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Abstract. We prove that the only constant coefficient hyperbolic systems L = ∂t +
∑d

j=1 Aj ∂j

whose solution operators are continuous on Lp for some p 6= 2 are those for which the matrices Aj

are simultaneously diagonalisable.

§1. Introduction.

Consider

L = ∂t +

d
∑

j=1

Aj ∂j , ∂j :=
∂

∂xj
, Aj ∈ Hom(CN ) . (1)

This is the general constant coefficient homogeneous first order system of partial differential oper-
ators with noncharacteristic initial surface {t = 0}. The initial value problem is

Lu = 0 , u(0, x) = f .

Introduce the symbol

A(ξ) :=
d

∑

j=1

Aj ξj .

The associated evolution operators which map u(0, ·) to u(t, ·) is the family of Fourier multipliers
e−itA(ξ),

e−tA(∂) := F∗ e−itA(ξ) F . (2)

Our main result shows that boundedness in Lp for p 6= 2 is very rare. The evolution operator is
Lp bounded if and only if it consists of simple translations.

If the multiplier (2) is an Lp multiplier then it is an Lq multiplier for the dual index, p−1 +q−1 = 1.
By interpolation it is an L2 multiplier so

∃C, ∀ξ ∈ R
d,

∥

∥e−iA(ξ)
∥

∥

Hom(CN )
≤ C .

In particular, for fixed real ξ the family e−itA(ξ) = e−iA(tξ) is uniformly bounded in t. Therefore
A(ξ) has only real eigenvalues and no nontrivial Jordan blocks. Equivalently, A(ξ) is similar to a
real diagonal matrix. The system L is called hyperbolic if and only if the matrices A(ξ) have real
spectrum. Therefore, hyperbolicity is a necessary to generate Lp multipliers.

The characteristic variety of L is defined to be

CharL :=
{

(τ, ξ) ∈ R
1+d \ 0 : det(τI + A(ξ)) = 0

}

.

It is a conic real algebraic variety. For real ξ, the roots τ are the negatives of the eigenvalues of
A(ξ), so are real. Thus, over each point ξ there is at least one point and at most N points in the
variety. Thus the variety is of dimension d.
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With the exception of an at most d − 1 dimensional conic singular set, the characteristic variety
is locally an embedded real analytic hypersurface (see for example [BR]). The conormal directions
to smooth points of the variety are lines in (t, x) whose speeds are, by definition, the group

velocities (see [AR, §1.2] or the web version of [R]). For a curved sheet of the characteristic
variety, the conormal directions sweep out a variety of dimension greater or equal to 1, so there is
a continuum of group velocities and the associated solutions tend to spread out and decay. The
next definition singles out the extreme opposite case where the variety has no curved sheets and
there is no dispersion of this sort.

Definition. A hyperbolic system L is called nondispersive if and only if its characteristic variety
is a finite union of hyperplanes.

For a nondispersive system, denote by κ the number of distinct hyperplanes in the characteristic
variety of L. Each hyperplane has an associated group velocity vµ and the equation of the plane
is τ + vµ.ξ = 0. The characteristic variety is then

∪κ
µ=1

{

(τ, ξ) : τ + vµ.ξ = 0
}

.

The eigenvalues of A(ξ) are the linear functions λµ(ξ) = −vµ.ξ with 1 ≤ µ ≤ κ. The nondispersive
systems are exactly those for which the eigenvalues of A(ξ) are linear functions of ξ ∈ Rd.

Theorem. The following are equivalent.

i. The multiplier (2) is for some t 6= 0 and 2 6= p ∈ [1,∞] an Lp multiplier.

ii. The matrices e−iA(ξ) are uniformly bounded for ξ ∈ R
d and the system is nondispersive.

iii. The Aj are commuting diagonalizable matrices with real spectrum.

iv. The multiplier (2) is for all t 6= 0 and all 1 ≤ p ≤ ∞ an Lp multiplier.

Remarks. 1. The scalar case, N = 0, is trivial. The one dimensional case, d = 1, is elementary.

