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Université de Provence, Marseille, France

gues@cmi.univ-mrs.fr

Jeffrey RAUCH*
University of Michigan, Ann Arbor MI, USA

rauch@umich.edu

§1. Introduction.

In this paper we construct accurate approximations to solutions of hyperbolic partial differential
equations which possess internal waves with thickness ε. The analysis is asymptotic as ε→ 0.

∼ ε

∼ 1

In the limit ε → 0, the solutions converge to piecewise smooth functions which are discontinuous
accross a characteristic surface. Such solutions have source terms which are also piecewise smooth.
Discontinuous sources are idealizations of smooth sources with a thin (∼ ε) transition layer. The
fundamental problem addressed here is to describe the dynamics of solutions with sources with such
transition layers. The solutions have internal transition layers of size ∼ ε. The limiting solution has
a conormal singularity along the characteristic hypersurface. Our analysis employs conormal and ε∂
estimates. The technical difficulty is that the obvious ansatz motivated by the cases of wave trains
and short pulses yields overdetermined equations for correctors to the leading approximation. This
is so even in the linear case. If one does not choose specially adapted coordinates, the transport
equations differ from those describing the propagation of singularities and oscillations.

In a sense, the research is a sequel to the analysis of short pulses in [AR]. Pulses are internal waves
with equal values on both sides of the wave. In the figure above the internal wave connects a
higher value nearby to the left to a lower value nearby on the right. A pulse connects equal values.
For short pulses, the obvious ansatz yields the correct leading term and a prescription for a first
corrector which is overdetermined. [AR] relaxed the constraints on the first corrector and were
able to prove that the leading term is an approximation with error O(ε). They were unable to find
higher order approximations.

We will show in §2, that for internal waves the most obvious ansatz again yields the correct recipe for
the leading term and again an overdetermined first corrector. For internal waves we were not able
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to simply relax the constraints to find a useful corrector. By adopting a different ansatz we are able
to construct correctors of all orders and thereby infinitely accurate approximations. This advance
at the level of formal asymptotics is a key innovation. The technique that we adopt is to consider
both the limit problem and the smoothed problems as transmission problems. This strategy has
been quite successful in the analysis of the inviscid limit of viscous shock waves ([GMWZ]), and of
the viscous approach of discontinuous solutions of semilinear hyperbolic systems ([S]).

Consider a system of partial differential operators

L(t, x, ∂) = ∂t +
∑

Aj(t, x) ∂j +B(t, x) , ∂j :=
∂

∂xj
, (1.1)

where the Aj , B are infinitely differentiable N ×N complex matrix valued functions each of whose
partial derivatives is uniformly bounded on R × Rd. Assume that L is hyperbolic in the following
sense.

Assumption 1. The system L is strictly hyperbolic, or symmetric hyperbolic.

Recall that strictly hyperbolic means that the matrix
∑d

1 ξjAj has N simple eigenvalues

λ1(t, x, ξ) < . . . < λN (t, x, ξ)

for all (t, x, ξ) ∈ R × Rd × (Rd \ {0}). Symmetric hyperbolic means that the matrices Aj are
hermitian symmetric (introduced in [F]).

We study an internal wave carried by a smooth characteristic hypersurface Σ of L. Assumption
1 is invariant under change of coordinates (t, x), hence, without loss a generality, we assume that
we have chosen a set of local coordinates for which Σ is the set {xd = 0}. We consider only this
local problem leaving to the interested reader questions of gluing local expansions together relying
on the important Propositon 2.3. The prinicipal symbol is L1(t, x, τ, ξ) := τI +

∑
Aj(t, x) ξj . The

characteristic variety is Char(L) :=
{

detL1(t, x, τ, ξ) = 0
}
.

Assumption 2. Σ := {xd = 0} is a characteristic hypersurface for L. On a conic neighborhood
of the conormal variety {(t, x′, 0; 0, . . . , 0, ξd 6= 0)} to Σ, the characteristic variety, Char(L), is
a smooth embedded hypersurface τ = τ(t, x, ξ) in the cotangent bundle of points (t, x; τ, ξ) ∈
R

1+d
t,x × R

1+d
τ,ξ .

Examples. i. Assumption 2 is always satisfied in the strictly hyperbolic case. The smoothness
of the characteristic variety following from the implicit function theorem applied to the equation
detL(τ, ξ) = 0 for τ . The necessary hypothesis ∂τ detL1|(τ,ξ)=(0,...,0,1) 6= 0 is implied by the
simplicity of the roots.

ii. For a symmetric hyperbolic operator with constant coefficients, the characteristic variety is a
real algebraic hypersurface in R1+d. The set of points where Assumtion 2 is violated is a subvariety
of dimension not larger than d− 1 so Assumption 2 is generic in the constant coefficient case.

iii. The Maxwell equations and the linearized compressible Euler equations are examples of sym-
metric systems which are not strictly hyperbolic but whose characteristic varieties are everwhere
smooth and of constant multilicity. Assumtion 2 is therefore always satisfied for them.

Assumption 1 and 2 imply that τ(t, x′, 0; 0, . . . , 0,±1) = 0 and dimkerL1(t, x, τ(t, x, ξ), ξ) is con-
stant for (t, x, ξ) in a conic neighborhood of {xd = 0} × {ξ = (0, 0, . . . ,±1)}. In particular

2



dimkerAd(t, x
′, 0) is constant on Σ. Denote this dimension by k. Assumptions 1 and 2 are

invariant by a smooth linear change of unknown ũ = M(t, x)u. We can therefore assume without
loss of generality that such a change has been performed so that

Ad(t, x
′, 0) =

(
0k×k 0k×N−k

0N−k×k A(t, x′)

)
, detA(t, x′) ≥ δ > 0 . (1.2)

The derivatives of the function τ play a central role in our results. Define the group velocity
computed at the conormal variety to {xd = 0},

v(t, x′) := −∇ξτ(t, x
′, xd = 0, τ = 0, ξ′ = 0, ξd = 1) .

Since τ vanishes on the conormal to Σ and is homogeneous of degree 1, it follows that v is tangent
to {xd = 0}.

The principal algebraic lemma of geometric optics asserts that Assumptions 1 and 2 imply that the
differential operator πL(t, x′, 0, ∂)π is essentially a directional derivative. The algebraic lemma is a
consequence of first order perturbation theory in the following form. An eigenvalue λ of a matrix
A is semisimple when the kernel and range of A− λI are complementary subspaces.

Proposition 1.1. Suppose that ]a, b[∋ s → A(s) is a smooth family of complex matrices with
an isolated smooth semisimple eigenvalue λ(s). Denote by π(s) the spectral projection onto the
kernel of A(s) − λ(s)I along its range. Then

π(s)
dA(s)

ds
π(s) =

dλ(s)

ds
π(s) .

Proof. Differentiate the identity (A− λ)π = 0 with respect to s denoting d/ds with a ′ to find

(A− λ)′ π + (A− λ) π′ = 0 .

Mulitplying by π eliminates the second term to yield

π (A− λ)′ π + = 0 ,

which is the desired result.

Denote by π the spectral projection of L1

(
t, x′, 0, (0, . . . , 0, 1)

)
= Ad(t, x

′) onto its kernel,

π(u1, . . . , ud) = (u1, . . . , uk, 0, . . . , 0) .

Proposition 1.1 applied with A(s) = Ad + sAj and λ(s) = −τ(t, x′, 0; 0, . . . , s, . . . , 1) with small s
in the ξj slot implies that

π Aj π = vj 1 ≤ j ≤ d .

In particular, the classical transport operator of geometric optics satisfies

π L(t, x′, 0, ∂) π = π
(
∂t + v(t, x′).∂′x

)
+ lower order terms . (1.3)
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Proposition 1.1 with A(s) = Ad(t, x
′, s) and λ(s) = −τ(t, x′, s; 0, . . . , 0, 1) yields

π
∂Ad(t, x

′, 0)

∂xd
π = −π

∂τ

∂xd
(t, x′, xd; 0, . . . , 0, 1) .

