
A NOTE ON TWO DIMENSIONAL TRANSPORT WITH BOUNDED
DIVERGENCE

FERRUCCIO COLOMBINI, GIANLUCA CRIPPA, AND JEFFREY RAUCH

Abstract. We prove uniqueness for two dimensional transport across a noncharacteristic
curve, under the hypothesis that the vector field is autonomous, bounded and with bounded
divergence. We also obtain uniqueness for the Cauchy problem in Rt×R2

x under an additional
condition on the local direction of the vector field.

1. Introduction

In this note we study the uniqueness for the transport across a noncharacteristic curve in
R

2
x and for the Cauchy problem relative to the transport equation in Rt×R2

x. Previous results
by Bouchut and Desvillettes ([4]), Hauray ([11]) and Colombini and Lerner ([5] and [6]) show
that uniqueness holds for the transport relative to an autonomous bounded divergence-free
vector field and for the Cauchy problem in Rt×R2

x, under an additional condition on the local
direction of the vector field. An extension to the non-divergence-free case is due to the first
and the third authors (see [8]), who extended the theory to the case of autonomous bounded
vector fields with bounded divergence and such that there exists a Lipschitz function θ,
positive, bounded and bounded away from zero, such that

divx(θb) = 0 . (1)

In [8] it is also conjectured that this hypothesis on the existence of a Lipschitz function θ
could be removed.

We show that this conjecture has a positive answer: in fact, in this paper we show that
we have uniqueness

• for the transport across a noncharacteristic curve in R2
x, with only the hypothesis

that the vector field is autonomous, bounded and with bounded divergence;
• for the Cauchy problem in Rt × R2

x, under the hypothesis that the vector field is
autonomous, bounded, with bounded divergence and satisfying (almost everywhere
with respect to the one-dimensional Hausdorff measure H 1 on R2) a local condition
on its direction.

For the precise statements, see Theorems 3 and 5.
We remark that the two-dimensionality of these results cannot be dropped: the counter-

examples given in [1], [7] and [9] show that there are autonomous divergence-free vector
1
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fields on R3 and nonautonomous divergence-free vector fields on R2 such that there is non-
uniqueness in the Cauchy problem. In dimension n ≥ 3 it is necessary to have some condi-
tions on the derivatives of the vector field: the main references on this topic are the classical
work by DiPerna and Lions [10] and the recent paper by Ambrosio [2].

We conclude this section with some remarks about the notation used. We denote by L n

the Lebesgue measure on Rn and by H 1 the one-dimensional Hausdorff measure on Rn. We
denote by divxb the spatial divergence (in the sense of distributions) of the vector field b. If
b, u, and divxb are locally bounded, then b · ∇xu denotes the distribution defined by

〈b · ∇u, ϕ〉 = −〈bu,∇ϕ〉 − 〈udivxb, ϕ〉 ∀ϕ ∈ C∞c (R2) . (2)

2. Propagation across noncharacteristic surfaces in R
2
x

We consider uniqueness in the Cauchy problem for the equation b · ∇xw = fw across a
Lipschitz curve S in R2 oriented by an unit normal field ν, defined in a neighborhood of
S. By this we mean that, for every x0 ∈ S, there exists a Lipschitz function σ defined
in a neighborhood U of x0 such that |∇σ| ≥ γ > 0 and ν = ∇σ/|∇σ| L 2-a.e. in U and
S = {x ∈ U : σ(x) = 0}. We say that the vector field b ∈ L∞(R2;R2) is positively transversal
to the surface S if, for every x0 ∈ S, there exist a neighborhood U of x0 in R2 and λ > 0
such that

b(x) · ν(x) ≥ λ > 0 for L 2-a.e. x ∈ U .

We will say that we have uniqueness for the transport across the surface S if, for every
x0 ∈ S, there exists a neighborhood V of x0 in R2 such that, if we write V as the disjoint
union

V = V − t V + t (V ∩ S) ,

where V + (resp. V −) is locally the half-space above (resp. under) the oriented S, and we
suppose divxb ∈ L∞(V ) and f ∈ L∞(V ), then the only solution w ∈ L∞(V ) of the equation

b · ∇xw = fw

with w|V − ≡ 0 is the function w ≡ 0.
We recall the following result, due to Colombini and Lerner ([5] and [6]), in the divergence-

free case.

