C for all f with WF( f )  n r = 0. 

This lemma is given meaning by the following: 

LEMMA ~ . 2 .  r f ( a / a y - q m y  then W F ( u ) n Z = a .  

Note that elements of Z are not characteristics of a /  ay - K ,  so if this were a 
pseudo-differential operator the conclusion would be well known. The difficulty is 
that the "symbol" of a /  ay - K is singular precisely on 2. Actually, in practice 
such first-order systems as one treats are either differential equations or arise from 
reducing higher-order systems of differential equations, in which case the fact that 
WF( u )  n Z = 0 would be a simple consequence of Lemma A. 1, but for the sake of 
completeness we prove this result. 

Proof of Lemma A.2: We need to show that, for each (x,,y,)EQ, 

uniformly for [ small, a belonging to a compact set of test functions with support 
in a small neighborhood of (x0,$,), for each N .  Suppose we have 

uniformly with respect to such parameters, for some s E R.  Now 

K * = K *(y , x ,  0,) is a smooth family of pseudo-differential operators on i3 Q ,  so we 



478 MICHAEL E. TAYLOR 

have an asymptotic expansion 

and the remainder belongs to a precompact subset of C,"(n) if a does. Hence 

Since K: is homogeneous of degree one in [, we can pick 151 < 6 such that 
] ]K:(y ,x , [ ) l l<$,  and if (u=(ikK:(y,x, kE))-'P, then a belongs to a precompact 
subset of CT(fl) for 151 < 6, provided p does. Therefore (A.3) implies 

uniformly with respect to precompact sets of p and small 6, an improvement over 
(A.2). An inductive argument finishes the proof. (Note that no further shrinking of 
the neighborhood of Z is required.) 
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