2. The case of hermitian symmetric Aj is proved by P. Brenner [B] who introduced a two step
strategy of proof, i ⇒ ii ⇒ iii which we follow. In the symmetric case, the implication ii ⇒ iii is
Theorem 2 of Motzkin and Tausky [MT]. Our implication ii ⇒ iii is a generalization of their result
to the nonsymmetric case.

3. If the evolution is an Lp multiplier for some p then the operator remains hyperbolic for all
lower order perturbations by Duhamel’s construction. In the case N = 2, a theorem of Strang [S,
Appendix], shows that for such strongly hyperbolic systems, a change of variable in C2 simulta-
neously symmetrizes the matrices Aj . Brenner’s result then applies. Thus the case N = 2 is a
consequence of known results.

4. If the Aj are all upper triangular with real diagonal, then the system L is hyperbolic and
nondispersive. The Theorem shows that if the Aj do not commute, the time evolution is not an
L2 multiplier even though the dispersion relations are trivial.

5. If iii holds we can by changing coordinates in CN suppose that the Aj are all real diagonal
matrices. In that case, for each 1 ≤ i ≤ d let

wi := (A1,ii, . . . , Ad,ii)

be the d-vector constructed from the ith diagonal elements of the matrices Aj . Then, the solution
of the Cauchy problem Lu = 0 with initial value

u(0, x) = f(x) =
(

f1(x), . . . , fN (x)
)
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is given by

u(t, x) =
(

f1(x −w1t), . . . , fN (x − wN t)
)

.

These independent translations are isometries in Lp for all p so that iv. holds. Each of the speeds
wj is equal to one of the group velocities vµ.

6. That iv implies i is trivial.

The difficult implications are i ⇒ ii and ii ⇒ iii. They are proved in §2. and §3 respectively. Our
§3 bears a family resemblance to the results and proofs in §2.5 of [K]. They seem truly independent.

§2. Proof of i ⇒ ii.

The key to showing that the propagator is not an Lp multiplier for p 6= 2, is to show that there
are solutions which at t = 0 are spread over a ball of fixed radius, while for large times t they are
spread over a set whose measure m(t) tends to infinity. If the initial amplitudes are of order 1,
then respect for the norm L2 implies that the typical amplitude a(t) at time t satisfies

‖u(t)‖2
L2 ∼ |a(t)|2 m(t) ∼ 1,

So a(t) ∼ m(t)−1/2 and
‖u(t)‖p

Lp ∼ |a(t)|p m(t) ∼ m(t)1−p/2 .

For 1 ≤ p < 2, the Lp norm tends to infinity. Since the multiplier norm is independent of t so this
is sufficient to conclude that e−itA(ξ) is not an Lp multiplier.

The construction we present is elementary and self contained. It uses geometric optics with nonlin-
ear phases. The spread of rays accounts for the increase in m(t). The shortest proof that we know,
suggested by J.-M. Bony, is less elementary. It uses conormal solutions associated to a lagrangian
which has simple projection over t = 0 and has a fold in the future. One applies sharp theorems
identifying the (different) memberships in Lp in the initial hyperplane and under the fold. The
details of the construction of a lagrangian with a fold, and a solution with nonvanishing symbol
at fold points, are left to the interested reader. A third argument uses diffractive geometric optics
with linear phases. The discontinuity in Lp then follows from the fact that the linear Schrödinger
evolution is discontinuous in Lp.

Proof that i ⇒ ii. If the family of matrices e−iA(ξ) is not uniformly bounded then it is not an L2

multiplier and therefore not an Lp multiplier for any p. Thus we need to show that if the family
is uniformly bounded and the system is not nondispersive then i. is violated.

The smooth sheets of the characteristic variety are given locally by equations τ + λ(ξ) = 0 with
real analytic λ. Choose a point ξ 6= 0 on a smooth sheet with equation defined by λ and so that
λξξ(ξ) has rank m > 0.