The transport operator for internal waves, H, is

H(t, x; ∂t,x′ , z∂z) := π L(t, x′, 0, ∂t,x)π + π
∂Ad(t, x

′, 0)

∂xd
π z∂z .

Lemma 1.1 shows that that the principal part of H is a scalar vector field,

H(t, x; ∂t,x′ , z∂z) = π
(
∂t + v(t, x′).∇x′ + ∂dτ(t, x

′, 0; 0, . . . , 0, 1)z∂z

)
+ lower order terms .

We study semilinear equations whose nonlinear term is an infinitely differentiable (in the real sense)
function G : CN → CN satisfying G(0) = 0.

Main Problem. Describe the behavior of solutions uε to

Luε +G(uε) = fε , uε = fε = 0 when t < 0 . (1.4)

where
fε = F (t, x, xd/ε) ,

with F (t, x, z) smooth, compactly supported in x, with limits

lim
±z→∞

F (t, x, z) = F
±

(t, x) (1.5)

rapidly achieved.

Define a discontinuous piecewise smooth function

f(t, x) := F
±

(t, x) , when ± xd > 0 ,

The source term, fε, is a family converging to f as ε → 0. For ε > 0, the discontinuity of f is
replaced by a smooth transition layer of thickness O(ε).

Passing to the limit ε→ 0 yields the initial value problem

LŪ +G(U) = f̄ , U = f̄ = 0 for t < 0 . (1.6)

It is known that this problem has a local in time solution, U ∈ L∞([0, T1]×Rd), whose restrictions,
to the half slabs [0, T1]×{±xd > 0} are smooth up to the boundary and compactly supported (see

[RR1], [RR2], [M1]). Denote by U
±

the restriction to ±xd > 0.

The uε are smooth and the limit U is discontinuous so that the convergence is not uniform. The
problem which we solve is to find correction terms to add to U so that the solution uε is described
with small error in sup norm.

Define in ±z ≥ 0

F̃±
0 (t, x′, z) := F (t, x′, xd = 0, z) − F

±
(t, x′, xd = 0) . (1.7)
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Denote by Z the conormal derivation ϕ(xd)∂d where ϕ ∈ C∞(R,R) is a fixed increasing function
such that ϕ(t) = t for −1 < t < 1, and ϕ(t) = ±2 for ±t > 3.

Main Theorem. Define in {±xd ≥ 0} × {±z ≥ 0} the principal profile

U±
0 := U

±
(t, x) + Ũ±

0 (t, x′, z) , (1.8)

where Ũ±
0

(
t, x′, z) ∈ H∞

(
[0, T2] × R

d−1 × R
)

is determined as the local solution of the following
nonlinear hyperbolic problem (with 0 < T2 ≤ T1),

(I − π)Ũ±
0 = 0 ,

H(t, x′; ∂t,x′ , z∂z)Ũ
±
0 + π

(
G(U

±

0 |xd=0 + Ũ±
0 ) −G(U

±

0 )
)

= πF̃±
0 , (1.9)

Ũ±
0

∣∣
t<0

= 0 . (1.10)

Then uε − U0(t, x, xd/ε) = O(ε) in the sense that if ε is sufficiently small then uε exists on [0, T2]
and

∀β,
∥∥∥

(
∂t,x′ , Z , ε∂d

)β
(
uε − U0(t, x, xd/ε)

)∥∥∥
L∞([0,T2]×R

d
±

)
= O(ε) . (1.11)

Remarks. i. The z∂z term in the transport equation (1.9) is not present in the transport equations
describing the propogation of wave trains in geometric optics nor the propagation of singularities.
Proposition 3.4 shows that if coordinates are chosen so that the hyperplanes xd = const. are all
characteristic then this term is not present.

ii. We construct approximations of accuracy O(ε∞) in the next sections.

§2. The ansatz.

The most obvious choice for an ansatz for the approximate solutions fails and it is important
to understand where it fails. It is too restrictive to describe the solution. Introducing a more
permissive ansatz we can do the same for the source term and thereby arrive at a more general
setting.

§2.1. The source.

The exact form taken for the smoothed source is not too important. In particular one can pose
sources of very restrictive form. The danger is that assuming such a restrictive form for the response
may not leave enough flexibility. That is exactly what happens for what appears to us to be the
most obvious ansatz.

In geometric optics, the form for oscillatory functions oscillating with phase φ(t, x) is

fε = fε(t, x, φ/ε) , fε(t, x) ∼
∞∑

j=0

εj fj(t, x, θ) ,

with smooth fj periodic with respect to θ.

The natural internal wave analogue of this with the transition at the surface {xd = 0} is

fε = F ε(t, x, xd/ε) (2.1.1)
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where F ε(t, x, z) has an asymptotic expansion

F ε(t, x, z) ∼
∞∑

j=0

εj fj(t, x, z) , where the limits lim
±z→∞

fj(t, x, z) = f
±

j (t, x) (2.1.2)

are rapidly achieved.

Though this is adequate for the source fε in the next section we show why taking an analogous
ansatz for the response fails.

§2.2 The most obvious uε ansatz fails.

A natural choice for uε is to mirror the structure of fε seeking uε in the form

uε(t, x′, xd) ∼
∞∑

j=0

εj Uj(t, x, xd/ε) , lim
z→±∞

Uj(t, x, z) = U
±

j (t, x). (2.2.1)

A computation familiar from ordinary geometric optics and simpler than the one performed in detail
in the next section yields the following equations which determine the leading profile U0(t, x, z).

The limits U
±

0 (t, x) := lim±z→∞ U0(t, x, z) glue together to form a function

U0(t, x) := U
±

0 (t, x) when ± xd > 0

which must satisfy the the initial value problem (1.4), whose piecewise smooth solution was our
point of departure. Thus U0 = U .

Denote by Q(t, x′) the partial inverse defined by

πQ = 0 , QAd(t, x
′, 0) = I − π , so Q =

(
0 0
0 A(t, x′)−1

)
. (2.2.2)

The tilde part (called the inner part in matched asymptotics) Ũ±
0 (t, x′, 0, z) is determined as the

local solution of the transport initial value problem in (1.9), (1.10).

The crunch comes with the first corrector equation, and already appears in the simplest case of a
constant coeffient linear 1-d problem. Indeed, suppose that d = 1, G = 0 and L := ∂t +A∂x where
the matrix A = Ad is constant symmetric. The problem (1.4) is then

∂tu
ε + A∂xu

ε = F (t, x, x/ε) , uε|t<0 = 0 .

The corresponding WKB profile equations for the profiles U0 and U1 are

A∂zU0 = 0 ,

(for the terms in ε−1) and,
∂tU0 +A∂xU0 +A∂zU1 = F,

(for the terms in ε0). Now, suppose that U0 and U1 satisfy these two equations. Applying the
operator A∂z to the second equation, and using the relation A∂zU0 = 0 yelds the equation

∂2
z (A2U1) = ∂z(AF ),
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which is clearly NOT satisfied in general, since an integration with respect to z would give the
relation

0 = AF (t, x,+∞) − AF (t, x,−∞)

which is not true in general. Therefore a smooth corrector U1 does not usually exist.

In the general case this obstruction persists. The equation for the ε0 term in {xd = 0} is,

Ad(t, x
′, 0) ∂zŨ1 = L(t, x′, 0, ∂t,x)Ũ0 +G(U

±

0 |xd=0 + Ũ±
0 ) −G(U

±

0 ) − F̃0(t, x
′, z = 0) .

The equations for Ũ0 guarantee that the right hand side is in the image of Ad so

(I − π)∂zŨ1 = Q
(
L(t, x′, 0, ∂t,x)Ũ0 +G(U

±

0 |xd=0 + Ũ±
0 ) −G(U

±

0 ) − F̃0

)

is determined and rapidly decreasing as |z| → ∞. However, in order to guarantee that (I −

π)
(
Ũ1(t, x,+∞) − Ũ1(t, x,−∞)

)
= 0 requires the moment condition

∫ ∞

−∞

L(t, x′, 0, ∂t,x)Ũ0(t, x, z) +G(U
±

0 |xd=0 + Ũ±
0 ) −G(U

±

0 ) − F̃0(t, x
′, 0, , z) dz = 0

for all (t, x′, 0). This is generically violated, even in the linear case.

