
Real and Complex Regularity are Equivalent
for Hyperbolic Characteristic Varieties
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If P (η) is a real homogeneous polynomial one associates real and a complex algebraic varieties

VR :=
{
η ∈ Rn \ 0 : P (η) = 0

}
and VC :=

{
η ∈ Cn \ 0 : P (η) = 0

}
,

with VR ⊂ VC.

Definition A homogeneous polynomial is hyperbolic with timelike direction θ ∈ Rn \ 0 iff for all
real η the equation P (η + sθ) = 0 has only real roots s (see [G], [Hö]).

In the trivial case of P being a constant, both varieties are empty. Taking η = 0 shows that
P (θ) 6= 0.
If P is of degree m ≥ 1, then for each η ∈ Rn, the equation P (η + sθ) = 0 has m real roots
counting multiplicity so the line η + sθ cuts the varieties V in at least 1 and no more than m
points. It follows that VR (resp. VC) is a real algebraic variety (resp. algebraic variety) of real
(resp. complex) codimension equal to one. VR is called the characteristic variety.
The fundamental stratification theorems of real and complex algebraic geometry (see [BR], [H]))
imply that with the exception of a set of real or complex codimension 2, the varieties VR and VC

are locally real analytic and analytic. That means on a neighborhood of a non exceptional point η
there is a real analytic function (resp. analytic function) φ(η) with φ(η) = 0 and dφ(η) 6= 0 whose
zero set coincides with the variety.. The non exceptional points are called regular according to
the next definition.

Definition For non constant hyperbolic P , a point η ∈ VR is a regular point of VR (resp. VC)
iff in an Rn (resp. Cn) neighborhood of η, VR (resp. VC) is a real analytic (resp. analytic)
manifold of real (resp. complex) codimension equal to 1.

For varieties defined by non hyperbolic polynomials the two notions of regularity are distinct as
the following example shows.

Examples. The equation η1(η1− i(η2− 2)2) = 0 has a real leaf η1 = 0 which touches at (0, 2) the
complex leaf η1 = i(η2 − 2)2. The equation

η1(η1 − i(η2 − 2)2)(η1 + i(η2 − 2)2) = 0

is real and has two complex leaves touching the real leaf. The real variety is regular at (0, 2) and
the complex variety is not. The equation

η1(η1η3 − i(η2 − 2η3)2)(η1η3 + i(η2 − 2η3)2) = 0

is homogeneous and real. The section η3 = 1 gives the previous example. Therefore, (0, 2, 1) is a
regular point of the real variety and is not a regular point of the complex variety.
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For hyperbolic polynomials, the two notions are equivalent. This fact is difficult and may be
impossible to find in the literature. It can be proved using the Weierstrass Preparation Theorem
to examine the zero set as in the analysis of the zeros of an arbitrary real analytic function. In
this note we give a short and elementary proof.
The result already has two applications. The equivalence is used by B. Texier [T] in his elegant
derivation of the algebraic identities of geometric optics. In this note we show how it yields an
algebraic algorithm for computing the germ of VR at a regular point η from the germ of P at η.
This extends the result of [R] where an independent construction is used to compute the tangent
plane of VR at η.

Theorem. If P is a homogeneous hyperbolic polynomial, then η ∈ VR is a regular point of VR

if and only if η is a regular point of VC.

Proof. If P is a constant polynomial the result is trivial. It suffices to treat non constant P .
To prove the if assertion, suppose that η is a regular point of VC. Express

P = Πα

(
Pα
)m(α)

as a product of irreducible factors. A point η ∈ VC is regular if and only if it is a root of exactly
one of the Pα and for that α, dP (η) 6= 0 (see e.g. [Ha, Thm. I.5.1]).
For η ∈ Rn and s /∈ R one has P (η + sθ) 6= 0 which implies that Pα(η + sθ) 6= 0 so each Pα is
hyperbolic with θ timelike.
Choose linear coordinates

