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Abstract

We prove estimates for the error in the most straightforward dis-
crete approximation to the integral of a compactly supported function
of n variables. The methods use Fourier analysis and interpolation the-
ory, and also make contact with classical lattice point estimates. We
also prove error estimates for the approximation of the integral over
an interval by the trapezoidal rule and the midpoint rule.

1 Introduction

Take u ∈ L∞(Tn), with T
n = (R/2πZ)n. We study the following basic

problem in the theory of numerical integration: given further hypotheses on
the behavior of u, how well do we approximate the mean value

Mu = (2π)−n

∫

Tn

u(x) dx (1.1)

by

σhu(x) = ν−n
∑

ℓ∈(Z/ν)n

u(x+ hℓ), (1.2)

for an arbitrary x ∈ T
n? Here we take ν ∈ Z

+ and h = 2π/ν, and Z/ν
denotes the group of residue classes mod ν. Another way to write (1.2) is

σhu(x) = ν−n
∑

ℓ∈(Z/ν)n

τhℓu(x), τhℓu(x) = u(x+ hℓ). (1.3)

∗2000 Math Subject Classification. Primary: 65D30, 42B35

Key words: quadrature, Fourier series, Sobolev space, Besov space

The work of the authors was supported by NSF grants DMS-0104096 and DMS-0456861,

respectively.

1



Quadrature Estimates for Multiple Integrals 2

We estimate the error; in particular we estimate

‖ρhu‖L∞ , ρhu := σhu−Mu. (1.4)

While we have phrased the basic problem as one of approximating an
integral of a function over T

n, a more common formulation is to approximate
the integral of a compactly supported function u on R

n. This is transformed
to the problem described above by the device of scaling so that suppu ⊂
[−π, π]n and identifying the opposite sides of this n-dimensional cube, so u
is identified with a function on T

n. (In case n = 1, an alternative reflection
method, discussed in §6, has advantages.)

The problem of estimating the remainder ρhu defined in (1.4) is classical
in numerical analysis, and of continued interest. We mention the articles [2]
and [3], which in turn have further references. Useful classical bounds for
the error are

‖ρhu‖L∞ ≤




Chr‖u‖Cr , r ∈ N,

Chr‖u‖Hr,1 , r ∈ N, r > n (or n = 1)
. (1.5)

for u supported in (−π, π)n. For n = 1 this error bound is often not far
from the correct order of convergence.

To see some shortcomings, which motivate a more thorough investiga-
tion, begin with the observation that the space Hr,1 is invariant under dif-
feomorphisms of R

n that are linear outside some compact set. However, the
rate of convergence of the quadrature error to zero does not have this invari-
ance. Consider for example the case of u = χΩ, the characteristic function
of an open set. The quadrature (1.2) counts the number of lattice points
from hZ

n that belong to Ω. For a domain whose boundary contains an open
piece of hyperplane whose normal has components with rational ratio, one
has no better estimate than ‖ρhu‖L∞ ≤ Ch. However, there are domains
of such a type that are diffeomorphic to the unit ball, for which the error
converges to zero as a strictly larger power of h. In a nontrivial way, the
affine geometry of R

n plays an important role in the behavior of the error,
and one of the things we achieve is to capture this dependence in our esti-
mates. The key aspect of our attack is to make strong use of Fourier series,
which by its definition depends on the affine structure. A key element of
many of our estimates is the pointwise decay of the Fourier coefficients. The
pointwise decay of the Fourier coefficients for the characteristic function of
a ball is more rapid than that for χΩ when the boundary ∂Ω has flat pieces.
In contrast, both characteristic functions belong to BV and no better, so
their Sobolev regularity is the same.
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Start with the derivation of a formula for the error ρhu in terms of Fourier
series. The Fourier coefficients of a function u on T

n are given by

û(j) = (2π)−n

∫

Tn

u(x)e−ij·x dx, j ∈ Z
n; (1.6)

in particular Mu = û(0). From (1.2) it follows easily that

σ̂hu(j) = πν(j)û(j), πν(j) = 1 if ν|j, 0 otherwise. (1.7)

Hence

ρhu(x) =
∑

j 6=0

û(νj)eiνj·x, ν =
2π

h
. (1.8)

This basic identity will be exploited in several ways in subsequent sections.
We will also use for the following identity. Suppose that Ψ ∈ C∞

0 (Rn)
satisfies Ψ(ξ) = 0 for |ξ| ≥ 1, and Ψ(ξ) = 1 for |ξ| ≤ 1/2. Denote by Ψ(hD)
the operator on f that takes f̂(j) to Ψ(hj)f̂ (j). Then,

ρhu =
(
I − Ψ(hD)

)
σhu

= ν−n
∑

ℓ∈(Z/ν)n

τhℓ

(
I − Ψ(hD)

)
u. (1.9)

The paper is organized as follows. In §2 we estimate ‖ρhu‖L∞ in terms
of various function space estimates on u. We show that (1.9) yields esti-
mates for Hölder continuous functions, and (1.8) yields estimates for func-
tions whose Fourier coefficients have certain decay. The latter class contains
functions whose sufficiently many distributional derivatives are integrable,
but as we show there are advantages in the extra generality of the results
as they are presented in Proposition 2.1. They allow us to apply complex
interpolation techniques, and obtain estimates for functions in Besov spaces,
which in the low regularity context are much sharper than the estimates in
terms of Hölder norms.

In §3 we employ further harmonic analysis techniques to estimate ‖ρhu‖L∞

for a class of piecewise regular functions on T
n with a jump across a smooth

surface. In addition to the estimates of §2, we use techniques related to
lattice point estimates, producing a unified analysis of lattice point and
quadrature problems.

In §4 we estimate ‖ρhu‖Lp , particularly for p = 2, and deduce results
on the size of the error when Mu is approximated by σhu(x) evaluated at
a random point x ∈ T

n, at least with high probability if not with certainty.
Comparisons are made with the expected error in the Monte Carlo method.
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In §5 we strengthen estimates ‖ρhu‖L∞ ≤ C hr to ‖ρhu‖L∞ = o(hr),
under appropriate hypotheses on u.