Theorem 1 (Colombini-Lerner). Let c ∈ L∞(R2;R2) with divxc = 0 and suppose that c is
positively transversal to the curve S. Let g ∈ L∞(R2). Then we have uniqueness for

c(x) · ∇xu(x) = g(x)u(x)

across the surface S.

The proof of this theorem is obtained observing that, since divxc = 0, the vector field
is Hamiltonian, i.e. there exists a Lipschitz function H : R2 → R such that c = ∇⊥H.
This fact yields a change of coordinates which transforms the equation to ∂w/∂ρ = fw. In
the following theorem we generalize this result to the case with bounded divergence. The
strategy is to apply the theorem of Colombini and Lerner to an auxiliary equation, whose
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vector field is divergence-free, and then to come back to the original problem. We first prove
a preliminary lemma.

Lemma 2. Suppose that b ∈ L∞(R2;R2) with divxb ∈ L∞(R2) and suppose that b is positively
transversal to the curve S. Then, for every y ∈ S, there exist an open neighbourhood Λ of y
in R2, a positive function ρ ∈ L∞(Λ) and a value γ > 0 such that ρ ≥ γ and divx(ρb) = 0
on Λ.

Proof. Approximate the vector field b in L1
loc(R

2;R2) with smooth vector fields bε, in such a
way that every bε is positively transversal to the curve S in an open neighbourhood of y and
‖bε‖∞ ≤ C. This can be done for example by convolving b with a standard approximate δ
on R2. Let ρε be a solution of the problem{

divx(ρ
εbε) = 0

ρε = 1 on S

on an open neighbourhood of y. It is easy to show (for example writing the explicit solution
of the regularized problems, via characteristics) that there is a common domain of definition
Λ of all the ρε and that 0 < γ ≤ ρε ≤ 1/γ on Λ for every ε. Then {ρε} is weakly∗ compact
in L∞(Λ), so we can find a limit point ρ as ε → 0 along some subsequence. Since bε → b

strongly, we get ρεbε
∗
⇀ ρb along the chosen subsequence. By linearity of the equation we

have divx(ρb) = 0 in the sense of distributions on Λ. Since ρ is a weak∗ limit point of {ρε},
it satisfies the bounds 0 < γ ≤ ρ ≤ 1/γ. �

Theorem 3. Suppose that b ∈ L∞(R2;R2), divxb ∈ L∞(R2), f ∈ L∞(R2) and b is positively
transversal to the curve S. Let f ∈ L∞(R2). Then we have uniqueness for

b(x) · ∇xw(x) = f(x)w(x) (3)

across the surface S.

Proof. Write equation (3) in divergence form, recalling formula (2):

divx(wb)− wdivxb = fw .

Since the statement is local, we can restrict the problem to the neighbourhood Λ of a point
y ∈ S given by Lemma 2 and fix a function ρ as in the lemma. Define w̃ = w/ρ and
substitute in the equation, obtaining

divx(w̃(ρb))− w̃ρdivxb = fw̃ρ .

Since divx(ρb) = 0 we get
(ρb) · ∇xw̃ = (ρdivxb+ fρ)w̃ .

The hypothesis of Theorem 1 are now satisfied since the vector field c = ρb is bounded,
divergence-free and positively transversal to the curve S, because of the properties of the
function ρ. The initial datum for w̃ is zero, so we get that w̃ = 0 in a neighborhood of the
surface S. Since ρ ∈ L∞ we have also w = 0 in a neighborhood of the surface S, that is the
desired conclusion. �
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Remark 4. In [8] it is essential that the preserved volume (the function θ in formula (1))
is Lipschitz continuous, because we need to give a (distributional) sense to the product of θ
and b · ∇xu when u is just an L∞ function. In our proof we do not multiply by the function
ρ, but we modify both the vector field and the solution, obtaining a different equation for a
different solution. In this way we avoid the Lipschitz regularity assumption on ρ.