Similar difficulties with moment conditions occured in the work of Alterman-Rauch [AR] (see also
[BL], [T]) on short pulses where the natural ansatz would have profiles which tend to zero as
|z| → ∞. These authors relaxed the requirement on the first corrector U1 to allow U1 to have
nonvanishing limit at z = +∞. The moment condition then created a crunch in determining U2

but a first corrector worked. In the present context, the limit of U0 at z = ±∞ are already unequal
and the crunch occurs in the determination of U1. We overcome this problem and thereby treat
the internal layers and improve the results on pulses.

§2.3. The transmission strategy.

A hint that the moment condition should not be a fatal stumbling block comes from the following
remark. In U0(t, x, z) one makes the substitution z = xd/ε. Thus in xd > 0 only the limit at
z = ∞ counts and in xd < 0 only the limit at z = −∞ counts. One never really needs to have both
z = ±∞ limits. To capitalize on this, it is natural to split the problem according to the two sides
±xd > 0. This corresponds to the transmission problem strategy which has been successful in the
related problem of viscous perturbations of shocks [GMWZ], and of semilinear discontinuous waves
[S]. In those results on boundary layers and shock structure, many tools have been borrowed from
geometric optics. In this paper the favor is returned as we borrow from them to treat a problem
of geometric optics.

The initial value problem (1.4) is equivalent to the transmission problem

Luε +G(uε) = fε in {xd 6= 0} ,
[
(I − π)uε

]
xd=0

= 0 , (2.3.1)

where the square brackets indicate the jump from (t, x′, xd = 0−) to (t, x′, xd = 0+).

To advance we make weaker requirements on the approximate solution uε than in the preceding
subsection. The ansatz for uε now has profiles for each half space. Begin with

uε = Uε(t, x, xd/ε) (2.3.2)
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where, Uε(t, x, z) is compactly supported in x with asymptotic expansions

Uε(t, x, z) ∼
∞∑

j=0

εj U±
j (t, x, z) , in {±xd ≥ 0} × {±z ≥ 0} , (2.3.3)

U±
j (t, x, z) = U

±

j (t, x) + Ũ±
j (t, x, z) ,

with Ũ±
j rapidly decreasing as ±z → ∞. We do not require that Ũ± → 0 when z → ∓∞. In fact,

Ũ± is not even defined at such points.

Because of the rapid decrease, Ũj(t, x, xd/ε) is essentially supported in an ε neighborhood of xd = 0.
More precisely, in defining uε one always has xd = εz which suggests Taylor expansion in xd,

Ũ±
j (t, x′, xd, z) ∼

∞∑

k=0

xk
d

k!
∂k

xd
Ũ±

j (t, x′, 0, z) .

Replacing xd by εz yields an equivalent profile with the property that the z dependent parts depend
only on t, x′, z and not on xd. Note that the xk

d = εkzk term appears as parts of the new profile at
order j + k.

This leads to the final form for the ansatz (2.3.2)-(2.3.3) where

U±
j (t, x, z) = U

±

j (t, x) + Ũ±
j (t, x′, z) (2.3.4)

with Ũ±
j independent of xd and rapidly decreasing as ±z → ∞.

Precisely for Uε defined on t ≤ T one requires that the support is contained in a compact subset
of [0, T ] × Rd and for all α and N ≥ 0

sup
{0≤t≤T}×{±xd≥0}×{±z≥0}

∣∣∣∂α
t,x,z

(
Uε(t, x, z)−

N∑

j=0

εj U±
j (t, x, z)

)∣∣∣ = O(εN+1) as ε→ 0+ , (2.3.5)

and

sup
[0,T ]×{±xd>0}×{±z>0}

∣∣∣〈z〉N∂α
t,x,z

(
U±

j (t, x′, z) − U
±

j (t, x)
)∣∣∣ < ∞ , 〈z〉 := (1 + |z|2)1/2 . (2.3.6)

Proposition 2.1. If a family of function uε has an asymptotic expansion of form (2.3.2). . . (2.3.6),

then the profiles U
±

j and Ũ±
j are uniquely determined.

Proof. The leading barred terms in {±xd > 0} are given by

U
±

0 (t, x) = lim
ε→0+

uε(t, x) .

The leading tilde term in ±z > 0 is given by

Ũ±
0 (t, x′, z) = lim

ε→0+

(
uε(t, x′, εz) − U

±

0 (t, x′, εz)
)
. (2.3.7)
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Inductively suppose k ≥ 1 and U±
j are uniquely determined for j ≤ k − 1. The U±

k are given by

U
±

k (t, x) = lim
ε→0+

ε−k
(
uε(t, x) −

k−1∑

0

εj U±
j (t, x, xd/ε)

)
,

Ũ±
k (t, x′, z) = lim

ε→0+
ε−k

(
uε(t, x′, εz) −

k−1∑

0

εj U±
j (t, x′, εz, εz) − εk U

±

k (t, x′, εz)
))

.

By gluing define

U j(t, x) :=

{
U

+

j (t, x) when xd > 0

U
−

j (t, x) when xd < 0 .
(2.3.8)

It costs us nothing to consider the more general problem with sources

fε = F ε(t, x, xd/ε) (2.3.9)

with expansions like those of uε. That is, in {t ≤ T0 <∞}× {±xd ≥ 0} × {z ≥ 0}, F ε(t, x, z) has
asymptotic expansion

F ε(t, x, z) ∼
∞∑

j=0

εj F±
j (t, x, z) , F±

j (t, x, z) = F
±

j (t, x) + F̃±(t, x′, z) , (2.3.10)

with F±
j defined in ±xd ≥ 0, F̃±

j (t, x′, z) defined in ±z ≥ 0, both compactly supported in x and

with F̃±
j rapidly decreasing as ±z → +∞. The precise form is as in (2.3.2, . . . , 2.3.6).

Warning. The main problem concerns smoothed jumps. However, the relaxed expansions (2.3.10)
suggested by the transmission strategy include functions fε which are discontinuous across xd = 0.
Functions fε and uε with expansions as above are always piecewise smooth. The source fε is
continuous across xd = 0 to leading order if and only if

f
+

0 (t, x′, xd = 0) + f̃+
0 (t, x′, z = 0) = f

−

0 (t, x′, xd = 0) + f̃−
0 (t, x′, z = 0) . (2.3.11)

Equivalently [
f0

]
xd=0

+
[
f̃0

]
z=0

= 0 . (2.3.12)

In this case, the leading term f0(t, x, xd/ε) in the source is a continuous transition layer of width
ε which tends in the limit ε → 0 to f which is the source term in (1.4). In Lemma 3.1 we will
show that when fε is continuous to leading order, the same is true of the response uε. Corollary
6.2 gives a C∞ analog.

We assume that
f = f

±

j = f̃±
j = 0 , when t < 0 . (2.3.13)

There is a second and very different way to generate smoothed sources fε which is to take a
standard mollification of the piecewise smooth source f . This second is included in the sources
(2.3.10) as the next Proposition shows.
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Suppose that j(t, x) is smooth compactly supported in t ≥ 0 and with integral equal to one. Define
jε(t, x) = ε−d−1j(t/ε, x/ε) and denote by Jε the smoothing operator which is convolution with jε.
Suppose that f is piecewise smooth and compactly supported on on {t ≤ T} × R

d with jumps on
{xd = 0}.

Proposition 2.2. With the hypotheses of the preceding paragraph, fε := Jεf has an asymptotic
expansion of the form (2.3.10).

Sketch of Proof. Define

γ(xd) :=

∫
j(t, x′, xd) dt dx

′ .