Section 6 is the only section of this paper in which we focus on the one-
dimensional case. We return to the setting of §2, specialize to dimension
n = 1, and derive analogues of the estimates of §2 for the approximation of
the integral over an interval by the trapezoidal rule and the midpoint rule.

2 L
∞ error estimates

We can use the results (1.8)–(1.9) to establish some estimates on ‖ρhu‖L∞ ,
using the following function spaces. For r > 0 define F r by,

u ∈ F r ⇐⇒ |û(j)| ≤ C(1 + |j|)−r , ‖u‖F r := sup
j

(1 + |j|)r|û(j)|. (2.1)

Denote by Cr
∗ the scale of Zygmund spaces of functions on T

n. If r is not
an integer, Cr

∗ = Cr, defined as the space of functions whose kth derivatives
are Hölder continuous of exponent s if r = k + s, k ∈ Z

+, s ∈ (0, 1). In
(2.2)–(2.3) and subsequent estimates, “C” will denote constants that differ
from line to line. Such constants C will be independent of h and u, but not
independent of r.

Proposition 2.1 We have

‖ρhu‖L∞ ≤ Chr ‖u‖Cr
∗
, r > 0, (2.2)

and
‖ρhu‖L∞ ≤ Chr ‖u‖F r , r > n. (2.3)

Proof. From (1.8) we have

‖ρhu‖L∞ ≤
∥∥(
I − Ψ(hD)

)
u
∥∥

L∞
, (2.4)

which readily yields (2.2). Meanwhile (1.7) implies

‖ρhu‖L∞ ≤
∑

j 6=0

|û(νj)| ≤
∑

j 6=0

(1 + |νj|)−r ‖u‖F r , (2.5)

which gives (2.3). �

We mention connections with previous work. For n = 1, r ∈ (0, 1),
the estimate (2.2) is given in [2]. Actually [2] works on an interval, which
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makes no difference in this context; see §6 for further discussion of this
point. Estimates similar to (2.3) are given in [8] for n = 1 and also in
[2], for r = 2, and in [10] (Lemma 6.2) for n = 2, except that in place
of F r these authors use L1-Sobolev spaces. The F r-norm is weaker than
the corresponding Sobolev space norm, is not diffeomorphism invariant, and
will have useful consequences for our subsequent results. We also mention
the work of [9], which uses (1.8), in the case n = 1; this work analyzes
the case where u is C∞ except for isolated singularities, of algebraic or
algebraic/logarithmic type and produces an asymptotic expansion for ρhu(0)
in such cases. We discuss this later in this section.

In addition, there is work for lattices in T
n other than (Z/ν)n. See [6],

§5.5 and [7], §6.5, and references given there, in particular [11]. Variants of
(1.8) also play a role in these works.

For r > n, (2.3) is stronger than (2.2). For r < n one gets no information
from (2.3); the result (2.2) applies for r ∈ (0, n), but this result is rather
crude. The next result gives an improvement of (2.2), making use of the
Besov spaces Br

p,∞ characterized by u ∈ Br
p,∞ if and only if,

‖ψk(D)u‖Lp ≤ C 2−kr, (2.6)

where {ψk(ξ) : k ≥ 0} is a Littlewood-Paley partition of unity, with suppψk ⊂
{ξ ∈ R

n : 2k−1 ≤ |ξ| ≤ 2k+1} for k ≥ 1, suppψ0 ⊂ {ξ : |ξ| ≤ 2}.

Proposition 2.2 For p ∈ [1,∞),

‖ρhu‖L∞ ≤ Chr‖u‖Br
p,∞

, provided rp > n. (2.7)

Proof. Note that Cr
∗ = Br

∞,∞ and Br
1,∞ ⊂ F r, so (2.2)–(2.3) yield

‖ρhu‖L∞ ≤ Chr0‖u‖B
r0
∞,∞

, r0 > 0,

‖ρhu‖L∞ ≤ Chr1‖u‖B
r1
1,∞

, r1 > n.
(2.8)

The estimate (2.7) would follow immediately from (2.8) if we had

[Br0
∞,∞, B

r1
1,∞]θ = Br

p,∞, r = (1 − θ)r0 + θr1,
1

p
= θ, 0 < θ < 1. (2.9)

Here, the left side is the complex interpolation space of A. Calderon. How-
ever, (2.9) is not quite true (cf. [14], pp. 67–73), so further argument is
required. Define

uk = ψk(D)u, vk(z) =
uk

|uk|
|uk|

zp, (2.10)
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for z ∈ Ω = {z ∈ C : 0 < Re z < 1} (setting vk(z)(x) = 0 where uk(x) = 0),
and then form

wk(z) = ψ̃k(D)vk(z), (2.11)

where ψ̃k(ξ) =
∑

|k−ℓ|≤3ψℓ(ξ). Given α ∈ R (to be chosen shortly), set

w(z) =
∑

k≥0

2−kα(z−θ)wk(z). (2.12)

We see that

w(θ) = u, if θ =
1

p
. (2.13)

Note that for y ∈ R,

‖2−kα(iy−θ)wk(iy)‖L∞ ≤ C 2−k(r−αθ),

‖2−kα(1+iy−θ)wk(1 + iy)‖L1 ≤ C 2−k(r+α(1−θ)).
(2.14)

Hence if we take α = r1 − r0 in (2.12), we have

‖w(iy)‖B
r0
∞,∞

, ‖w(1 + iy)‖B
r1
1,∞

≤ C‖u‖Br
p,∞

, (2.15)

with rj , r, p, and θ related as in (2.9). One also sees that, for z ∈ Ω, w(z) is
bounded in Br0

∞,∞+Br1
1,∞. One does not have w continuous on Ω with values

in Br0
∞,∞ + Br1

1,∞, which is why this argument does not prove the inclusion
of Br

p,∞ in the left side of (2.9). But, one does have continuity with values

in Br0−ε
∞,∞ +Br1−ε

1,∞ for each ε > 0, and hence continuity with values in C(Tn),
given that r0 > 0 and r1 > n.

