
the Klein Gordon equation at least, both answers can be determined from considerations of group
velocities.

§1.4. Fourier synthesis and rectilinear propagation.

For equations with constant coefficients, solutions of the initial value problem are expressed as
Fourier integrals. Injecting short wavelength initial data and performing an asymptotic analysis
yields the approximations of geometric optics. This is how such approximations were first justified
in the nineteenth century. It is also the motivating example for the more general theory. The short
wavelength approximations explain the rectilinear propagation of waves in homogeneous media.
This is the first of the three basic physical laws of geometric optics. It explains, among other
things, the formation of shadows. The short wavelength solutions are also the building blocks in
the analysis of the laws of reflection and refraction.

Consider the initial value problem

u := utt −∆u :=
∂2u

∂t2
−

d∑

j=1

∂2u

∂x2
j

= 0 , u(0, x) = f , ut(0, x) = g . (1.4.1)

Fourier transformation with respect to the x variables yields

∂2
t û(t, ξ) + |ξ|2 û(t, ξ) = 0 , û(0, ξ) = f̂ , ∂tû(0, ξ) = ĝ .

Solve the ordinary differential equations in t to find

û(t, ξ) = f̂(ξ) cos t|ξ| + ĝ(ξ)
sin t|ξ|
|ξ|

.

Write

cos t|ξ| =
eit|ξ| + e−t|ξ|

2
, sin t|ξ| =

eit|ξ| − e−t|ξ|

2i
,

to find
û(t, ξ) = a+(ξ) ei(xξ−t|ξ|) − a−(ξ) ei(xξ+t|ξ|) , (1.4.2)

with,

2 a+ := f̂ +
ĝ

i|ξ|
, 2 a− := f̂ −

ĝ

i|ξ|
. (1.4.3)

The right hand side of (1.4.2) is an expression in terms of the plane waves ei(xξ∓t|ξ|) with amplitudes
a±(ξ) and dispersion relations τ = ∓|ξ|. The group velocities associated to a± are

v = −∇ξτ = −∇ξ(∓|ξ|) = ±
ξ

|ξ|
.

The solution is the sum of two terms,

uε
±(t, x) :=

1

(2π)d/2

∫
a±(ξ) ei(xξ∓t|ξ|) dξ .

Using F
(
∂u/∂xj

)
= iξj û, and Parseval’s Theorem shows that the conserved energy for the wave

equation is equal to

1

2

∫
|ut(t, x)|2 + |∇xu(t, x)|2 dx =

∫
|ξ|2

(
|a+(ξ)|2 + |a−(ξ)|2

)
dξ .
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There are conservations of all orders. Each of the following quantities is independent of time,

1

2
‖∇t,xu(t)‖2

Hs(Rd) =

∫
〈ξ〉2s |ξ|2

(
|a+(ξ)|2 + |a−(ξ)|2

)
dξ .

Consider initial data a wave packet with wavelength of order ε and phase equal to x1/ε,

uε(0, x) = γ(x) eix1/ε , uε
t(0, x) = 0 , γ ∈ ∩sH

s(Rd) . (1.4.4)

The choice ut = 0 postpones dealing with the factor 1/|ξ| in (1.4.3). The initial value is an envelope
or profile γ multiplied by a rapidly oscillating exponential.

Applying (1.4.3) with g = 0 and with

f̂(ξ) = û(0, ξ) = F
(
γ(x) eix1/ε

)
= γ̂(ξ − e1/ε) ,

yields u = u+ + u− with,

uε
±(t, x) :=

1

2

1

(2π)d/2

∫
γ̂(ξ − e1/ε) ei(xξ∓t|ξ|) dξ .

Analyse uε
+. The other term is analogous. For ease of reading, the subscript plus is omitted.

Introduce
ζ := ξ − e1/ε, ξ = e1 + εζ,

to find,

uε(t, x) =
1

2

1

(2π)d/2

∫
γ̂(ζ) eix(e1+εζ)/ε e−it|e1+εζ|/ε dζ . (1.4.5)

The approximation of geometric optics comes from injecting the first order Taylor approximation,

∣∣e1 + εζ
∣∣ ≈ 1 + εζ1 ,

yielding,

uε
approx :=

1

2

1

(2π)d/2

∫
γ̂(ζ) eix(e1+εζ)/ε e−it(1+εζ1)/ε dζ .