3. The Cauchy problem in Rt × R2
x

In this section we study the Cauchy problem for the transport equation in Rt × R2
x{

∂tu(t, x) + b(x) · ∇xu(t, x) = 0

u(0, ·) = u0 .
(4)

Following Hauray [11], we consider the following condition (Px) on the local direction of the
vector field b in x:

(Px)
there exist ξ ∈ S1, α > 0 and ε > 0 such that,
for L 2-a.e. y ∈ Bε(x), we have b(y) · ξ ≥ α.

In [11] it is proved that, if b ∈ L2
loc(Ω;R2), divxb(x) = 0 and (Px) holds everywhere in Ω

(or everywhere except a set of isolated points), then every bounded solution of the Cauchy
problem (4) is renormalized, following the terminology introduced in [10]. This means that
for every function β : R→ R of class C1 the following implication holds:

∂tu+ b · ∇xu = 0 =⇒ ∂t[β(u)] + b · ∇x[β(u)] = 0 .

It is a standard fact that the renormalization property implies uniqueness and stability for
bounded solutions of the Cauchy problem (4) (for a complete treatment of the theory of
renormalized solutions we refer to [10] and [2]).

We apply the same trick of the previous section to show that Hauray’s proof extends to the
case b ∈ L∞(R2;R2) with divxb(x) ∈ L∞(R2), under the hypothesis that (Px) holds, possibly
except a closed H 1-negligible set. As in the proof of Theorem 3, we will manipulate our
equation until we reduce to a divergence-free case; then we show that renormalization holds
for the modified equation, and from this we get uniqueness for the original problem.

Theorem 5. Suppose that b = (b1, b2) ∈ L∞(R2;R2) with divxb ∈ L∞(R2) and that u0 ∈
L∞(R2). Suppose that there exists an open set Ω ⊂ R2 such that H 1(R2 \ Ω) = 0 and (Px)
holds for every x ∈ Ω. Then we have uniqueness for the Cauchy problem (4).

Proof. Fix x̄ ∈ Ω and consider ξ, α and ε given by (Px̄). After a rotation, we can suppose
that ξ = (1, 0). Up to a reduction of ε, we can suppose that there exists a positive function
ρ ∈ L∞(Bε(x̄)), bounded away from 0, such that divx(ρb) = 0 on Bε(x̄). This function can
be constructed as in Lemma 2, taking for example as S the line orthogonal to the vector ξ.
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Then

0 = ∂tu+ divx
(
bu
)
− udivxb

= ∂tu+ divx

((
ρb
)u
ρ

)
− udivxb

= ∂t
(
ũρ
)

+ divx
(̃
bũ
)
− ũρdivxb in D′(Rt ×Bε(x̄)),

where b̃ = ρb and ũ = u/ρ. This yields

ρ(x)∂tũ(t, x) + b̃(x) · ∇xũ(t, x) = ũ(t, x)ρ(x)divxb(x) . (5)

Let H ∈ Lip(R2) be the Hamiltonian associated to b̃, i.e. b̃1 = −∂H/∂x2 and b̃2 = ∂H/∂x1.

Thanks to the properties of ρ, it is immediate that (Px̄) holds also for b̃, possibly with a
smaller value α. Now consider ϕ ∈ Lipc(R × Bε(x̄)), where we denote by Lipc the set of
Lipschitz functions with compact support. We test our equation against ϕ to get∫

R×Bε(x̄)

ũ(t, x)
[
ρ(x)∂tϕ(t, x) + b̃(x) · ∇xϕ(t, x)

]
dtdx (6)

+

∫
R×Bε(x̄)

ũ(t, x)ρ(x)divxb(x)ϕ(t, x) dtdx = 0 .

For x = (x1, x2) ∈ Bε(x̄) define

Φ(x1, x2) :=
(
x1, H(x1, x2)

)
.