The upshot is that for each x ∈ T
n, ρhw(z)(x) is a bounded, continuous

function on Ω, holomorphic on Ω, satisfying

|ρhw(iy)(x)| ≤ Chr0‖u‖Br
p,∞

,

|ρhw(1 + iy)(x)| ≤ Chr1‖u‖Br
p,∞

,
(2.16)

by (2.8) and (2.15), whenever r, rj , and p are related as in (2.9), and as long
as r0 > 0, r1 > n. The estimate

|ρhu(x)| ≤ Chr‖u‖Br
p,∞

(2.17)

then follows from the three-lines lemma. Note that

rp = r1 +
1 − θ

θ
r0, (2.18)

so given r > 0, p ≥ 1, there exist r0 > 0, r1 > n such that this argument
applies precisely when rp > n. �

Since the Lp-Sobolev space Hr,p(Tn) is contained in Br
p,∞(Tn), we have:
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Corollary 2.3 For p ∈ (1,∞),

‖ρhu‖L∞ ≤ Chr‖u‖Hr,p , provided rp > n. (2.19)

The estimate (2.19) is mainly interesting for r ∈ (n/p, n], since for r > n
the estimate (2.3) is stronger. See (5.6) for a further strengthening of (2.19).

We mention that for r = n = 1, (2.19) can be strengthened to

‖ρhu‖L∞ ≤ Ch‖u‖BV , (2.20)

given u continuous and of bounded variation on T
1. See [2], Theorem 1.6,

which is given an elementary proof. (Again, this result works on an interval.)
We also recall the well known elementary result

‖ρhu‖L∞ ≤ Ch2‖u′‖BV , (2.21)

given that u is Lipschitz and u′ has bounded variation on T
1 (cf. [2], [13]).

The case n = 1, r = 2 of (2.3) is slightly stronger than (2.21).
We return to the error estimate (2.3) and discuss further its advantages

over the analogous estimates involving Lp-Sobolev regularity, i.e.,

‖ρhu‖L∞ ≤ Chr‖u‖Hr,p , r > n, (2.22)

valid for all p ∈ [1,∞) if r ∈ N (so one might as well take p = 1), and valid
for all p ∈ (1,∞) if r /∈ N. If r /∈ N, one could also use

‖ρhu‖L∞ ≤ Chr‖u‖hr,1 , (2.23)

where hr,1 is the Hardy-Sobolev space. For n = 1, one could define Hr,1

to be (1 + ∂)−rL1(T1), where (1 + ∂)−r
∑
ake

ikx =
∑

(1 + ik)−rake
ikx, and

use Hr,1 in place of hr,1 in (2.23), but for n > 1 the space Hr,1 is not well
defined when r is not an integer. One has clearly

Hr,p ⊂ F r, hr,1 ⊂ F r, (2.24)

so (2.22) and (2.23) follow from (2.3). We give some examples to illustrate
how (2.3) can yield a significantly larger exponent on h than either (2.22)
or (2.23).

To begin, take n > 1 and let Ω ⊂ T
n be a smoothly bounded region whose

boundary ∂Ω has nowhere vanishing Gauss curvature. Then a standard
stationary phase calculation yields for the characteristic function χΩ,

χΩ ∈ F (n+1)/2, (2.25)
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while ∇χΩ is a measure supported on ∂Ω, so χΩ is not quite in H1,1(Tn).
More generally, for a ∈ R

+, not an even integer, with ρ(x) = dist(x,Tn \Ω),
we can take a function

ua ∈ C∞(Tn \ ∂Ω), ua(x) = ρ(x)a near ∂Ω, (2.26)

and we have

ua ∈ F a+(n+1)/2, ua ∈ ha+1−ε,1, ∀ ε > 0, ua /∈ ha+1,1. (2.27)

As long as a > (n− 1)/2, (2.3) yields a much stronger estimate than (2.23),
namely

‖ρhua‖L∞ ≤ Cha+(n+1)/2, a >
n− 1

2
. (2.28)

For a < (n − 1)/2, neither (2.3) nor (2.22)–(2.23) are applicable. We do
have

χΩ ∈ B1/p
p,∞, ua ∈ Ba+1/p

p,∞ , (2.29)

so (2.7) applies as long as pa+ 1 > n, yielding

‖ρhua‖L∞ ≤ Cph
a+1/p, ∀ p >

n− 1

a
, (2.30)

i.e.,
‖ρhua‖L∞ ≤ Cεh

an/(n−1)−ε, ∀ ε > 0. (2.31)

The estimate (2.31) holds regardless of whether ∂Ω satisfies the Gauss cur-
vature condition assumed above. Under this curvature hypothesis, one can
do better with the following interpolation argument. For z ∈ C, set

va,z = (1 − ∆)z/2ua. (2.32)

Assume a ∈ (0, (n − 1)/2). Then, using (2.29) we get for some A <∞

‖va,a−ε+it‖L∞(Tn) ≤ Cεe
A|t|, ∀ ε > 0, (2.33)

while also, via (2.27),

‖va,a−(n−1)/2−ε+it‖F n+ε ≤ Cε, ∀ ε > 0. (2.34)

From (2.33)–(2.34) we get

‖ρhva,a−ε+it‖L∞ ≤ Cεe
A|t|,

‖ρhva,a−(n−1)/2−ε+it‖L∞ ≤ Cεh
n+ε,

(2.35)
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and the three lines lemma yields an estimate for ‖ρhua‖L∞ = ‖ρhva,0‖L∞ ,
namely

‖ρhua‖L∞ ≤ Cεh
2an/(n−1)−ε, ∀ ε > 0. (2.36)

Note the advantage over (2.31). Clearly (2.36) is at least close to sharp for
a close to (n − 1)/2. However, for a close to 0, methods developed in §3
yield significantly stronger estimates.