Denote by Γε the operator which is convolution in xd with ε−1γ(xd/ε). The smoothness of f with
respect to t, x′ implies that the restriction of Γεf−Jεf to each half space {±xd ≥ 0} has compactly
supported partial derivates of size O(ε∞). Thus it suffices to show that Γεf has an expansion.

This reduces to a problem in one dimension on Rxd
with t, x′ as parameters. Consider the one

dimension problem with scalar variable x.

Write f as the sum of a smooth function and a piecewise smooth function compactly supported in
x ≥ 0. Γε applied to the smooth part is equal to the smooth part plus O(ε∞). This part of Γεf
has an expansion (2.3.2)-(2.3.3) without tilde terms and with a single barred term equal to the
smooth part. This reduces to the case of f with compact support in x ≥ 0.

If f were infinitely flat at x = 0+, then f would be smooth and the difference Γεf − f would be
O(ε∞) so that there would be an expansion (2.3.2-3) with the single term f(x) on the right.

Taylor’s Theorem expresses

f ∼
∞∑

j=0

xk
+

k!
∂k

xf(0+) + O(x∞+ ) .

We have just remarked that the O(x∞+ ) term is OK.

For the Taylor term, an exact evaluation yields

Γε(xk
+) = γε ∗ xk

+ = εkqk(x/ε) , qk(x) := γ ∗ (xk
+) .

Then

Γεf ∼
∞∑

j=0

εkqk(x/ε)

k!
∂k

xf(0+) + O(ε∞) ,

which is an expansion of type (2.3.2-3) containing only layer terms.

To fill in the details one takes this argument with a finite Taylor expansion with remainder to treat
x < 1. The set x > 1/2 poses no problem. A two member partition of unity suffices to cover x ≥ 0.
This completes the sketch of proof.

Proposition 2.3. The set of families uε which have expansions of the form (2.3.2)-(2.3.6) is
invariant under smooth change of coordinates

(
t̃, x̃

)
=

(
t̃(t, x), x̃(t, x)

)
,

(
t, x

)
=

(
t(t̃, x̃), x(t̃, x̃)

)

which map the half spaces ±xd > 0 to the corresponding halfspaces ±x̃d > 0.
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Remarks. 1. This result is local in x and we suppose in the next calculations that the families are
compactly supported within the domain where the change of variables is defined. 2. An important
special case occurs if one makes a change of defining function of Σ. If φ(t, x) has nondegenerate
zero exactly at xd = 0, then families of the form uε = U(t, x, φ(t, x)/ε) with Uj(t, x, z) as before
are the same as those with defining function xd.

Sketch of proof. Denote

y = (y0, y1, . . . , yd) = (t, x) , y′ = (y0, y1, . . . , yd−1) ,

ỹ = (ỹ0, ỹ1, . . . , ỹd) = (t̃, x̃), ỹ′ = (ỹ0, ỹ1, . . . , ỹd−1) .

Suppose that (2.3.2)-(2.3.6) hold. In the new variables we have

uε(ỹ) ∼
∑

εj
(
U

±

j (y(ỹ)) + Ũ±
j (y′(ỹ), yd(ỹ)/ε)

)
.

This is not of the desired form because in the layer term one has yd/ε and not ỹd/ε and the tilde
profile has yd dependence on the slow scale.

Since the halfspaces are preserved, one has

yd(ỹ) = a(ỹ) yd

with smooth a. Therefore,

Ũ±
j (y′(ỹ), yd(ỹ)/ε) = Ũ±

j

(
y′(ỹ), a(ỹ)

ỹd

ε

)
= Ṽj

(
ỹ ,

ỹd

ε

)

where
Ṽ ±

j (ỹ, z) := Ũ±
j

(
y′(ỹ) , a(ỹ)z

)
.

Replacing Ṽ ±
j by its Taylor expansion

Ṽ ±
j ∼

∞∑

k=0

ỹk
d

k!

∂kṼ ±
j (ỹ0, . . . , ỹd−1, 0, z)

∂ỹk
d

∼
∞∑

k=0

εk zk

k!

∂kṼ ±
j (t̃, x̃′, 0, z)

∂ỹk
d

,

yields an expansion of the desired form.

§3. The profile equations.

Having settled on the ansatz for uε, the computation of the equations determining the profiles is a
bit tricky but follows standard practice.

The transmission condition from (2.3.1) is satisfied to O(ε∞) if and only if for all j, t, x′,

0 =(I − π)
(
U+

j (t, x′, xd = 0+, z = 0+) − U−
j (t, x′, xd = 0−, z = 0−)

)

=(I − π)
(
U

+

j (t, x′, xd = 0+) + Ũ+
j (t, x′, z = 0+) − U

−

j (t, x′, xd = 0−) − Ũ−
j (t, x′, z = 0−)

)
.

(3.1)
When these conditions are satisfied one can choose Uε(t, x, z) so that the transmission condition
is exactly satisfied.
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Proposition 3.1. If uε and fε have expansions of the form (2.3.3)-(2.3.6) and uε satisfies the
transmission condition exactly then Luε +G(uε) − fε has an expansion

Luε +G(uε) − fε = W ε(t, x, xd/ε) ∼
∞∑

j=−1

εj Wj(t, x, xd/ε) (3.2)

where Wj is compactly supported in x and smooth in ±xd ≥ 0,±z ≥ 0, and

Wj(t, x, z) = W
±

j (t, x) + W̃±
j (t, x′, z) (3.3)

with W̃±
j (t, x′, z) rapidly decreasing as ±z → ∞.

Note that the leading term in the expansion is in ε−1 in contrast to the expansion of uε, fε which
start at ε0.

Proof. Thanks to the transmission condition, there are no delta functions when one computes
Luε. Computing Luε in ±xd > 0, one finds

Luε = ℓ(ε, t, x, xd/ε) , ℓ(ε, t, x, z) = L
(
t, x, ∂t, ∂x +

1

ε
∂z

)
Uε(t, x, z) . (3.4)

This yields an expansion of the desired type for Luε as follows. Letting z → ∞ yields the barred
part

L
(
t, x, ∂t, ∂x

)
U

ε
(t, x) .

The tilde part comes from the difference which is equal to

L
(
t, x, ∂t, ∂x +

1

ε
∂z

)
Ũε(t, x′, z) .

Taylor expansion yields an equivalent (modulo ε∞) operator when xd = εz with coefficients de-
pending only on t, x′

L̃(t, x′, ∂t,x) := ∂t +
d∑

j=0

∞∑

k=0

(
∂Aj(t, x

′, 0)

∂xk
d

εk zk

k!

)
∂

∂xj
.

The tilde part of Luε has expansion

L̃
(
t, x′, ∂t, ∂x +

1

ε
∂z

) ∑

j

εj Ũε,±
j (t, x′, z) .

The treatment of the nonlinear term G
(
Uε(t, x, z)|xd=εz

)
is by Taylor expansion yielding

G(Uε(t, x, z)) ∼
∞∑

j=0

εj G±
j (t, x, z) , G±

j (t, x, z) = G
±

j (t, x) + G̃j(t, x
′, z) . (3.5)

The leading term G±
0 comes from G

(
U±

0 (t, x, z)
)
. The limit z → ±∞ yields the barred part

G
±

0 (t, x) = G(U
±

0 ) .

12



The tilde part comes from the difference G(U
±

0 + Ũ±
0 )−G(U

±

0 ). Taylor expansion in xd yields the
equivalent expression

G

( ∞∑

k=0

∂kU
±

0 (t, x′, 0)

∂xk
d

εk zk

k!
+ Ũ±

0

)
− G

( ∞∑

k=0

∂kU
±

0 (t, x′, 0)

∂xk
d

εk zk

k!

)
.

In this expression one performs a Taylor expansion about the ε0 terms. Passing higher order terms
in ε to the Wj with j ≥ 1 yields the ε0 terms

G(U
±

0 |xd=0 + Ũ±
0 ) −G(U

±

0 |xd=0) .