By a linear change of coordinates in Rd we may suppose that ξ = (1, 0, . . . , 0). By an orthogonal

change of coordinates in CN we may suppose that

λξξ(ξ) = diag
(

ν1, ν2, . . . , νm, 0, . . . , 0
)

, νj 6= 0 . (2.1)

Define

φ0(x) := x1 +
m

∑

j=1

x2
j

2 νj
, ∇xxφ0 = diag

( 1

ν1
, . . . ,

1

νm
, 0, . . . , 0

)

. (2.2)
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The phase φ(t, x) is a solution of the eikonal equation

φt + λ(∇xφ) = 0 , φ(0, x) = φ0(x) . (2.3)

Hamilton-Jacobi theory shows that both φ and ∇xφ are constant on the rays which start at points
(0, x) and have velocity given by

(

1, λξ(∇xφ0(x))
)

that is the points

(

t , x + t λξ

(

∇xφ0(x)
)

)

:=
(

t,Φ(t, x)
)

. (2.4)

Equation (2.4) implies,

DxΦ(t, x) = I + tλξξ

(

∇xφ(x)
)

∇xxφ0(x) .

Equations (2.1) and (2.2) imply

λξξ

(

∇xφ(x)
)

∇xxφ0(x) = diag
(

1, 1, . . . , 1, 0, . . . , 0
)

+ O(|x|) ,

with m diagonal ones. Denote w = (wI , wII ) the first m components and the rest. Since ∇xxφ
kills the last components we have for |x| ≤ ρ,

〈

DxΦ(t, x)w,w
〉

≥
(

1 + t − O(tρ)
)

|wI |2 +
(

1 − O(tρ)
)

|wII |2 − O(tρ)|wI ||wII | .

Choose positive γ sufficiently small so that if

Tρ :=
γ

ρ
,

then for all t ∈ [0, Tρ] each of the three O(tρ) is no larger than 1/4. Then,

∀ 0 ≤ t ≤ Tρ , ∀ |x| ≤ ρ ,
〈

DxΦ(t, x)w,w
〉

≥
(1 + t)|wI |2 + |w|2

2
. (2.5)

Lemma. If a real matrix M and a strictly positive definite real symmetric matrix R satisfy
〈Mw,w〉 ≥ 〈Rw,w〉 for all w ∈ RN , then detM ≥ detR.

Proof of lemma. The substitution w̃ = R1/2w reduces to the case R = 1. The Cauchy-Schwarz
inequality then implies that ‖Mw‖ ≥ ‖w‖ for real vectors and therefore that ‖M−1w‖ ≤ ‖w‖ for
real vectors. For complex vectors express in terms of their real and imaginary parts to find

‖M−1(u + iv)‖2 = ‖M−1(u)‖2 + ‖M−1(v)‖2 ≤ ‖u‖2 + ‖v‖2 = ‖u + iv‖2 .

Thus M−1 has norm no larger than 1, so the eigenvalues of M are all of magnitude at least 1.
Therefore |det M | ≥ 1.

The segment (1 − θ)M + θI for 0 ≤ θ ≤ 1 connects M to the identity by invertible real matrices
so detM > 0. Therefore detM ≥ 1 which completes the proof in the case R = I.

Apply the lemma (2.5) to conclude

∀ 0 ≤ t ≤ Tρ, ∀ |x| ≤ ρ, detDxΦ(t, x) ≥
(1 + t)m

2N
(2.6)

4



Taylor’s formula,

Φ(t, x) − Φ(t, y) =

∫ 1

0

DxΦ(t, y + θ(x− y)).(x − y) dθ ,

implies that

∀ 0 ≤ t ≤ Tρ, |x| ≤ ρ, |y| ≤ ρ ,
〈

Φ(t, x)−Φ(t, y) , x− y
〉

≥
1

2

(

(1 + t)|xI − yI |2 + |xII − yII |2
)

.

In particular, for all 0 ≤ t ≤ Tρ the map x → Φ(t, x) is a bijective diffeomorphism from {|x| < ρ}
onto its image.

Denote by Ωρ the relatively open subset of {0 ≤ t ≤ Tρ}×R
d swept out by the images of {|x| < ρ}

by these diffeomorphisms. It is the tube of forward rays whose feet at t = 0 belong to the ball
of radius ρ. The recipe of Hamilton and Jacobi provides a phase function φ which is defined and
smooth on Ωρ. On the intersections Ωρ ∩ Ωρ′ the phases agree. As ρ decreases, the tube becomes
narrower about the ray through the origin, and penetrate further into the future. Typically the
phase φ will develop caustics outside these narrow tubes well before the time Tρ. We work in the
tubes where φ defines a long lived phase.