The examples just considered, involving ua in (2.26), have focused on
the case n > 1. Now we look at the case n = 1. In this case, we can take Ω
to be an interval in T

1 and consider χΩ and ua as in (2.25)–(2.26), and we
still have (2.27)–(2.28), i.e.,

ua ∈ F a+1, ua ∈ ha+1−ε,1, ∀ ε > 0, (2.37)

and, by (2.3),
‖ρhua‖L∞ ≤ Cha+1, a > 0. (2.38)

Note that an application of (2.23) to (2.37) yields ‖ρhua‖L∞ ≤ Cεh
a+1−ε, ∀ ε

> 0, which is only slightly weaker than (2.38). The following result shows
that there are functions u on T

1 for which (2.3) provides better estimates
on ‖ρhu‖L∞ than does (2.23), by a factor h1/2.

Proposition 2.4 There exist functions u on T
1 with the properties

u ∈ F 3/2, but u /∈ H1,1. (2.39)

Proof. We use the following result, whose proof is in [5].

Lemma 2.5 Let A =
∏∞

k=−∞ S1, with its product probability measure,
where S1 = {z ∈ C : |z| = 1}. Given (ck) ∈ ℓ∞, (ck) /∈ ℓ2, form for
each α = (αk) ∈ A,

Fα =
∞∑

k=−∞

αkcke
ikx, Fα ∈ H−1/2−ε(T1), ∀ ε > 0. (2.40)

Then
Fα /∈ L1(T1), for a.e. α ∈ A. (2.41)

We proceed to prove Proposition 2.4. Consider

Fα :=
∑

k 6=0

αk

k1/2
eikx. (2.42)
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Lemma 2.5 applies, so (2.41) holds. Given an α so that Fα /∈ L1(T1), take

u :=
∑

k 6=0

αk

k3/2
eikx, so Fα :=

1

i
∂xu. (2.43)

Then we have (2.39), and Proposition 2.4 is proven. �

Applying Fourier multiplication by powers of k, we readily obtain from
(2.39) functions ur on T

1 satisfying

ur ∈ F r but ur /∈ hr−1/2,1. (2.44)

Now return to the discussion of ua, given by (2.26), in case n = 1 and
Ω ⊂ T

1 is an interval, in which case we have (2.37)–(2.38). The result (2.38)
was obtained by [9] in this context, making use of the identity (1.5) (in
case n = 1). In fact, [9] pursued the analysis of ρhu(0) for functions of one
variable with a discrete set of simple singularities, of such type as (x−xj)

a,
perhaps with a factor of log(x − xj) thrown in. One of the major points
made in [9] is that for such functions u, û(k) has a complete asymptotic
expansion, which enables one to get a complete asymptotic expansion for
ρhu(0) as h → 0. This expansion is truncated for more general functions
such as uaf , with f of limited regularity; as noted in [1] (p. 255), one has

‖ρh(uaf)‖L∞ ≤ Ch1+a, for a ∈ (0, 1), f ∈ C2(T1). (2.45)

Actually, [9] and [1] work with the trapezoidal rule on functions on an inter-
val, say [0, π], though the reflection argument discussed in §5 of this paper
reduces this result to its analogue (2.45) on T

1, at least if C2(T1) is enlarged
to C1,1(T1). In fact, we claim that the following more general result holds:

‖ρh(uaf)‖L∞ ≤ Ch1+a, for a ∈ (0, 1), f ∈ F 1+a(T1). (2.46)

This is a consequence of the following result, which we formulate in the
n-dimensional context.

Proposition 2.6 Given r > n, we have

u, v ∈ F r(Tn) =⇒ uv ∈ F r. (2.47)

Proof. We need to estimate

ŵ(k) =
∑

ℓ∈Zn

û(ℓ)v̂(k − ℓ). (2.48)
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To get this, let Ak = {ℓ ∈ Z
n : (ℓ − k/2) · k ≤ 0} and Bk = {ℓ ∈ Z

n :
(ℓ− k/2) · k > 0}, and estimate the two pieces of

ŵ(k) =
∑

Ak

û(ℓ)v̂(k − ℓ) +
∑

Bk

û(ℓ)v̂(k − ℓ). (2.49)

Setting 〈k〉 = (1 + |k|2)1/2, we have

∣∣∣
∑

Ak

û(ℓ)v̂(k − ℓ)
∣∣∣ ≤ C〈k〉−r

∑
|û(ℓ)|

≤ C〈k〉−r,

(2.50)

provided r > n, which implies
∑

|û(ℓ)| < ∞. A similar estimate works for
the last term on the right side of (2.49), giving

|ŵ(k)| ≤ C〈k〉−r, (2.51)

yielding (2.47). �

In view of results to be presented in §3, it is of interest to have the
following extension of Proposition 2.6. The proof is a straightforward variant
of the preceding argument.

Proposition 2.7 Given r > n and s ∈ [0, r], we have

u ∈ F r(Tn), v ∈ F s(Tn) =⇒ uv ∈ F s. (2.52)

We end this section with another perspective on how to use the identity
(1.7) to estimate the error ρhu. Namely, set

Gr(x) :=
1

(2π)n

∑

j 6=0

e−ij·x

|j|r
, Gν

r (x) := Gr(νx). (2.53)

Then (1.7) is equivalent to

ρhu =
( h

2π

)r
(Λru) ∗Gν

r , (2.54)

(with h = 2π/ν), where Λr is defined by

(Λru)̂ (j) = |j|rû(j). (2.55)

This yields the following result.
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Proposition 2.8 Fix r ∈ (0,∞) and let Xr be a Banach space of functions
on T

n (with translation-invariant norm) with the property that

{Gν
r : ν ∈ N} is bounded in Xr, with norm ≤ K. (2.56)

Let (Xr)′ denote the dual of Xr. Then

Λru ∈ (Xr)′ =⇒ ‖ρhu‖L∞ ≤ K
( h

2π

)r
‖Λru‖(Xr)′ . (2.57)

To illustrate the application of Proposition 2.8, let us note that

r > n =⇒ Gr ∈ C(Tn)

=⇒ Gν
r bounded in C(Tn),

(2.58)

and the dual of C(Tn) is M(Tn), the space of finite Borel measures on T
n.