An alternate expression uses Taylor’s theorem

G(U + V ) −G(U) = G1(U, V )V , G1(U, V ) :=

∫ 1

0

G′(U + sV ) ds , (3.6)

so
G(U

±

0 |xd=0 + Ũ±
0 ) −G(U

±

0 ) = G1(U
±

0 |xd=0, Ũ
±
0 ) Ũ±

0 . (3.7)

For the terms of order j ≥ 1, one has

G
±

j (t, x) = G′(U
±

0 )F
±

j +H(U
±

0 , . . . , U
±

j−1)

G̃±
j (t, x′, z) = G′(U

±

0 |xd=0) F̃
±
j +K(U0, . . . , Uj−1)

where the H,K terms are a smooth function of the earlier profiles. This structure adapts well to a
recursive determination of the U±

j . Note that in performing this computation, when one encounters
a product of a barred term and a tilde term, the bar term is replaced by its Taylor expansion at
xd = 0 in order to give tilde terms which depend only on t, x′, z.

Combining the above expressions for Luε, G(uε) with the expansion for fε completes the proof.

The computation of the terms Wj in the above algorithm is straight forward, but the formulas get
complicated.

The j = −1 term comes from

Ad(t, x
′, xd) ∂zŨ

±
0 (t, x′, z) =

(
Ad(t, x

′, 0) +
(
Ad(t, x′, εz) −Ad(t, x

′, 0)
))
∂zŨ

±
0 (t, x′, z) .

The first summand yields the j = −1 term.

W−1 = W̃−1 = Ad(t, x
′, 0) ∂zŨ

±
0 (t, x′, z) . (3.8)

The j = 0 term comes from

L(t, x, ∂t,x)U±
0 (t, x) +Ad(t, x) ∂zU

±
1 +G(U±

0 ) + ε−1
(
Ad(t, x

′, εz)−Ad(t, x
′, 0)

)
∂zŨ

±
0 (t, x′, z)−F±

0 .

Letting z → ∞ yields the bar part of this equation

W 0 = L(t, x, ∂t,x)U
±

0 (t, x) +G(U
±

0 ) − F
±

0 . (3.9)
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The tilde part is not as fast since we must extract the z depend profile which does not depend on
xd. For the first two terms that comes from Taylor expansion to yield

L(t, x′, 0, ∂t,x) Ũ±
0 (t, x′, z) + Ad(t, x

′, 0) ∂zŨ
±
1 .

Writing
Ad(t, x

′, εz) −Ad(t, x
′, 0) = εz ∂dAd(t, x

′, 0) +O(ε2) ,

yields

W̃0 = L(t, x′, 0, ∂t,x)Ũ±
0 (t, x)+Ad(t, x

′, 0) ∂zŨ
±
1 +G1(U

±

0 |xd=0, Ũ
±
0 )Ũ±

0 +z∂dAd(t, x
′, 0)∂zŨ

±
0 −F̃±

0 .
(3.9)

The terms Wj with j ≥ 1 are similar

W
±

j = L(t, x, ∂t,x)U
±

j (t, x) +G′(U
±

0 )U
±

j − F
±

j +H±
j (U

±

0 , . . . , U
±

j−1) , (3.10)

W̃±
j = L(t, x′, 0, ∂t,x)Ũ±

j +G′(U±
0 |xd=0)Ũj +Ad(t, x

′, 0) ∂zŨ
±
j+1

+ z∂dAd(t, x
′, 0)∂zŨ

±
j − F̃±

j +K±
j (U±

0 , . . . , U
±
j−1) .

(3.11)

The exact form of theH andK terms in not crucial. What is important is that they are determined
by earlier profiles and are bar and tilde profiles respectively.

We construct U±
j in such a way that all the W±

j vanish identically.

The equation W−1 = 0 is equivalent to

(I − π) ∂zŨ
±
0 (t, x′, z) = 0 .

Since Ũ±
0 (t, x′,±∞) = 0, this is equivalent to Ũ0 satisfying the polarization identity

π Ũ±
0 (t, x′, z) = Ũ±

0 (t, x′, z) . (3.12)

This together with (3.1) implies the jump condition,

(I − π)
(
U

+

j (t, x′, xd = 0+) − U
−

j (t, x′, xd = 0−)
)

= 0 . (3.13)

Setting W 0 = 0 yields

LU
±

0 +G′(U
±

0 ) = F
±

0 . (3.14)

This together with (3.13) shows that U
±

0 must be the ±xd > 0 parts of the piecewise smooth
solution from (1.4). Thus U0 is equal to the function U from (1.4).

Setting πW̃±
0 = 0 yields the nonlinear hyperbolic equation determining Ũ0,

πL(t, x′, 0, ∂t,x)π Ũ±
0 + π G1(U

±

0 |xd=0, Ũ
±
0 )Ũ±

0 + π z∂dAd(t, x
′, 0)∂zŨ

±
0 = πF̃±

0 , (3.15)

Ũ±
0 = 0 when t < 0 . (3.16)

The operator H from the introductory section appears here. In particular, equation (3.15) is a
transport equation along the integral curves of ∂t + v.∂x′ + ∂dτ z∂z .
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Formula (1.3) shows that (3.15) is a nonlinear transport equation with velocity parallel to {xd = 0}.

Therefore the initial value problem (3.15)-(3.16) uniquely determines Ũ±
0 from πF̃±

0 . The rapid

decay of Ũ±
0 as ±z → ∞ follows from the corresponding decay of F̃±

0 . The proof of the rapid decay
is parallel to that of Proposition 2.3 of [G3].

For the next Proposition, recall that the leading term in the expansion of fε is continuous across
xd = 0 if and only if (2.3.12) is satisfied. A similar assertion holds for uε.

Proposition 3.2. If the source term fε has expansion (2.3.2)-(2.3.6) and satisfies (2.3.12), then
the profile U0 satisfies [

U0

]
xd=0

+
[
Ũ0

]
z=0

= 0 .

In this case, the piecewise smooth leading term U0(t, x, xd/ε) is continous across {xd = 0}.

Proof. The ingredients in the analysis are transport equations for the jumps in U0 and Ũ0

separately. To derive the first start with

L(U
±

0 ) +G(U
±

0 ) = F
±

0 ,
[
(I − π)U0

]
= 0 .

Thus at xd = 0 the last N − k components as well as their tangential derivatives are continuous.

Multiplying the differential equation for U
±

0 on the left by π and subtracting values at xd = 0±
yields

π Lπ
[
U

±

0

]
+ π

[
G(U

±

0 )
]

= π
[
F

±

0

]
. (3.17)

At the same time evaluate (3.15) at z = 0 and take differences as z = 0± to find

πL(t, x′, 0, ∂t,x)π
[
Ũ±

0

]
+ π

([
G(U

±

0 |xd=0± + Ũ±
0 |z=0±)

]
−

[
G(U

±

0 |z=0±)
])

= π
[
F̃±

0

]
, (3.18)

Denote by
X := π Lπ = π

(
∂t + v(t, x′).∂x′

)
+ order zero terms .

Let
w(t, x′) :=

[
U0

]
xd=0

+
[
Ũ0

]
z=0

= π w .

Adding the transport equations for π
[
U0]xd=0 =

[
U0]xd=0 and π

[
Ũ0]z=0 =

[
Ũ0]z=0 the jump in

G(U0) terms cancel yielding

X w + π
[
G(U

±

0 |xd=0± + Ũ±
0 |z=0±)

]
= π

(
[F 0]xd=0 + [F̃0]z=0

)
= 0 .

The last equality uses (2.3.12).

Using the definition of G1 and the fact that w = πw transforms the nonlinear term to yield

X w + πG1(U
−

0 |xd=0± + Ũ−
0 |z=0±, w)w = 0 , w = 0 when t < 0 .

The G1 coefficient is unknown but smooth so this is a linear homogeneous transport equation for
w with vanishing initial data. It follows that w = 0.