On Ωρ define the group velocity field

v(t, x) = λξ(∇xφ(t, x)) . (2.7)

The rays t → (t,Φ(t, x)) from (2.4) are integral curves of the vector field ∂t + v.∂x. Equivalently,
Φ is the flow generated by v,

d

dt
Φ(t, x) = v(Φ(t, x)) , Φ(0, x) = x .

Differentiating with respect to x yields the evolution of the deformation DxΦ(t, x) and the Jacobian
determinant J(t, x) := det

(

DxΦ(t, x)
)

,

d

dt
DxΦ(t, x) =

(

Dxv
)

(Φ(t, x)) DxΦ(t, x) ,
d

dt
J(t, x) = (div v)(Φ(t, x)) J(t, x) . (2.8)

We construct solutions of Lu = 0 in the form eiφ/ǫ[a0+ǫa1+. . .] with aj(t, x) smooth and supported
in Ωρ. Toward this end compute

L
(

eiφ/ǫ[a0 + ǫa1 + . . .]
)

=
1

ǫ
eiφ/ǫ

[

b0 + ǫb1 + ǫ2b2 + . . .
]

,

with
b0 = iL(φt,∇xφ) a0 ,

b1 = iL(φt,∇xφ) a1 + L(∂)a0 ,

bj = iL(φt,∇xφ) aj+1 + L(∂)aj , j ≥ 1 .

(2.9)

Since φ is a solution of the eikonal equation (2.3), the matrix L(φt(t, x),∇xφ(t, x)) is singular for
all (t, x) ∈ Ω.
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Since A(ξ) are diagonalisable for all ξ, it follows that L(φt(t, x),∇xφ(t, x)) = φtI + A(∇xφ) is
diagonalisable for all (t, x) ∈ Ω. Denote by π(t, x) the spectral projection onto the kernel of
L(φt(t, x),∇xφ(t, x)) and by Q(t, x) the partial inverse defined by

Q(t, x) π(t, x) = 0 , Q(t, x) L(φt(t, x),∇xφ(t, x)) = I − π(t, x) . (2.10)

Since we are working on a smooth sheet of the characteristic variety, the contour integral repre-
sentations of π(t, x) and Q(t, x) show that they are smooth functions of (t, x) ∈ Ω.

The equation bj = 0 is equivalent to the pair of equations π(t, x)bj = 0 and Q(t, x)bj = 0. The
equation πb0 = 0 is automatic, so the equations b0 = 0 and b1 = 0 are equivalent to the trio of
equations

π(t, x)a0 = a0 , π(t, x) L(∂) a0 = 0 , (I − π(t, x))a1 = iQ(t, x)L(∂)a0 . (2.11)

Lemma. For functions w(t, x) which satisfy the polarization π(t, x)w = w, one has

π(t, x) L(∂) w =
(

∂t + v(t, x).∂x +
1

2
divv(t, x)

)

w . (2.12)

The calculation uses second order perturbation theory in the following form (see [K, formulas
(II.2.13), (II.2.33)]). This part of perturbation theory corresponds to the fundamental algebraic
lemmas of geometric optics.

Definition. An eigenvalue λ of a matrix A is semisimple when the kernel and range of A − λI
are complementary subspaces. In this case denote by π the spectral projection onto the kernel of
A − λI along its range and by Q the partial inverse defined by

Qπ = 0 , Q
(

A − λ I
)

= I − π .

Proposition. Suppose that ]a, b[∋ s → A(s) is a smooth family of complex matrices with an
isolated smooth semisimple eigenvalue λ(s). Then λ(s) and π(s) are smooth functions of s whose
first derivatives satisfy

λ′(s) π(s) = π(s) A′(s) π(s) , λ′′ π = π A′′ π − 2 π A′ QA′ π , π′ = −π A′ Q−QA′π . (2.13)

Proof of Lemma. In π L(∂) w write the spatial derivatives as

π Aj∂jw = π Aj∂j (πw) = π Aj π ∂jw + π Aj(∂jπ) π w . (2.14)