Collecting the rapidly oscillating terms ei(x1−t)/ε which do not depend on ζ gives,

uapprox = ei(x1−t)/ε a(t, x), a(t, x) :=
1

2

1

(2π)d/2

∫
γ̂(ζ) ei(xζ−tζ1) dζ . (1.4.6)

Write x − tζ1 = (x − te1).ζ to find,

a(t, x) =
1

2

1

(2π)d/2

∫
γ̂(ζ) ei(x−te1)ζ dζ =

1

2
γ(x − te1) .

The approximation is a wave translating rigidly with velocity equal to e1. The waveform γ is
arbitrary. The approximate solution resembles the collumnated light from a flashlight. If the
support of γ is small the approximate solution resembles a light ray.

The amplitude a satisfies the transport equation

∂a

∂t
+

∂a

∂x1
= 0
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so is constant on the rays x = x + te1. The construction of a family of short wavelength
approximate solutions of D’Alembert’s wave equations requires only the solutions of a simple
transport equation.

The dispersion relation of the family of plane waves,

ei(x.ξ+τt) = ei(x.ξ−|ξ|t),

is τ = −|ξ|. The velocity of transport, v = (1, 0, . . . , 0), is the group velocity v = −∇ξτ(ξ) = ξ/|ξ|
at ξ = (1, 0, . . . , 0). For the opposite choice of sign the dispersion relation is τ = |ξ|, the group
velocity is −e1, and the rays are the lines x = x − te1.

Had we taken data with oscillatory factor eix.ξ/ε then the propagation would be at the group
velocity ±ξ/|ξ|. The approximate solution would be

1

2

(
ei(x.ξ−t|ξ|)/ε γ

(
x − t

ξ

|ξ|

)
+ ei(x.ξ+t|ξ|)/ε γ

(
x + t

ξ

|ξ|

))
.

The approximate solution (1.4.6) is a function H(x − te1) with H(x) = eix1/ε h(x). When h has
compact support or more generally tends to zero as |x| → ∞ the approximate solution is localized
and has velocity equal to e1. The next result shows that when d > 1, no exact solution can have
this form. In particular the distribution δ(x− e1t) which is the most intuitive notion of a light ray
is not a solution of the wave equation or Maxwell’s equation.

Proposition 1.4.1. If d > 1, s ∈ R, K ∈ Hs(Rd) and u = K(x − e1t) satisfies u = 0, then
K = 0.

Exercise 1.4.1. Prove Proposition 1.4.1. Hint. Prove and use a Lemma. Lemma. If k ≤ d,
s ∈ R, and, w ∈ Hs(Rd) satisfies 0 =

∑d
k ∂2w/∂2xj , then w = 0.

Next, analyse the error in (1.4.6). The first step is to extract the rapidly oscillating factor in (1.4.5)
to define an exact amplitude aε

exact,

uε(t, x) = ei(x1−t)/ε aexact(ε, t, x) ,

aexact(ε, t, x) :=
1

(2π)d/22

∫
γ̂(ζ) eix.ζ e−it(|e1+εζ|−1)/ε dζ . (1.4.7)

Proposition 1.4.2. The exact and approximate solutions of uε = 0 with Cauchy data (1.4.4)
are given by

uε =
∑

±

ei(x1∓t)/ε a±
exact(ε, t, x) , uε

approx =
∑

±

ei(x1∓t)/ε γ(x ∓ e1t)

2
,

as in (1.4.7) and (1.4.6). The error is O(ε) on bounded time intervals. Precisely, there is a constant
C > 0 so that for all s, ε, t,

∥∥∥a±
exact(ε, t, x) −

γ(x ∓ e1t)

2

∥∥∥
Hs(RN )

≤ C ε |t|
∥∥γ

∥∥
Hs+2(Rd)

.
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Proof. It suffices to estimate the error with the plus sign. The definitions yield

a+
exact(ε, t, x) − γ(x − e1t)/2 = C

∫
γ̂(ζ) eix.ζ

(
e−it(|e1+εζ|−1)/ε) − e−itζ1

)
dζ .