Hence Proposition 2.8 implies

r > n, Λru ∈ M(Tn) =⇒ ‖ρhu‖L∞ ≤ Chr‖Λru‖M(Tn). (2.59)

This result is also a consequence of (2.3).
In this setting, one can cast the task of determining when ‖ρhu‖L∞ ≤

Chr as that of determining Banach spaces Xr satisfying (2.56), together
with the task of determining their duals.

3 Further L
∞ error estimates

We obtain estimates on ‖ρhu‖L∞ when we are given that u ∈ F r for some
r ∈ (0, n), and we are also given some further information on u. We use
the following strategy. Let Jε denote a Friedrichs mollifier. That is, pick
ϕ ∈ S(Rn), with ϕ(0) = 1, and set Jε = ϕ(εD). We will estimate ‖ρhJεu‖L∞

in terms of ‖u‖F r . Then we will estimate ‖ρh(u − Jεu)‖L∞ by another
method, depending on the nature of the extra information on u. We take
ε = h1+µ, for some µ > 0, and find an optimal value of µ, where the two
sorts of estimates have the same order of magnitude. This is a natural
generalization of a strategy used for lattice point estimates, where u is the
characteristic function of a region, with a “nice” boundary.

Our estimate begins with

ρhJεu =
∑

j 6=0

û(νj)ϕ(νεj) eiνj·x. (3.1)
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Therefore, for each positive integer N ,

‖ρhJεu‖L∞ ≤ CN

∑

j 6=0

|û(νj)| (1 + |νεj|)−N

≤ CN‖u‖F r

∑

j 6=0

|νj|−r(1 + |νεj|)−N

≈ CN‖u‖F r

∫

|ξ|≥1

|νξ|−r(1 + |νεξ|)−N dξ

= CN‖u‖F rεr(νε)−n

∫

|ζ|≥νε

|ζ|−r(1 + |ζ|)−N dζ,

(3.2)

using ζ = νεξ. If r ∈ (0, n), take ε = h1+µ to find,

‖ρhJεu‖L∞ ≤ Cεr(νε)−n‖u‖F r

= C ′hr−(n−r)µ‖u‖F r .
(3.3)

Here is a first application of the estimate (3.3).

Proposition 3.1 Assume

u ∈ F r ∩ Cs
∗ , 0 < s < r < n. (3.4)

Then

‖ρhu‖L∞ ≤ Chγ(‖u‖F r + ‖u‖Cs
∗
), γ = s

n+ 2(r − s)

n+ (r − s)
. (3.5)

Proof. In addition to (3.3), we have

‖ρh(u− Jεu)‖L∞ ≤ ‖u− Jεu‖L∞ ≤ Cεs‖u‖Cs
∗
, (3.6)

for all s > 0, provided we choose ϕ so that ϕ(ξ) = 1 for |ξ| ≤ 1/2. Now
εs = hs(1+µ), and this exponent matches the one in (3.3) provided µ =
(r − s)/(n + r − s). In this case, s(1 + µ) is equal to γ, given in (3.5), and
the proposition is proven. �

Next consider a class of functions including those that are piecewise
smooth on T

n, with a simple jump across a smooth, embedded (n − 1)-
dimensional surface Σ. We assume the Gauss curvature of Σ is nowhere
vanishing. Then such functions u belong to F r with r = (n+ 1)/2. Assume
more generally that

u ∈ F r ∩ PLip, r :=
n+ 1

2
. (3.7)
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Here PLip denotes the set of functions that are Lipschitz on each component
of T

n \ Σ, with a jump across Σ.

Proposition 3.2 Let Σ ⊂ T
n be a smooth (n− 1)-dimensional surface with

nowhere vanishing Gauss curvature. Assume u ∈ L∞(Tn) satisfies (3.2).
Then

‖ρhu‖L∞ ≤ Ch2n/(n+1)
(
‖u‖F r + ‖u‖L∞ + ‖u‖PLip

)
. (3.8)

Proof. The estimate (3.8) is elementary for n = 1, so assume n > 1. Then,
r < n in (3.7). In this case with ε = h1+µ, (3.3) yields,

‖ρhJεu‖L∞ ≤ Ch(n+1)/2−µ(n−1)/2‖u‖F r . (3.9)

To estimate ρh(u − Jεu), argue as follows. Choose ϕ such that ϕ̂(x) is
supported on |x| ≤ 1. Then

|u(x) − Jεu(x)| ≤ Cε‖u‖PLip, x ∈ T
n \ Ωε, (3.10)

where
Ωε = {x ∈ T

n : dist(x,Σ) ≤ ε}.

To estimate the contribution of u− Jεu on Ωε to ρh(u− Jεu), set

N(x, ε, h,Σ) := #{λ ∈ Λh : x+ λ ∈ Ωε},

N(ε, h,Σ) := sup
x

N(x, ε, h,Σ),
(3.11)

where Λh := {hℓ ∈ T
n : ℓ ∈ (Z/ν)n}, given h = 2π/ν.