At this point the function U0(t, x, z) is determined, and with that determination one has

W±
−1 = W

±

0 = πW̃±
0 = 0 .
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The crunch described in §2.2 occurs when one tries to determine U1 so that (I − π)W̃±
0 = 0. In

±xd ≥ 0, we have from (3.7) and (3.14),

(I − π)W̃±
0 = Ad(t, x

′, 0)∂zŨ
±
1 + (I − π)

(
L(t, x′, 0, ∂)Ũ±

0 +G1(U
±

0 |xd=0, Ũ
±
0 )Ũ±

0 − F̃±
0

)
.

Setting this equal to zero and integrating from z = ±∞ yields for ±z ≥ 0

(I − π)Ũ+
1 =

∫ ∞

z

Q
(
(I − π)

(
L Ũ+

0 +G1(U
±

0 |xd=0Ũ
±
0 ), Ũ±

0 − F̃+
0

)
dz , (3.19)

(I − π)Ũ−
1 = −

∫ z

−∞

Q
(
(I − π)

(
L Ũ−

0 +G1(U
±

0 |xd=0, Ũ
±
0 )Ũ±

0 − F̃−
0

)
dz . (3.20)

No moment condition is needed.

This sets the stage for a recurrence. The equations W±
j = 0 for j = 0, 1, . . . , k are satisfied by

imposing profile equations for U0, . . . , Uk−1, πŨk.

To see the pattern we continue to complete the determination of U1. The equation W 1 = 0 from
(3.11) yields

L(∂t,x)U
±

1 +G′(U
±

0 )U
±

1 +H(U
±

0 ) = F
±

1 when ± xd ≥ 0 . (3.21)

The equation W̃1 = 0 from (3.11) is then

L(t, x′, 0, ∂t,x)Ũ±
1 (t, x, z) +Ad(t, x

′, 0) ∂zŨ
±
2 + πG′(U±

0 |xd=0)Ũ
±
1 + z∂dAd(t, x

′, 0)∂zŨ
±
1 = F̃±

j .

Place the already determined (I − π)Ũ±
1 with the source terms and multiply by π to find with

X := πLπ

(
X + z∂dAd(t, x

′, 0)∂z

)
πŨ1 + πG′(U±

0 |xd=0)Ũ
±
1 = πF̃±

1 − π L (I − π)Ũ±
1 .

This is an inhomogeneous linear tranport equation for πŨ±
1 parallel to z = 0. Adjoining the initial

condition
π Ũ±

1

∣∣
t<0

= 0 ,

the function πŨ±
1 is uniquely determined.

Aside. Typically Uj is discontinuous across xd = 0 and Ũj is discontinuous across z = 0. However
when fε is smooth, we show in Corollary 6.2 that modulo an infinitely small modification, uε is
smooth.

With Ũ±
1 in hand, the j = 1 case of the transmission condition (3.1) yields

[
(I − π)U

±

1

]
xd=0

= −
[
Ũ1

]
z=0

. (3.22)

From (3.19)-(3.20), the right hand side is known. Therefore U1 is determined as the unique smooth
solution of the inhomogeneous transmission problem (3.21-22) which vanishes for t < 0. We recall
that to solve this transmission problem one observes that the system (3.21-22) is equivalent to the
system

LU1 +G′(U0)U1 +H(U0) = −Ad[Ũ1]{z=0} δ(xd) + F 1.
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Assume that the right hand side is given on a domain ]−∞, T ]×Rd. Choose v ∈ L2(]−∞, T ]×Rd)

such that v± := v|±xd>0 ∈ H∞(] − ∞, T ] × Rd
±) and [v]xd=0 = [Ũ1]z=0 ∈ kerπ, with v|t<0 = 0.

Construct the solution U1 as U1 = v + w where w satisfies

Lw +G′(U0)w +H(U0) = F 1 + g on ] −∞, T ] × R
d, w|t<0 = 0 .

Here g is a piecewise smooth function equal to Lv±+G′(U0)v±+H(U0)± on ±xd > 0. This system
for w is a continuation problem for a linear hyperbolic system with a discontinuous piecewise-H∞

source term, which admits a unique and piecewise-H∞ solution following classical results on the
propagation of singularities in hyperbolic systems ([B], [RR1,2], [M1,2]). We use in a strong way
the transmission structure of the conditions (3.22).

The problem is not treated as a characteristic boundary value problem. It is treated as an inho-
mogeneous initial value problem. This is an important point because at present there is no general
theory of the characteristic boundary value problem for strictly hyperbolic systems. However,
for symmetric systems such results are available ([R], [MO], [G1]2]), and this boundary value
problem approach, followed in §7, yields complementary results.

Having now determined U0, U1, the equations W−1 = W0 = W 1 = πW̃1 = 0 are satisfied as well
as the cases j = 0, 1 of the transmission condition (3.9). The inductive definition of the profiles

continues by setting (I − π)W̃1 = 0 determining (I − π)Ũ2, and so forth.

The data for the next proposition is the following.

1. A sequence of functions F
±

j (t, x) indexed by j ≥ 0 and ±, smooth on ] − ∞, T0] × {xd ≥ 0},
supported in {t ≥ 0} and compactly supported in x.

2. A sequence of function F̃±
j (t, x′, z) indexed by j ≥ 0 and ±, smooth on ]−∞, T0 ]×Rd−1×{±z ≥

0}, supported in {t ≥ 0}, compactly supported in x′ and rapidly decreasing as ±z → ∞.

Denote by

O+
T := {(t, x) ∈ R × R

d : t < T, xd > 0} and O−
T := {(t, x) ∈ R × R

d : t < T, xd < 0} .

Proposition 3.3. Existence and unicity of profiles. There is a 0 < T1 ≤ T0 and a unique
maximal solution U0 ∈ L∞

loc

(
] −∞, T1[×Rd

)
to

L(U0) + G(U0) = F , U0 = 0 when t < 0 .

The solution is piecewise smooth and for any T < T1 the restriction U
±

0 to O±
T is in H∞(O±

T ) and
compactly supported.

There is a T2 ∈]0, T1] and a unique maximal solution Ũ±
0 ∈ C∞

loc

(
]−∞, T2[×Rd−1 × {±z ≥ 0}

)
to

(3.17-18). The layer profiles Ũ+
0 and Ũ−

0 are compactly supported in x′ and rapidly decreasing as
±z → ∞ uniformly on compact time intervals.

If T3 ∈]0, T2[ and j ≥ 1, then there are uniquely determined U
±

j (t, x) ∈ H∞
(
O±

T3

)
and Ũ±

j (t, x′, z) ∈

H∞
(
]−∞, T3]×{±z ≥ 0}

)
which satisfy the profile equations derived above. They are compactly

supported in x and the Ũ±
j are rapidly decreasing as ±z → ∞.

One of the most striking aspects of this construction is that the transport operator H has a different
vector field than the standard transport in geometric optics. One could think that the new z∂z
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term represents a fundamentallly new effect. The next result shows that in fact it can be eliminated
by choosing local coordinates so that the hyperplanes {xd = const.} are all characteristic. This
can be done, for example by defining ψ(t, x) locally as the solution of the eikonal equation

∂tψ = τ(t, x,∇xψ) , ψ(0, x) = xd .

In the new coordinates x̃(t, x) := (x′, ψ(t, x)), t̃ = t, the hyperplanes x̃d = const. are characteristic.

Proposition 3.4. If the hyperplanes xd = const. are characteristic, then the coefficient π∂dAdπ
of the z∂z term in H vanishes identically.

Proof. The algebraic lemma of geometric optics implies that

π ∂dAd π =
∂τ(t, x′, 0 ; 0, . . . , 0, 1)

∂xd
.

Since the hyperlanes are characteristic it follows that τ(t, x′, xd; 0, . . . , 0, 1) = 0. Differentiating
with respect to xd proves the Proposition.

§4. Approximate solution and residual estimates.