The definition of the Hs(Rd) norm yields

∥∥∥a+
exact(ε, t, x) − γ(x − e1t)/2

∥∥∥
Hs(RN )

=
∥∥∥〈ζ〉s γ̂(ζ)

(
e−it(|e1+εζ|−1)/ε − e−itζ1

)∥∥∥
L2(RN )

.

Taylor expansion yields for |β| ≤ 1/2,

| e1 + β | = 1 + β1 + r(β) , |r(β)| ≤ C |β|2 .

Increasing C if needed, the same inequality is true for |β| ≥ 1/2 as well.

Applied to β = εζ this yields,

∣∣∣ t
(∣∣e1 + εζ

∣∣ − 1
)
/ε − ζ1x1

∣∣∣ ≤ C ε |t| |ζ|2 ,

so ∣∣∣e−it(|e1+εζ|−1)/ε − e−itζ1

∣∣∣ ≤ C ε |t| |ζ|2 .

Therefore
∥∥∥〈ζ〉s γ̂(ζ)

(
e−it(|e1+εζ|−1)/ε − e−itζ1

)∥∥∥
L2(Rd)

≤ C ε |t|
∥∥∥〈ζ〉s|ζ|2 γ̂(ζ)

∥∥∥
L2

. (1.4.8)

Combining (1.4.7-1.4.8) yields the estimate of the Proposition.

The approximation retains some accuracy so long as t = o(1/ε).

The approximation has the following geometric interpretation. One has a superposition of plane
waves ei(xξ+t|ξ|) with ξ = (1/ε, 0, . . . , 0) +O(1). Replacing ξ by (1/ε, 0, . . . , 0) and |ξ| by 1/ε in the
plane waves yields the approximation (1.4.6).

The wave vectors, ξ, make an angle O(ε) with e1. The corresponding rays have velocities which
differ by O(ε) so the rays remain close for times small compared with 1/ε. For longer times the fact
that the group velocities are not parallel is important. The wave begins to spread out. Parallel
group velocities is a reasonable approximation for times t = o(1/ε).

The example reveals several scales of time. For times t << ε, u and its gradient are well approxi-
mated by their initial values. For times ε << t << 1 u ≈ ei(x−t)/εa(0, x). The solution begins to
oscillate in time. For t = O(1) the approximation u ≈ a(t, x) ei(x−t)/ε is appropriate. For times
t = O(1/ε) the approximation ceases to be accurate. The more refined approximations valid on
this longer time scale are called diffractive geometric optics. The reader is referred to [Donnat,
Joly Métiver, and Rauch] for an introduction in the spirit of Chapters 7-8.

It is typical of the approximations of geometric optics, that

(
uapprox − uexact

)
= uapprox = O(1) ,

is not small. The error uapprox − uexact = O(ε) is smaller by a factor of ε. The residual uapprox is
rapidly oscillatory, so applying −1 gains the factor ε.
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The analysis just performed can be carried out without fundamental change for initial oscillations
with nonlinear phase. A nice description including the phase shift on crossing a focal point can be
found in [Hörmander 1983, §12.2].

Next the approximation is pushed to higher accuracy with the result that the residuals can be
reduced to O(εN) for any N . Taylor expansion to higher order yields,

|e1 + η| = 1 + η1 +
∑

|α|≥2

cαηα , |η| < 1, (1.4.9)

so (
|e1 + εζ|− 1

)
/ε ∼ ζ1 +

∑

|α|≥2

ε|α|−1 cα ζα,

eit(|e1+εζ|−1)/ε ∼ eitζ1 e
∑

|α|≥2
itε|α|−1 cαζα

∼ eitζ1

(
1 +

∑

j≥1

εj hj(t, ζ)
)

.