We are going to perform a change of variables in the formula (6), setting (y1, y2) = Φ(x1, x2) =
(x1, H(x1, x2)). Observe that, since

DΦ =

 1 0

∂H

∂x1

∂H

∂x2

 =

 1 0

b̃2 −b̃1


and since we are supposing that (Px̄) holds with ξ = (1, 0), the function Φ : Bε(x̄) → V =
Φ
(
Bε(x̄)

)
is invertible (up to a further reduction of ε) and its inverse Ψ = Φ−1 : V → Bε(x̄)

is Lipschitz. Let ψ ∈ Lipc(R× V ) and apply formula (6) with ϕ(t, x) = ψ(t,Φ(x)). We can
explicitly compute:

b̃(x) · ∇xϕ(t, x)

= b̃1(Ψ(y))
[
∂y1ψ(t, y) + b̃2(Ψ(y))∂y2ψ(t, y)

]
+ b̃2(Ψ(y))

[
− b̃1(Ψ(y))∂y2ψ(t, y)

]
= b̃1(Ψ(y))∂y1ψ(t, y) .
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Setting v(t, y) = ũ(t,Ψ(y)) and computing |det(DΨ)| = 1/b̃1(Ψ(y)) we get∫
R×V

v(t, y)
[
ρ(Ψ(y))∂tψ(t, y) + b̃1(Ψ(y))∂y1ψ(t, y)

] dtdy

b̃1(Ψ(y))
(7)

+

∫
R×V

v(t, y)ρ(Ψ(y))divxb(Ψ(y))ψ(t, y)
dtdy

b̃1(Ψ(y))
= 0 .

Define

R(y) :=
ρ(Ψ(y))

b̃1(Ψ(y))
and Q(y) :=

ρ(Ψ(y))divxb(Ψ(y))

b̃1(Ψ(y))
.

Then R and Q are positive, bounded and bounded away from zero on V . It follows that v
satisfies the differential equation

R(y)∂tv(t, y) + ∂y1v(t, y) = Q(y)v(t, y) . (8)

Then v(t, y) = ũ(t,Ψ(y)) is a renormalized solution of (8) if and only if ũ(t, x) is a renormal-
ized solution of (5), because we can follow all the above arguments backward. Since there
is no differentiation with respect to y2 in equation (8), it is equivalent to the fact that, for
L 1-a.e. y2 ∈ V2, we have

R(y1, y2)∂tv(t, y1, y2) + ∂y1v(t, y1, y2) = Q(y1, y2)v(t, y1, y2) in D′(R× V1), (9)

if we suppose that V is the rectangle V1×V2, that is always possible up to a reduction of V .
Now consider w(t, z1, z2) = v(t, P−1(z1, z2)), where ∂y1P (y1, y2) = R(y1, y2). Then equation
(9) is equivalent to

∂tw(t, z1, z2) + ∂z1w(t, z1, z2) =
Q(P−1(z1, z2))

R(P−1(z1, z2))
w(t, z1, z2) in D′(R× Ṽ1), for a.e. z2 ∈ Ṽ2,

(10)

for every rectangle Ṽ1 × Ṽ2 contained in P (V1 × V2). Now it is clear that every bounded

solution of (10) is renormalized in a neighborhood of every point (t̄, z1) ∈ R× Ṽ1.
This implies that the renormalization property holds for the equation (5) in the domain

Rt × Ω. Now recall that Lemma 4.1 of [6] (see also Proposition 3.4(i) of [3]) asserts that,
under the assumptions of Theorem 5, if U ∈ L∞(Rt × R2) satisfies (5) in Rt × Ω then it
satisfies the same equation in the whole Rt × R2. Then we obtain that the renormalization
property holds for the equation (5) in the whole Rt ×R2. Hence we have uniqueness for the
problem (5); this immediately implies uniqueness for the problem (4), since the two solutions
u and ũ are related by the equality ũ = u/ρ. �

Notice that our proof works also if we have a linear term of order zero in u on the right
hand side of (4).

Remark 6. At the moment it is not clear to us if the problem (4) has uniqueness if we drop
the assumption on the local direction of b. Non-uniqueness of the trajectories of b can occur,
see the examples in Section 3 of [4].
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