Suppose that T3, Fj , and Uj are as in the above proposition. Borel’s theorem provides functions
F ε(t, x, z) and Uε(t, x, z) compactly supported in x, so that in [0, T3] × {±xd ≥ 0} × {±z ≥ 0}

F ε ∼
∞∑

j=0

εj F±
j (t, x, z) , Uε ∼

∞∑

j=0

εj U±
j (t, x, z) . (4.1)

Define sources and approximate solutions by

fε(t, x) := F ε(t, x, xd/ε) , uε(t, x) := Uε(t, x, xd/ε) . (4.2)

Thanks to (3.1), the function Uε can be chosen so that (I − π)uε is continuous across {xd = 0}.

Aside. The source term can be chosen continuous if and only if the profiles Fj satisfy for all j,

F
+

j (t, x′, xd = 0) + F̃+
j (t, x′, z = 0) = F

−

j (t, x′, xd = 0) + F̃−
j (t, x′, z = 0) . (4.3)

There are analogous necessary and sufficient conditions for membership in Ck.

Denote by uε
exact the solution of

Luε
exact +G(uε

exact) = fε , uε
exact = 0 when t < 0 . (4.4)

Define the error Eε(t, x) by
Eε(t, x) := uε

exact − uε (4.5)

Similarly define the residual rε(t, x) by

rε(t, x) := Luε +G(uε) − fε . (4.6)

The next Proposition is an immediate consequence of the construction of the preceding section.
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Proposition 4.1 When the profiles Uj are constructed satsifying the equations of §3, the residual
rε satisfies the conormal estimates

∀N ≥ 0, ∀α, ∀p ∈ [2,∞],
∥∥(∂t,x′ , Z)αrε

∥∥
Lp([0,T3]×Rd)

= O(εN) , (4.7)

and piecewise estimates

∀N ≥ 0, ∀β, ∀p ∈ [2,∞],
∥∥(∂t,x′ , Z, ε∂d)

βrε
∥∥

Lp([0,T3]×{±xd>0})
= O(εN) . (4.8)

When the sources fε are smooth, uε
exact is smooth. In this case, the approximate solution is

piecewise smooth and Lemma 3.1 shows that the jump in the approximate solution vanishes to
leading order. In Corollary 6.2 we show that uε is smooth to infinite order in the sense that the
jumps in the derivatives of uε have asymptotic expansions all of whose terms vanish, so that there
is an equivalent family uε which is smooth.

§5. Conormal existence and stability.

The next two results are consequences of standard conormal theory ([RR1], [RR2], [M1], [M2])
applied to the transmission problem (2.3.1). If Ω is an open set in R × R

d, denote by

Hm
co(Ω) :=

{
u ∈ L2(Ω) : ∀|α| ≤ m, (∂t, ∂x′ ,Z)αu ∈ L2(Ω)

}
,

equipped with the natural norm

‖u‖2
Hm

co(Ω) :=
∑

|α|≤m

‖(∂t, ∂x′ ,Z)αu‖2
L2(Ω) .

If dist(Ω, {xd = 0}) > 0 then Hm
co(Ω) coincides with the usual Sobolev space Hm(Ω). When Ω

intersects {xd = 0}, the functions in Hm
co(Ω) are allowed to be singular on {xd = 0}. If U(t, x, z)

is a profile as in Section 3, defined on Ω =]−∞, T ]×Rd ×Rz, the function vε(t, x) = U(t, x, xd/ε)
belongs to Hm

co(Ω) for every ε > 0 fixed (recall that in general U(t, x, z) is not continuous across
{xd = 0}). Moreover, vε is uniformly bounded in Hm

co(Ω) as ε→ 0,

sup
0<ε≤1

∥∥U(t, x, xd/ε)
∥∥

Hm
co(Ω)

< ∞.

An important result concerning conormal waves in semilinear hyperbolic systems is that the con-
tinuation problem is well posed in the space of bounded and conormal fonctions, L∞∩Hm

co. Another
important point is that once a solution is in H2m

co , then regularity for m normal derivatives propa-
gate on each half space {±xd ≥ 0}, following the rule1 ”one normal derivative costs two conormal
derivatives”. We can take m = ∞, so the solutions are piecewise H∞. This is rigourously stated
in the next proposition and proved in [RR1],[M1].

Proposition 5.1 Suppose that 0 < T < ∞ and the source f(t, x) is piecewise smooth and
compactly supported in x. Then the transmission problem (2.3.1) has a unique maximal solution

1 More precisely, the propagation of regularity holds in the space defined by ∂k
du ∈ H2m−2k

co , k =
0, · · · ,m.
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u ∈ L∞
loc(] − ∞, T ∗[×Rd) which for any T < T ∗ is piecewise smooth and compactly supported in

] −∞, T ] × Rd.

In order to apply the next result to the transmission problem (3.3.1) as well as to the error equation,
consider a slightly more general equation of the form

Lu+ F (a, u) = f in ] −∞, T ] × R
d, u

∣∣
t<0

= 0,

where F (. , .) is a smooth function of (a, u) ∈ RN ′

× RN . The function a is a parameter of the
problem, and, F (·, 0) = 0. In the next proposition let

OT := ] −∞, T ] × R
d .

Theorem 5.2 ([RR1], [M2]) There is an m(d) <∞ so that if N ∋ m ≥ m(d), T > 0, and a, f ∈
L∞(OT ) ∩Hm

co(OT ), with f |t<0 = 0, then there is T ′ > 0 and a unique u ∈ L∞(OT ′) ∩Hm
co(OT ′)

satisfying
Lu+ F (a, u) = f in OT ′ , and u

∣∣
t<0

= 0.

In addition there is a there is a constant c = c(R) so that if ‖a‖L∞(OT ) + ‖a‖Hm
co(OT ) ≤ R, then

‖u‖L∞(OT ′ ) + ‖u‖Hm
co(OT ′ ) ≤ cm(R)

(
‖f‖L∞(OT ′ ) + ‖f‖Hm

co(OT ′ )

)
. (5.1)

Moreover, if the quantity ‖f‖L∞(OT ) + ‖f‖Hm
co(OT ) ≤ R is small enough one can take T ′ = T .

Finally, if a and f belong to Hm′

co (OT ) with m′ > m, then the life span of the L∞ ∩Hm
co solution

and of the L∞ ∩Hm′

co solution are the same.

Proposition 5.1 follows from Theorem 5.2 applied with m→ ∞.

§6. Validity of the asymptotic expansion.

By construction, the error Eε defined in (4.5) satisfies

LEε +G1(u
ε, Eε)Eε = −rε , and Eε

∣∣
t<0

= 0. (6.1)

Theorem 5.2 applied to system (6.1) together with Proposition 4.1 imply the following theorem,
which is our main result.

Theorem 6.1 Suppose that T3, profiles Uj , Fj , source fε and approximate solution uε are as in §3
and Proposition 4.1. Then there is an ε0 > 0 so that for 0 < ε < ε0 the transmission problem with
source fε has a unique compactly supported piecewise smooth solution uε

exact on ] −∞, T3] × Rd.
The error is infinitely small in the sense that

∀N > 0, ∀α, ∀p ∈ [2,∞],
∥∥(∂t,x′ , Z)α

(
uε − uε

exact

)∥∥
Lp([0,T3]×Rd)

= O(εN) , (6.2)

and
∀N > 0, ∀β, ∀p ∈ [2,∞],

∥∥∂β
(
uε − uε

exact

)∥∥
Lp([0,T3]×{±xd>0})

= O(εN) . (6.3)
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Proof. a. The existence of Eε on ]−∞, T3] follows from Theorem 5.2 and from the fact that rε is
O(ε∞) in L∞ and in Hm

co . The estimates (6.2) with p = 2 are direct consequences of the estimates
(5.1) in Theorem 5.2.

b. For p = 2 again, the estimates (6.3) follow from the classical principle of ”one normal derivative
for two conormal derivatives”, that we do not detail here. Just note that each normal derivative
of uε causes a loss of one power of ε in the usual estimate, hence a loss of εk in the estimation of
∂k

dE
ε, leading to the following estimate

‖(∂t,x′ , , Z , ε∂d)αEε‖L2(OT ∩{±xd>0}) ≤ O(εN) .