η = (τ, ξ) ∈ R×Rn−1 , η = (τ , ξ) ,

so that θ = (1, 0, . . . , 0). Since Pα(θ) 6= 0, multiplying Pα by a constant reduces to the case
Pα = τp+ b1(ξ)τp−1 + · · ·. The coefficients of τ j are elementary symmetric functions of the roots τ
of Pα(τ, ξ) = 0. Since those roots are real for real ξ, the bj(ξ) are polynomials with real coefficients.
On a neighborhood of η, VR = {Pα(η) = 0} for some α and dPα(τ , η) is a nonzero real covector.
The implicit function theorem implies that on a real neighborhood of η, VR is a real analytic
manifold of codimension equal to 1. Thus η is a regular point of VR.
For the harder converse direction, suppose that η is a regular point of VR.
A first step is to show that θ = (1, 0, . . . , 0) is not tangent to VR at η. This is equivalent to the
fact that near τ , η, VR has a parameterization τ = λ(ξ) with λ ∈ Cω.
Denote by ν a conormal vector to VR at η. We need to show that

〈ν , (1, 0, . . . , 0)〉 6= 0 . (1)

This follows from the algorithm in [R] for computing ν. We give an independent elementary proof
and obtain, as a Corollary, a second proof of the result in [R].
The proof is by contradiction. If (1) were not true, changing linear coordinates ξ yields

ν = (0, 1, 0, . . . , 0) .

Then near τ , η, VR has an equation

ξ1 = f(τ, ξ′) , ξ′ := (ξ2, . . . , ξn) , (2)
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with
f ∈ Cω , f(τ , ξ′) = ξ

1
, ∂τ,ξ′f(τ , ξ′) = 0 . (3)

For ξ′ fixed equal to ξ′ expand f about τ = τ ,

f(τ, ξ′) = ξ
1

+ a(τ − τ)r + higher order terms , a ∈ R \ 0 .

The gradient condition in (3) implies that the integer r ≥ 2. Solving (2) for τ as a function of ξ1
shows that for ξ1 near ξ

1
, there are r distinct complex roots τ ≈

[
(ξ1 − ξ1

)/a
]1/r. Since r ≥ 2,

real values of ξ1 near ξ
1

with (ξ1 − ξ1
)/a < 0 yield nonreal solutions τ violating the hypothesis of

hyperbolicity. This contradiction proves (1).
Thus, near (τ , ξ), VR is given by a real analytic equation τ = λ(ξ).
Dividing P by P (1, 0, . . . , 0) reduces to the case where this coefficient is equal to 1. Consider

P (τ, ξ) = τm + p1(ξ)τm−1 + p2(ξ)τm−2 + · · ·+ pm(ξ)

as a polynomial in τ depending on ξ. For ξ = ξ, denote by k, the multiplicity of the root τ = λ(ξ).
For real ξ near ξ, P (τ, ξ) = 0 has exactly k roots near λ(ξ). Hyperbolicity implies that they are
all real. Since VR has equation τ = λ(ξ) near ξ there is exactly one point (λ(ξ), ξ) near (τ , ξ)
projecting to ξ. Therefore the k roots are all equal to λ(ξ), so λ(ξ) is a root of multiplicity exactly
equal to k.

For ξ near ξ, divide P (τ, ξ) by
(
τ − λ(ξ)

)k,

P (τ, ξ) =
(
τ − λ(ξ)

)k(
τm−k + a1(ξ)τm−k−1 + · · ·+ am−k(ξ)

)
= (4)(

τk + Ck1 τ
k−1(−λ) + Ck2 τ

k−2(−λ)2 + · · ·+ (−λ)k
)(
τm−k + a1(ξ)τm−k−1 + · · ·+ am−k(ξ)

)
.

Equating coefficients of powers of τ yields the equations

p1 = Ck1 (−λ) + a1 ,

p2 = Ck2 (−λ)2 + Ck1 (−λ)a1 + a2 ,

and so on. Since λ and p1 are real analytic, the first equality implies that a1 is a real analytic
function of ξ. Then, the second equality implies that a2 is real analytic. By induction one finds
that all the aj(ξ) are real analytic functions of ξ. Unique continuation implies that (4) holds on a
complex neighborhood of (τ , ξ).
Since the second factor on the right of (4) is nonzero at (τ , ξ), it is nonzero on a complex neigh-
borhood of this point. Therefore, on a complex neighborhood of (τ , ξ), the complex variety VC

is given by the analytic equation τ = λ(ξ). Thus, (τ , ξ) is a regular point of VC and the proof is
complete.

Theorem. If η is a regular point of the hyperbolic characteristic variety VR, there is an algebraic
algorithm which determines the germ of VR at η in terms of the germ of P at η.