Here, hj(t, ζ) is a polynomial in t, ζ. Injecting in the formula for aexact(ε, t, x) yields an expansion

aexact(ε, t, x) ∼ a0(t, x) + ε a1(t, x) + ε2a2(t, x) + · · · , a0(t, x) = γ(x − e1t)/2, (1.4.10)

aj =
1

(2π)−d/2 2

∫
γ̂(ζ) ei(xζ−tζ1) hj(t, ζ) dζ =

1

2

(
hj(t, ∂/i)γ

)
(x − e1t) . (1.4.11)

The series is asymptotic as ε → 0 in the sense of Taylor series. For any s,N , truncating the
series after N terms yields an approximate amplitude which differs from aexact by O(εN+1) in L2

uniformly on compact time intervals. The Hs error for s ≥ 0 is O(εN+1−s).

Exercise 1.4.2. Compute the precise form of the first corrector a1.

Formula (1.4.11) implies that if the Cauchy data are supported in a set O, then the amplitudes aj

are all supported in the tube of rays

T :=
{

(t, x) : x = x + te1, x ∈ O
}

. (1.4.12)

Warning. Though the aj are supported in this tube, it is not true that aε
exact is supported in the

tube. The map ε /→ aexact(ε, t, x) is not analytic. If it were, the Taylor series would converge to
the exact solution which would then have support in the tube. When d ≥ 2, the function u = 0
is the only solution of D’Alembert’s equation with support in a tube of rays with cross section of
finite d dimensional Lebesgue measure. This follows from the fact that for finite energy solutions,
the energy in the tube tends to zero. †

To analyse the oscillatory initial value problem with u(0) = 0, ut(0) = β(x) eix1/ε requires one
more idea to handle the contributions from ξ ≈ 0 in the expression

u(t, x) = (2π)−d/2

∫
sin t|ξ|
|ξ|

β̂
(

ξ −
e1

ε

)
eixξ dξ .

† This is proved by approximation by regular solutions. For Cauchy data in C∞
0 (Rd), the energy

in the tube is O(t(1−d)). This can be proved using the fundamental solution. Alternatively, if the
Fourier transform of the Cauchy data belongs to C∞

0 (Rd
ξ \ 0) one has the same estimate using the

inequality of stationary phase from Appendix 3.II (see Lemma 3.4.2).
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Choose χ ∈ C∞
0 (Rd

ξ) with χ = 1 on a neighborhood of ξ = 0. The cutoff integrand is equal to

χ(ξ)
sin t|ξ|
|ξ|

1

〈ξ − e1/ε〉s
ks(ξ − e1/ε) eixξ , ks(ξ) := 〈ξ〉s β̂(ξ) ∈ L2(Rd

ξ) .

A simple upper bound is,

∥∥∥χ(ξ)
sin t|ξ|
|ξ|

1

〈ξ − e1/ε〉s
∥∥∥

L∞(Rd)
≤ Cs |t| εs , 0 < ε ≤ 1 .

It follows that

∥∥∥χ(ξ)
sin t|ξ|
|ξ|

1

〈ξ − e1/ε〉s
ks(ξ − e1/ε)

∥∥∥
L2(Rd)

≤ Cs |t| εs
∥∥β

∥∥
Hs(Rd)

.

The small frequency contribution is negligable in the limit ε → 0. It is removed with a cutoff as
above and then the analysis away from ξ = 0 proceeds by decomposition into plane wave as in the
case with ut(0) = 0. It yields left and right moving waves with the same phases as before.

Exercise 1.4.3. Solve the Cauchy problem for the anisotropic wave equation, utt = uxx + 4uyy

with initial data given by

uε(0, x) = γ(x) eix.ξ/ε , uε
t(0, x) = 0 , γ ∈ ∩sH

s(Rd) .

Find the leading term in the approximate solution to u+. In particular, find the velocity of
propagation as a function of ξ. Discussion. The velocity is equal to the group velocity from §1.3.

§1.5. A cautionary example in geometric optics.

A typical science text discussion of a mathematics problem involves simplifying the underlying
equations. The usual criterion applied is to ignore terms which are small compared to other terms
in the equation. It is striking that in many of the problems treated under the rubric of geometric
optics, such an approach can lead to completely inaccurate results. It is an example of an area
where more careful mathematical consideration is not only useful but necessary.