Since N is arbitrary, the estimate (6.3) follows.

c. The estimates with p = ∞ are obtained by using the estimates with p = 2 and Sobolev’s
inequality.

Remark. This shows that the L∞ error in the leading term approximation is O(ε). That this
cannot be improved follows from the fact that the correctors are O(ε).

Proposition 3.2 proved that if fε is continuous to leading order, then the same is true of uε. The
next result generalizes this to infinite order. The interested reader can fill in the finite order results
and thereby give an independent proof of Proposition 3.2.

Corollary 6.2. Suppose that fε is smooth across across {xd = 0}. Then

∀k , ∀N > 0 ,

[
∂kuε

∂xk
d

]

xd=0

= O(εN) .

There is a possibly different choice of Uε with the same asymptotic expansion so that the approx-
imate solution uε := Uε(t, x, xd/ε) is smooth.

Proof. Differentiating the expansions for uε in ±xd > 0 shows that the jump has an asymptotic
expansion

[
(ε∂xd

)kuε
]

xd=0
∼

∞∑

j=0

εj Vj(t, x
′)

with Vj determined by the germ of U
±

j at xd = 0 and the germ of Ũ±
j at z = 0.

The smoothness of fε implies the smoothness of uε
exact so that for all k the jump in ∂k

xd
uε

exact

vanishes. Theorem 6.1 then implies that the jump in ∂k
xd
uε is O(ε∞).

It follows that all of the Vj vanish identically. The standard constructive Borel summation argument
yields Uε and therefore uε for which these jumps vanish (see for example [RK]).

Examples. The sources at the start of §2, and also the mollified sources from Proposition 2.2
satisfy the hypotheses of this Corollary.

§7. The initial boundary value problem approach.

In this section we assume that the system L is symmetric hyperbolic. Instead of introducing
transmission problems we treat an equivalent boundary value problem in the domain {xd > 0}.
On {xd > 0} let

vε(t, x′, xd) :=
(
uε(t, x′, xd) , u

ε(t, x′,−xd)
)
, xd > 0 .
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For the unknown vε, we have the hyperbolic mixed initial boundary value problem

L♯vε +G♯(vε) = f ♯ in {t < T} × R
d−1 × {xd > 0} , vε

∣∣
t<0

= 0 , (7.1)

with boundary conditions

Mvε = 0 on {xd = 0}, M :=

(
I − π −I + π

0 0

)
. (7.2)

The operator L♯ is ∂t +
∑
A♯

j∂j +B♯, with

A♯
j(t, x) :=

(
Aj 0
0 Aj(t, x

′,−xd)

)
, A♯

d :=

(
Ad 0
0 −Ad(t, x

′,−xd)

)
. (7.3)

The definitions of G♯, B♯ and f ♯ are clear.

The large system is symmetric, and the boundary conditions (7.2) are maximally dissipative in
the sense of Lax and Phillips [L.P], (see also [A], [S]). Formula (1.2) shows that the boundary
{xd = 0} is characteristic of constant multiplicity for the operator L♯. The results of Rauch and
Guès ([R], [G1], [G2]) apply to the system (7.1)-(7.2) which therefore has a unique solution in
H∞(] −∞, T ] × Rd

+), for some T > 0, independent of ε ∈]0, 1].

More generally, it is natural to consider the hyperbolic initial boundary value problem with general
maximal dissipative boundary conditions. For T > 0, denote

ΩT :=
{
(t, x) ∈ R

1+d : t < T, xd > 0
}
, and ΓT :=

{
(t, x) ∈ R

1+d : t < T, xd = 0
}
.

Returning to the notations of §1, consider the problem





Luε +G(uε) = fε in ΩT ,
uε ∈ N on ΓT ,

uε
∣∣
t<0

= 0.
(7.4)

where N (t, x′) is a smoothly varying maximal negative subspace of RN for the quadratic form
〈Ad(t, x

′, 0) · , · 〉. In contrast with §1, fε is defined only in {xd > 0}.

Define P(ΩT ) to be the set of fonctions V : ΩT → R of the form

V(t, x) = V(t, x) + Ṽ(t, x′, z)

with V ∈ H∞(ΩT ) and Ṽ ∈ H∞(ΓT × [0,+∞[) with rapid decay to 0 when z → 0 for the tilde
part,

∀p ∈ N,∀k ∈ N,∀α ∈ R
d,∀ℓ ∈ N : sup

ΩT

∣∣∣zp ∂k
t ∂

α
x′∂ℓ

zṼ
∣∣∣ < ∞.

We assume that
fε = Fε(t, x, xd/ε)

with

Fε(t, x, z) ∼
∞∑

j=0

εj fj(t, x, z), with fj ∈ P(ΩT0
)
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for some given T0 > 0, and with
fj

∣∣
t<0

= 0 .

We seek a response uε defined on ΩT for some T > 0 independant of ε, and of the form

uε(t, x) ∼
∞∑

j=0

εjVj(t, x, xd/ε), where Vj ∈ P(ΩT ).

Introduce the solution of the ε = 0 limit problem. By the results of [G1], [S], there exists T1 > 0
and a unique V0 ∈ H∞(ΩT1

) satisfying




LV0 +G( V0 ) = f0 in ΩT1
,

V0 ∈ N on ΓT1
,

V0
∣∣
t<0

= 0.
(7.5)

The operator H is as in §1.

Define (for some 0 < T2 < T1), Ṽ0 ∈ H∞(ΓT2
× R+) as the unique solution on ΓT2

× R+ of the
system 




(I − π)Ṽ0 = 0,

H Ṽ0 + π
(
G( V0 + Ṽ0 ) −G( V0 )

)
= πf̃0 in ΓT2

× R+,

Ṽ0
∣∣
t<0

= 0.

. (7.6)

There is no need of boundary conditions on {z = 0} since the boundary {z = 0} is totally
characteristic for the operator H.

Theorem 7.1. Let V0 := V0 + Ṽ0, with V0 and Ṽ0 defined above. For ε small enough, the
system (7.4) has a unique solution uε ∈ H∞(ΩT2

) on ΩT2
and

∀α,
∥∥∥(∂t,x′ , Z , ε∂d)

α(uε − V0(t, x, xd/ε)
∥∥∥

L2(ΩT2
)∩L∞(ΩT2

)
= O(ε) .

The structure of the proof is the same as for the Main Theorem in §1. The first step is to construct
an approximate solution

uε
a(t, x) ∼

∞∑

0

εj Vj(t, x, xd/ε)

on ΩT2
. The first profile V0 is found by solving the profile equations (7.5) (which gives V

0
and T1)

and (7.6) (which gives Ṽ0 and T2). The other profiles Vj , j ≥ 1, are then obtained by induction,
solving linear well posed problems on the domain ΩT2

× R+. The resulting approximate solution
satisfies 




Luε
a +G(uε

a) = fε + rε in ΩT2
,

uε
a ∈ N on ΓT ,
uε

a

∣∣
t<0

= 0 .

where ‖∂αrε‖L2(ΩT2
) = O(εk), for all α ∈ Nd+1, and k ∈ N.

The second step is to look for the exact solution uε as uε = uε
a + wε where wε is the solution of





Lwε +G1(u
ε
a, w

ε)wε = −rε in ΩT2
,

wε ∈ N on ΓT ,
wε

∣∣
t<0

= 0 ,
(7.7)
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where G1(a, b)b := G(a + b) − G(a) as in formula (3.6). In this system, the functions aε are
bounded in the space L∞(ΩT2

)∩Hm
co(ΩT2

), whose definition was recalled in Section 5. The results
of [G1],[G2] apply to the problem (7.7) showing that for 0 < ε < ε0 with ε0 small enough, there
exits a unique solution wε ∈ H∞(ΩT2

), uniformly bounded in L∞(ΩT2
) ∩ Hm

co(ΩT2
) and which

satisfies for all α ∈ Nd+1 and n ∈ N,

‖(∂t,x′ ,Z, ε∂d)αwε‖L2(ΩT2
)) ≤ cα,N εN .

Theorem 7.1 follows.
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