When Σ has nowhere vanishing Gauss curvature, it is a standard lattice
point estimate (proven using arguments parallel to (3.1)–(3.3)) that

N(ε, h,Σ) ≤ Cεh−n + Chγ+1−n, γ =
n− 1

n+ 1
. (3.12)

See, e.g., (3.17) of [12]. When ε = h1+µ, this gives

N(ε, h,Σ) ≤ C(h1+µ + h1+γ)h−n. (3.13)

Equations (3.10) and (3.13) together yield,

‖ρh(u− Jεu)‖L∞ ≤ C(h1+µ + h1+γ)‖u‖L∞ + Ch1+µ‖u‖PLip. (3.14)

Set µ = γ = (n − 1)/(n + 1). Then the exponent in (3.9) is also equal to
1 + µ = 2n/(n+ 1), so we have (3.8). �
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The simplest example of a function to which Proposition 3.2 applies is
u = χΩ, when Ω ∈ T

n is a smoothly bounded region whose boundary ∂Ω
has strictly positive Gauss curvature everywhere. Proposition 3.2 gives

‖ρhχΩ‖L∞ ≤ Ch2n/(n+1). (3.15)

This is equivalent to well known estimates for lattice point counting prob-
lems. Indeed, σhχΩ(0) is equal to (h/2π)n times the number of points in Z

n

contained in the dilate h−1Ω. When n = 2, for generic such Ω the exponent
in (3.15) is known to be sharp; cf. [15]. When Ω ⊂ R

2 is a disk, centered
at the origin, the exponent is not sharp, and finding the sharp exponent
remains a major unsolved problem of analytic number theory. Also for large
n and generic smoothly bounded strongly convex regions Ω, identifying the
sharp exponent to put on the right side of (3.15) remains an open problem.
It is conjectured that the optimal exponent is 2 when n ≥ 5; cf., e.g., [4].

A number of variants of Proposition 3.2 can be analyzed by similar tech-
niques. We briefly mention one class of examples, including functions that
are piecewise smooth and globally Lipschitz on T

n, but whose first order
derivatives have a simple jump across Σ. If Σ has nowhere vanishing Gauss
curvature, such u belongs to F r with r = (n + 3)/2. We will assume more
generally that

u ∈ F r ∩ Lip ∩ PC2, r =
n+ 3

2
, (3.16)

where PC2 means class C2 on each component of T
n \ Σ (extending to the

boundary).

Proposition 3.3 Let Σ ⊂ T
n be as in Proposition 3.2. Assume u ∈ Lip(Tn)

satisfies (3.16). If n > 3, then

‖ρhu‖L∞ ≤ Ch4n/(n+1)
(
‖u‖F r + ‖u‖Lip + ‖u‖PC2

)
. (3.17)

Proof. This time, in place of (3.9) we have from (3.3)

‖ρhJεu‖L∞ ≤ Ch(n+3)/2−µ(n−3)/2 ‖u‖F r . (3.18)

If we choose ϕ(ξ) to be even, we have in place of (3.10)

|u(x) − Jεu(x)| ≤ Cε2‖u‖PC2 , x ∈ T
n \ Ωε,

while
|u(x) − Jεu(x)| ≤ Cε‖u‖Lip, x ∈ Ωε. (3.19)
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The estimate (3.13) continues to hold, so in place of (3.14) we have

‖ρh(u− Jεu)‖L∞ ≤ Ch2(1+µ)‖u‖PC2 + C(h1+µ + h1+γ)h1+µ‖u‖Lip. (3.20)

Now taking µ = γ = (n− 1)/(n + 1) in (3.18) and (3.20) yields (3.17). �

Remark. If n = 1 or 2, then r > n in (3.15), so by (2.3) we have

‖ρhu‖L∞ ≤ Ch(n+3)/2‖u‖F (n+3)/2(Tn), n = 1, 2. (3.21)

To treat the analogue of Proposition 3.3 for n = 3, we have the following
analogue of (3.3) for u ∈ Fn(Tn):

‖ρhJεu‖L∞ ≤ Chn
(
log

h

ε

)
‖u‖F n ≤ C ′

(
hn log

1

h

)
‖u‖F n , (3.22)

with ε = h1+µ, µ > 0, for h small. This replaces (3.18) for n = 3, while
(3.20) continues to hold, with µ = γ = (n− 1)/(n + 1). We have:

Proposition 3.4 In the setting of Proposition 3.3, if n = 3, then, for h <
1/2,

‖ρhu‖L∞ ≤ Ch3
[(

log
1

h

)
‖u‖F 3 + ‖u‖Lip + ‖u‖PC2

]
. (3.23)

One can extend the analysis in Propositions 3.2–3.4 to allow the Gauss
curvature of Σ to vanish simply on a hypersurface of Σ, and change sign,
producing appropriately modified estimates. One can also consider other
classes of surfaces Σ. We will not pursue the details.

4 Random evaluations

The results above estimate the error σhu(x) −Mu, whatever the choice of
x. If x is chosen randomly, there is often a good chance the error is smaller.
Seeing this simply involves estimating ‖ρhu‖Lp for some p <∞. We record
a few such estimates. Formulas (1.8)–(1.9) yield,

‖ρhu‖
2
L2 =

∑

j 6=0

|û(νj)|2, ‖ρhu‖Lp ≤ ‖(I − Ψ(hD))u‖Lp . (4.1)

Hence, parallel to Proposition 2.1, we have

‖ρhu‖Lp ≤ Chr‖u‖Br
p,∞

, 1 ≤ p <∞, r > 0, (4.2)
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using the Besov space Br
p,∞, and

‖ρhu‖L2 ≤ Chr‖u‖F r , r >
n

2
. (4.3)

As with (2.2)–(2.3), (4.3) is stronger than (4.2) (at least for p ≤ 2) when
r > n/2. Note that (4.3) applies to the functions considered in Propositions
3.1–3.3.

Estimate (4.2) is weaker than (2.7) when rp > n. We can improve (4.2)
by the same sort of interpolation argument used in Proposition 2.2. This
yields the following L2 estimate.

Proposition 4.1 Assume

1 ≤ p ≤ 2, r > n
(1

p
−

1

2

)
. (4.4)

Then
‖ρhu‖L2 ≤ Chr‖u‖Br

p,∞
. (4.5)

Proof. As in (2.8), (4.2)–(4.3) imply that,

‖ρhu‖L2 ≤ Chr0‖u‖B
r0
2,∞

, r0 > 0,

‖ρhu‖L2 ≤ Chr1‖u‖B
r1
1,∞

, r1 >
n

2
.