Consider the initial value problems

∂tu
ε + ∂xuε + uε = 0 , uε

∣∣
t=0

= a(x) cos(x/ε) ,

in the limit ε → 0. The function a is assumed to be smooth and to vanish rapidly as |x| → ∞ so
the initial value has the form of wave packet. The initial value problem is uniquely solvable and
the solution depends continuously on the data. The exact solution of the general problem

∂tu + ∂xu + u = 0 , u
∣∣
t=0

= f(x) ,

is u(t, x) = e−t f(x− t) so the exact solution uε is

uε(t, x) = e−t a(x − t) cos((x − t)/ε) .

In the limit as ε → 0 one finds that both ∂tuε and ∂xuε are O(1/ε) while uε = O(1) is negligibly
small in comparison. Dropping this small term leads to the simplified equation for an approximation
vε,

∂tv
ε + ∂xvε = 0 , vε

∣∣
t=0

= a(x) cos(x/ε) .
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The exact solution is
vε(t, x) = a(x − t) cos

(
(x − t)/ε

)
,

which misses the exponential decay. It is not a good approximation. The two large terms com-
pensate so that the small term is not negligible compared to their sum.

§1.6. The law of reflection.

Consider the wave equation u = 0 in the half space Rd
− := {x1 ≤ 0}. At {x1 = 0} a boundary

condition is required. The condition encodes the physics of the interaction with the boundary.

Since the differential equation is of second order one might guess that two boundary conditions
are needed as for the Cauchy problem. An analogy with the Dirichlet problem for the Laplace
equation suggests that one condition is required.

A more revealing analysis concerns the case of dimension d = 1. D’Alembert’s formula shows that
at all points of space time the solution consists of the sum of two waves one moving toward the
boundary and the other toward the interior. The waves approaching the boundary will propagate
to the edge of the domain. At the boundary one does not know what values to give to the waves
which move into the domain. The boundary condition must give the value of the incoming wave
in terms of the outgoing wave. That is one boundary condition.

Factoring
∂2

t − ∂2
x = (∂t − ∂x)(∂t + ∂x) = (∂t + ∂x)(∂t − ∂x),

shows that (∂t − ∂x)(ut + ux) = 0 so ut + ux is transported to the left. Similarly, ut − ux moves to
the right. Thus from the initial conditions, ut − ux is determined everywhere in x ≤ 0 including
the boundary x = 0. The boundary condition at {x = 0} must determine ut + ux. The conclusion
is that half of the information needed to find all the first derivatives is already available and one
needs only one boundary condition.

For the Dirichlet condition,
u(t, x)

∣∣
x1=0

= 0 . (1.6.1)

Differentiating (1.6.1) with respect to t shows that ut(t, 0) = 0, so at t = 0 (ut + ux) = −(ut − ux)
showing that at the boundary, the incoming wave is equal to -1 times the outgoing wave.

In the case d ≥ 1 consider the Cauchy data,

u(0, x) = f , ut(0, x) = g , for x1 ≤ 0 . (1.6.2)

If the data are supported in a compact subset of Rd
− then, for small time the support of the solution

does not meet the boundary. When waves hit the boundary they are reflected. The goal of this
section is to describe this reflection process.

Uniqueness of solutions and finite speed of propagation for (1.6.1)-(1.6.2) are both consequences
of a local energy identity. A function is a solution if and only if the real and imaginary parts are
solutions. Thus it suffices to treat the real case for which

ut u = ∂te −
∑

j≥1

∂j(ut∂ju) , e :=
u2

t + |∇xu|2

2
.

Denote by Γ a backward light cone

Γ :=
{

(t, x) : |x − x|2 < t − t
}
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and by Γ̃ the part in {x1 < 0},
Γ̃ := Γ ∩

{
x1 < 0

}
.

For any 0 ≤ s < t the section at time s is denoted

Γ̃(s) := Γ̃ ∩
{
t = s

}
.

Both uniqueness and finite speed follow from the following energy estimate.