Consider the eigenvalue λ(ξ) and eigenprojection π(ξ) of the matrix A(ξ) as functions of the
parameter ξj . The first formula from perturbation theory and (2.7) imply that

π Aj π = ∂λ/∂ξj π = vjπ . (2.15)
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Since the second derivatives of A(ξ) vanish, the formula for λ′′ implies, after depolarization, that

∂2λ

∂ξj∂ξk
π = −πAjQAkπ − πAkQAjπ. (2.16)

Next consider the eigenvalue λ(∇xφ) and eigenprojections π(t, x) of M(t, x) :=
∑

k Ak∂kφ(t, x) as
functions of the parameter xj . The perturbation formula yields

(∂jπ) π = −Q∂jM π = −Q
∑

k

Ak π
∂2φ

∂xk∂xj
.

Therefore using (2.16) yields,

π Aj (∂jπ)π = −
∑

k

πAjQAkπ
∂2φ

∂xk∂xj

and
∑

j

π Aj (∂jπ)π = −
∑

j,k

πAjQAkπ
∂2φ

∂xk∂xj
=

1

2

(

div v
)

π (2.17)

Combining (2.14, 2.15, 2.17) yields when w = π w,

π L(∂)w = π
(

∂t + v.∂x

)

w +
1

2

(

divv
)

w .

Since ∇xφ is constant along integral curves of ∂t + v.∂x it follows that π(t, x) is also constant so

π
(

∂t + v.∂x

)

w =
(

∂t + v.∂x

)

πw =
(

∂t + v.∂x

)

w ,

and the proof of the lemma is complete.

The equation for a0 = π a0 is therefore the transport equation,

(

∂t + v.∂x +
1

2
div v

)

a0 = 0 , (2.18)

along the rays sweeping out Ωρ. Therefore, a0 is determined once one prescribes

a0(0, x) ∈ C∞
0 ({|x| < ρ}) \ {0} , with π(0, x)a0(0, x) = a0(0, x) . (2.19)

Setting bj = 0 for j ≥ 1 yields the equations

(

∂t + v.∂x +
1

2
divv

)(

π aj

)

x = −π L(∂)
(

(I − π)aj

)

, (I − π)aj+1 = iQL(∂) aj . (2.20)

Impose the initial condition
π aj(0, x) = 0 , j ≥ 1 . (2.21)

This suffices for a recursive determination of smooth profiles aj which are supported in Ωρ.
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Borel’s Theorem constructs a smooth function a(ǫ, t, x) supported in [0, 1[×Ωρ so that for small ǫ,

a(ǫ, t, x) ∼
∑

j

ǫj aj , in C∞
(0)([0, Tρ] × R

d) .

Then
L(∂)

(

eiφ(t,x)/ǫ a(ǫ, t, x)
)

:= rǫ(t, x) = O(ǫ∞) in C∞
(0)([0, Tρ] × R

d) .

Define a corrector cǫ by
L(∂) cǫ = −rǫ , cǫ(0, x) = 0 .

Since L(∂) is L2 well posed it follows that for all T > 0

cǫ = O(ǫ∞) in C∞
(0)([0, Tρ] × R

d) .

Define
uǫ := eiφ(t,x)/ǫ a(ǫ, t, x) + cǫ(t, x) . (2.22)

Then Luǫ = 0.

We will compare the Lp norm of uǫ at time t = Tρ to that at time t = 0 when ǫ is small. From the
form of uǫ one has for any t ∈ [0, Tρ],

lim
ǫ→0

‖uǫ(t)‖p
Lp(Rd)

=

∫

|a0(t, y)|p dy . (2.23)

Equations (2.8) and (2.18) yield an explicit computation of a0.

Lemma. The amplitude a0 satisfies the transport equation (2.18) if and only if the function

a0(t,Φ(t, x))
√

J(t, x)

does not depend on t.

Proof of lemma. Equation (2.8) implies that
√

J(t, x) satisfies

∂t

√

J(t, x) =
1

2
√

J(t, x)
∂tJ =

1

2

(

div v)(Φ(t, x)
)

√

J(t, x) .