(4.6)

We get from here to (4.5), via the three-lines lemma, from the corrected
version of the (not quite true) complex interpolation identity

[Br0
2,∞, B

r1
1,∞]θ = Br

p,∞, (4.7)

with

r = (1 − θ)r0 + θr1,
1

p
=

1 − θ

2
+
θ

1
=

1 + θ

2
, 0 ≤ θ ≤ 1. (4.8)

For Br
p,∞ to be achieved in (4.7), given r0 > 0, r1 > n/2, 0 ≤ θ ≤ 1, one

needs precisely the constraints in (4.4). Details are parallel to those in the
proof of Proposition 2.2. �

We get other estimates via a strategy similar to that used for Proposi-
tions 3.1–3.3. Parallel to (3.1)–(3.3) we have

r ∈ (0, n/2) =⇒ ‖ρhJεu‖L2 ≤ Cεr(νε)−n/2‖u‖F r

= C ′hr−(n/2−r)µ‖u‖F r ,
(4.9)
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assuming as usual that ε = h1+µ. Using this one can obtain an analogue of
Proposition 3.1, estimating ‖ρhu‖Lp when 1 < p ≤ 2 and

u ∈ F r ∩Bs
p,∞, 0 < s < r <

n

2
. (4.10)

We omit the details.
Next compare these estimates with those for the Monte Carlo method.

Set
Ω := T

n × T
n × T

n × · · · , (4.11)

with the product probability measure. Given p = (x1, x2, x3, . . . ) ∈ Ω, define

MKu(p) := K−1(u(x1) + · · · + u(xK)). (4.12)

Then

MKu−Mu =
(u(x1) −Mu) + (u(x2) −Mu) + · · · + (u(xK) −Mu)

K
.

For u ∈ L2(Tn), the functions vj(p) = u(xj)−Mu are mutually orthog-
onal in L2(Ω) so,

‖MKu−Mu‖2
L2(Ω) = K−2

K∑

j=1

‖u−Mu‖2
L2(Tn) = K−1 ‖u−Mu‖2

L2(Tn).

(4.13)
Therefore,

‖MKu−Mu‖L2(Ω) = K−1/2 ‖u−Mu‖L2(Tn). (4.14)

Note that evaluating σhu(x) at a given x ∈ T
n involves νn function

evaluations (with ν = 2π/h), so we haveK ↔ h−n andK−1/2 ↔ hn/2. Thus,
when (4.3) applies, evaluating σhu(x) at a random point x ∈ T

n gives, with
high probability, a more accurate approximation to Mu than evaluating
MKu(p) at a random point p ∈ Ω. However, for rougher functions, the
Monte Carlo method can be expected to work better.

Let us illustrate the application of (4.2)–(4.3) to u = va, given for a ∈
(0, 1) by

va(x) = x−af(x) on [0, 2π), (4.15)

periodically continued to define va ∈ L1(T1), as long as f ∈ L∞. For such
va, we have

va ∈ F a, provided f ∈ F r, r > 1,

va ∈ B1/p−a
p,∞ , provided 0 < a <

1

p
, p ∈ [1,∞), f ∈ Br

p,∞, r >
1

p
.

(4.16)
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In such cases, (4.2) and (4.3) yield, respectively,

‖ρhva‖Lp ≤ Ch1/p−a, 0 < a <
1

p
, p ∈ [1,∞), (4.17)

and

‖ρhva‖L2 ≤ Ch1−a, 0 < a <
1

2
. (4.18)

These results break down to two cases.

Case A. 1/2 ≤ a < 1.
Then only (4.17) applies, with p ∈ [1, 1/a).

Case B. 0 < a < 1/2.
Then (4.18) applies, and also (4.17) applies, for p < 1/a; note that 1/a > 2.
We can interpolate between (4.18) and (4.17), and thereby improve (4.17).
Namely, given q ∈ (1/2, 1/a), θ ∈ (0, 1), as long as f satisfies both sets of
conditions in (4.16),

1

p
=
θ

2
+

1 − θ

q
=⇒ ‖ρhva‖Lp

≤ Chθ(1−a)+(1−θ)(1/q−a)

= Chθ+(1−θ)/q−a

= Chθ/2+1/p−a,

(4.19)

so (4.17) is improved by a factor of hθ. Note that if p ∈ (2, 1/a), we can
arrange that (4.19) applies for some q ∈ (p, 1/a) for all θ satisfying

0 < θ <
1/p − a

1/2 − a
. (4.20)

To compare the estimates (4.18)–(4.19) with (4.14), note that in Case B,
(4.18) is better than (4.14) (with K−1 ≈ h), while in Case A, (4.14) is not
applicable.

5 Little o estimates

We examine cases where estimates ‖ρhu‖L∞ ≤ Chr, i.e., ‖ρhu‖L∞ = O(hr),
can be improved to ‖ρhu‖L∞ = o(hr), i.e., limh→0 h

−r‖ρhu‖L∞ = 0. These
phenomena are related to the Riemann-Lebesgue lemma. The basic result
is the following.
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Definition. If X is a Banach space of functions on T
n, containing C∞(Tn),

◦
X denotes the closure of C∞(Tn) in X.

Proposition 5.1 Fix r > 0. Let Xr be a Banach space of functions on T
n,

containing C∞(Tn), for which one has

‖ρhu‖L∞ ≤ Chr‖u‖Xr , ∀u ∈ Xr. (5.1)

Then

u ∈
◦
Xr =⇒ ‖ρhu‖L∞ = o(hr). (5.2)

Proof. Given ε > 0, take v ∈ C∞(Tn) such that ‖u− v‖Xr ≤ ε. Then

‖ρhu‖L∞ ≤ ‖ρh(u− v)‖L∞ + ‖ρhv‖L∞

≤ Cεhr +Cεh
r+1.