Proposition 1.6.1. If u is a smooth solution of (1.6.1)-(1.6.2), then for 0 < t < t,

φ(t) :=

∫

Γ̃(t)
e(t, x) dx

is a nonincreasing function of t.

Proof. Translating the time if necessary it suffices to show that for s > 0, φ(s) ≤ φ(0).

In the identity

0 =

∫

Γ̃∩{0≤t≤s}
ut u dt dx .

Integrate by parts to find integrals over four distinct parts of the boundary. The tops and bottoms
contribute φ(t) and −φ(0) respectively. The intersection of Γ̃(s) with x1 = 0 yields

∫

Γ̃(s)∩{x1=0}
ut ∂1u dt dx2 . . . dxd .

The Dirichlet condition implies that ut = 0 on this boundary so the integral vanishes.

The contribution of the sides |x − x| = t − t yield an integral of

n0 e +
d∑

j=1

nj ut ∂ju ,

where (n0, n1, n2, . . . , nd) is the outward unit normal. Then

n0 =
( d∑

j=1

n2
j

)1/2
=

1√
2

,
∣∣

d∑

j=1

nj ut ∂ju
∣∣ ≤

1√
2
|ut||∇xu| ≤

1√
2

e .

Thus the integrand from the contributions of sides is nonnegative, so the integral over the sides is
nonnegative.

Combining yields

0 =

∫

Γ̃∩{0≤t≤s}
ut u dt dx ≥ φ(t) − φ(0) ,

and the estimate follows.

§1.6.1. The method of images.

Introduce the notations,

x = (x1, x
′), x′ := (x2, . . . , xd), ξ = (ξ1, ξ′), ξ′ := (ξ2, . . . , ξd).
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Definitions. A function f on R1+d is even (resp. odd) in x1 when

f(t, x1, x
′) = f(t,−x1, x

′) resp. f(t,−x1, x
′) = −f(t, x1, x

′).

Define the reflection operator R by

(Rf)(t, x1, x
′) := f(t,−x1, x

′) .

The even (resp. odd) parts of a function f are defined by

f + Rf

2
, resp.

f − Rf

2
.

Proposition 1.6.2. i. If u ∈ C∞(R1+d) is a solution of u = 0 that is odd in x1, then its restiction
to {x1 ≤ 0} is a smooth solution of u = 0 satisfying the Dirichlet boundary condition (1.6.1) .

ii. Conversely, if u ∈ C∞({x1 ≤ 0}) is a smooth solution of u = 0 satisfying (1.6.1) then the
odd extension of u to R1+d is a smooth odd solution of u = 0.

Proof. i. Setting x1 = 0 in the identity u(t, x1, x′) = −u(t,−x1, x′) shows that (1.6.1) is satisfies.

ii. First prove by induction on n that

∀n ≥ 0,
∂2nu

∂2nx1

∣∣∣∣
x1=0

= 0 . (1.6.3)

The case n = 0 is (1.6.1).

Since the derivatives ∂t and ∂j for j > 1 are parallel to the boundary along which u = 0, it follows
that utt and ∂2

j u with j > 1 vanish at x1 = 0. The equation u = 0 implies

∂2u

∂x2
1

=
∂2u

∂t2
−

d∑

j=2

∂2u

∂x2
j

.

The right hand side vanishes on {x1 = 0} proving the case n = 1.

If the case k ≥ 1 is known, apply the case k to the odd solution ∂2
1u to prove the case k + 1. This

completes the proof of (1.6.3).

Denote by ũ, the odd extension of u. It is not hard to prove using Taylor’s theorem that (1.6.3)
is a necessary and sufficient condition for ũ ∈ C∞(R1+d). The equation ũ = 0 for x1 ≥ 0 follows
from the equation in x1 ≤ 0 since ũ is odd.

Example. Suppose that d = 1 and that f ∈ C∞
0 (] − ∞, 0[) so that u = f(x − t) is a solution

of (1.6.1), (1.6.2) representing a wave which approaches the boundary {x = 0} from the left. To
describe the reflection use images as follows. The solution in {x < 0} is the restriction to x < 0
of an odd solution of the wave equation. For x < 0 that solution is equal to the given function in
x < 0 and to minus its reflection in {x > 0},

u = f(x − t) − f(−x− t) .