Therefore

∂t

(

a0(t,Φ(t, x))
√

J(t, x)
)

=
(

∂t

√

J(t, x)
)

a0(t,Φ(t, x)) +
√

J(t, x)
(

∂ta0 + v.∂xa0

)

(

t,Φ(t, x)
)

.

Using the formula for ∂t

√

J(t, x), yields

∂t

(

a0(t,Φ(t, x))
√

J(t, x)
)

=
√

J(t, x)
(

∂ta0 + v.∂xa0 +
1

2

(

div v
)

a0

)

(

t,Φ(t, x)
)

.

This completes the proof of the lemma.

In the formula (2.23) take y = Φ(t, x) and use a0(t, y) = a0(0, x)/
√

J(t, x) to find

∫

|a0(t, y)|p dy =

∫

|a0(0, x)|p J(t, x)−p/2 dy .
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Make the change of variable y = Φ(t, x), with dy = J(t, x) dx to find,

∫

|a0(t, y)|p dy =

∫

|a0(0, x)|p J(t, x)−p/2 J(t, x) dx .

For 1 ≤ p < 2 using (2.6) yields the lower bound

∫

|a0(t, y)|p dy ≥

(

(1 + t)m

2N

)(2−p)/2 ∫

|a0(0, x)|p dx . (2.24)

Apply this formula with t = Tρ := γρ−1 to find

lim
ǫ→0

‖uǫ(Tρ)‖Lp(Rd)

‖uǫ(0)‖Lp(Rd)

≥

(

(1 + Tρ)
m

2N

)(2−p)/2p

.

Choosing ρ small, and therefore Tρ large, this lower bound shows that the family of operators
e−itA(∂) is not uniformly bounded. However, if e−itA(∂) were bounded on Lp for some t 6= 0 it
would be bounded for all such t with norm independent of t. This contradiction shows that i is
violated and completes the proof.

§3. Proof ii ⇒ iii.

For real ξ ∈ R
d, the matrix A(ξ) has eigenvalues vµ.ξ, 1 ≤ µ ≤ κ. Choose a ξ for which these

values are distinct and denote by mµ the multiplicity of the eigenvalue vµ.ξ. Then in a real
neighborhood of ξ the eigenvalues remain distinct with the same multiplicities so one has

det
(

τ + A(ξ)
)

= Πκ
µ=1

(

τ + vµ.ξ
)mµ

. (3.1)

By analytic continuation this identity remains true for all ξ ∈ Cd

Eigenvalue crossings occur exactly at those ξ so that

∃ α 6= β , (vα − vβ).ξ = 0 . (3.2)

Away from this resonance set, the eigenvalues are of locally constant multiplicity. The holomorphic
spectral projections are defined by

πµ(ξ) :=
1

2πi

∫

|z−vµ.ξ|=ρ<<1

(

zI − A(ξ)
)−1

dz . (3.3)

They satisfy

πµ πν = δµν πµ ,
∑

µ

πµ(ξ) = I ,

and yield the spectral decomposition

A(ξ) =
∑

µ

(vµ.ξ) πµ(ξ) . (3.4)

The Fourier multiplier e−itvµ.ξ yields the operator e−itvµ.∂ which is equal to translation by tvµ.
This is an Lp isometry for all p.
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The spectral decomposition shows that the Fourier multiplier e−itA(∂) is equal to

∑

µ

πµ(∂) e−itvµ.∂ πµ(∂) =
∑

µ

e−itvµ.∂ πµ(∂) .

A rescaling in x shows that the norm of e−itA(∂) on Lp is independent of t. Thus when this norm
is finite one has

∥

∥

∥

∑

µ

e−itvµ.∂ πµ(∂)
∥

∥

∥

Hom(Lp)
≤ Cp independent of t .

Since the vµ are distinct, when t → ∞ the supports of e−itvµ.∂g separate and one finds that for
f ∈ Lp(Rd) with ‖f‖Lp = 1,

∑

µ

‖πµ(∂)f‖Lp = lim
t→∞

∥

∥

∥

∑

µ

e−it∂πµ(∂)f
∥

∥

∥

Lp
≤ Cp .