Remarks. 1. Our proof shows more generally that at a regular point of a complex algebraic
variety the germ of P determines the germ of VC. Thanks to the Theorem proved above this
suffices for hyperbolic characteristic varieties. 2. An independent computation of the tangent
plane at η is given in [R]. 3. The tangent plane at η gives the group velocity and thereby the
transport operators of geometric optics. The second order terms in the germ of VR yield the
linear Schrödinger operator of diffractive geometric optics [DJMR].
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Proof. Introduce coordinates η = (τ, ξ) as in the preceding proof. Then as in that proof, on a
neighborhood of (τ , ξ), the real and complex varieties have equation τ = λ(ξ) with real analytic λ
and P factors

P =
(
τ − λ(ξ)

)k
q(η) (5)

with real analytic q satisfying q(η) 6= 0. What is required is an algorithm to compute the germ of
λ at ξ.
The factorization (5) implies that

P (η + η) = O(|η|k) and P (η + η) 6= O(|η|k+1) .

Therefore, the Taylor expansion of P about η begins with a term of order k,

P (η + η) ∼ Pk(η) + Pk+1(η) . . . , (6)

where the Pj are homogeneous polynomials of degree j. The finite set of polynomials on the right
are computed algebraically by expanding the left hand side and collecting according to the power
of η.
Write the Taylor expansions

λ(ξ + ξ)− λ(ξ) ∼ `1(ξ) + `2(ξ) + . . . , q(η + η) ∼ q0 + q1(η) + q2(η) + . . . , (7)

with the same convention about the homogeneity of the polynomials `j and qj . Then

(τ−λ)(η+η) ∼ µ1(η)+µ2(η)+ . . . , where, µ1(η) = τ−`1(ξ) , µj(η) = −`j(ξ) for j ≥ 2 .

We give an algebraic algorithm determining the polynomials `j and qj from the polynomials Pj .
The strategy is straight forward. Inject the expansions (7) in the right hand side of (5). Collecting
according to powers of η yields identities relating the polynomials Pj , `j , qj . It is then shown that
these relations determine the `j and qj from the Pj .
The first term begins the induction,

Pk = µk1 q0 = (τ − `1)k q0 = τkq0 − k q0 `1(ξ) τk−1 + · · · , (8)

It yield the constant term q0 and also `1 by the formulas

q0 = the coefficient of τk in Pk(τ, ξ) , `1(ξ) =
the coefficient of τk−1 in Pk(τ, ξ)

−k q0
. (9)

The next term is typical of the inductive step,

Pk+1 = µk1 q1 + k µk−1
1 µ2 q0 = (τ − `1)k−1

(
(τ − `1(ξ))q1 − k `2(ξ) q0

)
. (10)

It follows that the polynomial (τ − `1)k−1 divides Pk+1 and one can therefore compute

Pk+1(τ, ξ)
(τ − `1)k−1

= (τ − `1(ξ))q1 − k `2(ξ) q0 . (11)
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Setting τ = `1(ξ) yields a formula for `2,

−`2(ξ) =
Pk+1(τ, ξ)

(τ − `1)k−1 k q0

∣∣∣∣
τ=`1(ξ)

. (12)

Once `2 is known, one concludes from (11) that

Pk+1(τ, ξ)
(τ − `1)k−1

+ k `2 q0 =
Pk+1(τ, ξ) + (τ − `1)k−1 k `2 q0

(τ − `1)k−1

is divisible by τ − `1 and one has the formula

q1 =
Pk+1(τ, ξ) + (τ − `1)k−1 k `2 q0

(τ − `1)k
. (13)

The term of order k + 1 has been used to determine `2 and q1.
Suppose next that j ≥ 1 and that q0, q1, . . . , qj−1 and `1, `2, . . . , `j have been determined. We
show how the term of order k + j determines qj and `j+1. Injecting (6) and (7) in (5) and then
extracting the terms of order k + j in η yields

Pk+j = µk1 qj + k µk−1
1 µj+1 q0 + F (µ1, . . . , µj , q0, . . . , qj−1) , (14)

where the last term is a polynomial in terms already determined. Thus the term F is known.
Equation (14) shows that the polynomial Pk+j − F is divisible by µk−1

1 and

Pk+j − F
µk−1

1

= (τ − `1) qj − k `j+1 q0 .

This yields the formula

−`j+1(ξ) = µj+1(ξ) =
Pk+1 − F
µk−1

1 k q0

∣∣∣∣
τ=`1(ξ)

. (15)

This determined, (14) yields the formula

qj =
Pk+1 − k µk−1

1 µj+1 − F
µk1

. (16)

This completes the inductive proof.
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