(5.3)

This implies lim suph→0 h
−r‖ρhu‖L∞ ≤ Cε, which gives (5.2). �

Recalling results of §2, we deduce that

r > n, u ∈
◦
F r =⇒ ‖ρhu‖L∞ = o(hr), (5.4)

and, given p ∈ (1,∞),

rp > n, u ∈
◦
Br

p,∞ =⇒ ‖ρhu‖L∞ = o(hr). (5.5)

In the context of Corollary 2.3, since C∞(Tn) is dense in Hr,p(Tn) for p ∈
(1,∞), we have

p ∈ (1,∞), rp > n, u ∈ Hr,p(Tn) =⇒ ‖ρhu‖L∞ = o(hr). (5.6)

Also, since C∞(Tn) is dense in L1(Tn),

r > n, (−∆)r/2u ∈ L1(Tn) =⇒ ‖ρhu‖L∞ = o(hr). (5.7)

This result, which is closest in spirit to the Riemann-Lebesgue lemma, fol-
lows from (5.4). Note incidentally that

u ∈
◦
F r ⇐⇒ |û(j)| = o(|j|−r), as |j| → ∞. (5.8)

In the case n = 1 and r = 2, (5.7) is contained in (1.24) of [2].
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6 Trapezoidal rule and midpoint rule estimates

If f is a continuous function on I = [0, π], the trapezoidal rule gives the
formula

Thf =
1

µ

µ−1∑

ℓ=0

f(hℓ) + f(hℓ+ h)

2
, (6.1)

for h = π/µ, µ ∈ Z
+, as an approximation to

Mf =
1

π

∫ π

0
f(x) dx. (6.2)

We show that the results of §2 yield estimates on the error in this approxi-
mation.

One way to produce a function u on T
1 from f would be to set u = f

on [0, π], 0 on (−π, 0), and periodize. However, this function is likely to
be singular at the endpoints. One does not recover in this way accurate
error estimates for the trapezoidal rule. In this section we show how a
reflection argument extends the accurate estimates to the classical setting
of integration over an interval.

Define E : C(I) → C(T1), E : Lp(I) → Lp(T1), etc., as

Ef(x) = f(|x|), −π ≤ x ≤ π, (6.3)

recalling T
1 = R/2πZ. Then,

u = Ef =⇒ Thf = σhu(0), Mf = Mu

=⇒ Thf −Mf = ρhu(0).
(6.4)

Thus results of §2 yield the following:

Proposition 6.1 We have

|Thf −Mf | ≤ Chr‖Ef‖F r , r > 1, (6.5)

and, for p ≥ 1,

|Thf −Mf | ≤ Chr‖Ef‖Br
p,∞

, r >
1

p
, (6.6)

hence, for p ∈ (1,∞),

|Thf −Mf | ≤ Chr‖Ef‖Hr,p , r >
1

p
. (6.7)
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We get similar results for the midpoint rule, given by

Mhf =
1

µ

µ−1∑

ℓ=0

f
(
hℓ+

1

2
h
)
, (6.8)

with µ, h as in (6.1). In this case,

u = Ef =⇒ Mhf = σhu
(1

2
h
)
, Mf = Mu

=⇒ Mhf −Mf = ρhu
(1

2
h
)
.

(6.9)

Thus estimates parallel to (6.5)–(6.7) hold for |Mhf −Mf |. For brevity, we
omit mention of Mhf in results below.

We next examine when (6.6) applies to all f ∈ Br
p,∞(I), which, we recall,

consists of the space of restrictions to I of elements of Br
p,∞(T1) (cf. [14],

p. 192). Begin with a result on when we can say Ef ∈ Br
p,∞(T1).

Proposition 6.2 Given p ∈ (1,∞),

E : Br
p,∞(I) −→ Br

p,∞(T1), for
1

p
< r < 1 +

1

p
. (6.10)

Proof. A key ingredient in the proof is the fact ([14], p. 154) thatMχI
g = χIg

satisfies

MχI
: Bs

p,∞(T1) −→ Bs
p,∞(T1), for − 1 +

1

p
< s <

1

p
. (6.11)

One implication of this is that, with Og = (sgn x) Eg,

O : Bs
p,∞(I) −→ Bs

p,∞(T1), −1 +
1

p
< s <

1

p
. (6.12)

Now, given f ∈ Br
p,∞(I), to check whether ∂xEf ∈ Br−1

p,∞(T1), we use

∂xEf = O∂xf. (6.13)

So (6.10) follows from (6.11)–(6.13). �

Putting together (6.6) and (6.10), we obtain:

Corollary 6.3 Given p ∈ (1,∞),

|Thf −Mf | ≤ Chr‖f‖Br
p,∞(I), for

1

p
< r < 2. (6.14)
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Proof. The results (6.6) and (6.10) directly give (6.14) for r ∈ (1/p, 1 +
1/p). If r ∈ [1 + 1/p, 2), we can choose q ∈ (1, p) such that r ∈ (1, 1 +
1/q) and deduce that |Thf −Mf | ≤ Chr‖f‖Br

q,∞(I), which is dominated by

Chr‖f‖Br
p,∞

. �

Using Hr,p(I) ⊂ Br
p,∞(I), we have:

Corollary 6.4 Given p ∈ (1,∞),

|Thf −Mf | ≤ Chr‖f‖Hr,p(I), for
1

p
< r < 2. (6.15)

The endpoint case r = 2 of (6.15) is well known and elementary:

|Thf −Mf | ≤ Ch2‖f ′‖BV . (6.16)

This can be deduced from (2.21) by a reflection argument, or one can get
it directly, without passing to Ef on T

1. See, e.g., [13], p. 128, Exercise 14.
Note also that (2.20) plus a reflection argument gives

|Thf −Mf | ≤ Ch‖f‖BV , (6.17)

given f continuous and of bounded variation on I. For r ∈ (1, 2), the esti-
mate in (6.15) also follows from (6.16)–(6.17), by an interpolation argument,
though this does not work for r ∈ (1/p, 1). In any case, (6.14) does not follow
by interpolation from (6.16)–(6.17).
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