It follows that
∀ µ ,

∥

∥πµ(∂)
∥

∥

Hom(Lp)
≤ Cp . (3.5)

For p = 2, (3.5) implies that

∀ µ, ∀ ξ ∈ R
d,

∥

∥πµ(ξ)
∥

∥

Hom(CN )
≤ C2 . (3.6)

Changing coordinates in R
d we may assume that A1 has κ distinct eigenvalues. The original

coefficient matrices are linear combinations of the new coefficients so it suffices to show that the
new coefficients are simultaneously diagonalisable.

Denote by πµ, , 1 ≤ µ ≤ κ, the spectral projections of A1. To prove the theorem it suffices to show
that

∀ 1 ≤ µ ≤ κ, ∀ 2 ≤ j ≤ d, ∃σjµ ∈ R, Ajπµ = σjµ πµ . (3.7)

The proof of (3.7) is done for each j separately, ignoring all but A1 and Aj . Thus it suffices to
consider the case of two matrices, and relabeling if necessary the case j = 2.

In the complement of the set of resonant ξ ∈ C2 defined by (3.2), the projectors πµ(ξ1, ξ2) are
holomorphic functions on C2 homogeneous of degree 0 in the sense that for all z ∈ C \ 0 := C∗

πµ(zξ1, zξ2) = πµ(ξ1, ξ2) .

Each resonance relation is homogeneous and represents a single exceptional point in the complex
projective space CP1 = (C×C)/C∗. Therefore the exceptional set is a finite set of points p1, . . . , pM

in CP1 and πµ defines a holomorphic function on CP1 \ {p1, . . . , pM}

Since A1 has κ distinct eigenvalues, the point ξ = (1, 0) does not satisfy the resonance relation
(3.2). Therefore, the singular points have homogeneous coordinates with ξ2 6= 0.

Lemma. For all k and µ, the singularity of πµ at pk is removable.

Proof of Lemma. From (3.6) we know that the πµ are bounded at the real points.
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Each singular point is given by a homogeneous equation (vα − vβ).ξ = 0 for some α 6= β. The
equation has the form

a1 ξ1 + a2 ξ2 = 0 .

Since there are no solutions with ξ2 = 0, it follows that a1 6= 0. The exceptional point is the line
C∗(−a2/a1, 1) = C∗(z, 1). The real points R∗(ǫ + z, 1) are not singular and approach the singular
point. This together with (3.6) shows that there is a sequence of points approaching p along which
πµ is bounded. Therefore the singularity cannot be pole.

Near p in (C × C)/C∗ use the homogeneous coordinates (z, 1) with z ≈ z.

The explicit linear formulas for the eigenvalues show that near z, there is a constant C0 > 0 so
that for all α 6= β and z near z,

|λα(z, 1) − λβ(z, 1)| ≥ C0|z − z| . (3.8)

Express πµ(z, 1) as a contour integral over the boundary of a disk of radius C0|z − z|/2

πµ(z, 1) =
1

2πi

∮

|ζ−λµ(z,1)|=C0|z−z|/2

(

ζ − (zA1 + A2)
)−1

dζ . (3.9)

Estimate the determinant using (3.1), and (3.8) to find

det
(

ζ − (A1 + zA2)
)

≥ C1|z − z|N , with C1 > 0 .

Express the inverse in the contour integral (3.9) using Kramer’s rule to find

∥

∥

∥

(

ζ − (A1 + zA2)
)−1∥

∥

∥
≤ C2|z − z|−N .

Use this estimate in (3.8) to find

∥

∥πµ(z, 1)
∥

∥ ≤ C3 |z − z|−N .

It follows that πµ cannot have an essential singularity.

The only remaining possibility is a removable singularity.

Since the singularities are removable, each πµ is entire on CP1. Liouville’s Theorem implies that
the πµ are constant.

The identities
(

A1ξ1 + A2ξ2

)

πµ =
(

vµ.ξ
)

πµ , 1 ≤ µ ≤ κ

are known to hold outside the singular set. They therefore hold for all ξ ∈ C2 by analytic contin-
uation. In particular for ξ = (0, 1) one finds

A2πµ =
(

vµ.(1, 0)
)

πµ .

This is exactly the desired case j = 2 of formula (3.7), and the proof of iii is complete.
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