The formula on the right is an odd solution of the wave equation which is equal to u in t < 0 so is
therefore the solution for all time. The solution u is the restriction to x < 0.
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An example is sketched in the figure. In R1+1 one has an odd solution of the wave equation.

T

x

t

Reflection in dimension d = 1

There is a righward moving wave with postitve profile and a leftward moving wave with negative
profile equal to -1 times the reflection of the first.

Viewed from x < 0, there is a wave with positive profile which arrives at the boundary at time T .
At that time a leftward moving wave seems to emerge from the boundary. It is the reflection of
the wave arriving at the boundary. If the wave arrives at the boundary with amplitude a on an
incoming ray, the reflected wave on the reflected ray has amplitude −a. The coefficient of reflection
is equal to -1. This is the same result found in the first paragraphs of §1.6.

Example. Suppose that d = 3 and in t < 0 one has a spherically symmetric wave approaching the
boundary. Until it reaches the boundary the boundary condition does not play a role. The reflection
is computed by extending the incoming wave to an odd solution consisting of the given solution
and its negative in mirror image. The moment when the original wave reaches the boundary from
the left, its image arrives from the right.

Spherical wave arrives at the boundary

In the figure the wave on the left has positive profile and that on the right a negative profile.
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Spherical wave with reflection

In the figure above the middle line represents the boundary. Viewed from x < 0, the wave on the
left disappears into the boundary and a reflected spherical wave emerges with profile flipped. The
profiles of spherical waves in three space preserve their shape but decrease in amplitude as they
spread.

§1.6.2. The plane wave derivation.

In many texts you will find a derivation which goes as follows. Begin with the plane wave solutions

ei(x.ξ+tτ) , ξ ∈ R
d, τ = ∓|ξ| .

Since u is everywhere of modulus one, no solution of this sort can satisfy the Dirichlet boundary
condition.

Seek a solution of the initial boundary value problem which is a sum of two plane waves,

ei(x.ξ−t|ξ|) + Aei(x.η+tσ) , A ∈ C .

In order that the solutions satisfy the wave equation one must have σ2 = |η|2. In order that the
plane waves sum to zero at x1 = 0 it is necessary and sufficient that η′ = ξ′, σ = −|ξ|, and A = −1.
Since σ2 = |η|2 it follows that |η| = |ξ| so

η = (±ξ1, ξ2, . . . , ξd) .

The sign + yields the solution u = 0. Denote

x̃ := (−x1, x2, . . . , xd), ξ̃ := (−ξ1, ξ2, . . . , ξd).

The sign minus yields the interesting solution.

ei(x.ξ−t|ξ|) − ei(x.ξ̃−t|ξ̃|)

which is twice the odd part of ei(x.ξ−t|ξ|).

The textbook interpretation of the solution with τ = −|ξ| and ξ1 > 0 is that ei(x.ξ−t|ξ|) is a plane

wave approaching the boundary x1 = 0, and ei(x.ξ̃−t|ξ̃|) moves away from the boundary. The first is
an incident wave and the second is a reflected wave. The factor A = −1 is the reflection coefficient.
The direction of motions are given group velocity computed from the dispersion relation.

Both waves are of infinite extent and of modulus one everywhere in space time. They have finite
energy density but infinite energy. They both meet the boundary at all times. It is questionable
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to think of either one as incoming or reflected. The next subsection shows that there are localized
waves which are clearly incoming and reflected waves with the property that when they interact
with the boundary the local behavior resembles the plane waves.

For more general mixed initial boundary value problems, there are other wave forms which need
to be included. The key is that solutions of the form ei(x.ξ+tτ) are acceptable in x1 < 0 for ξ′, τ
real and Im ξ1 ≤ 0. When Im ξ1 < 0 the associated waves are localized near the boundary. The
Rayleigh waves in elasticity are a classic example. They carry the devastating energy of earth
quakes. Waves of this sort which do not propagate are needed to analyse total reflection which is
described at the end of §1.7. The reader is referred to [Benzoni-Gavage - Serre], [Chazarain-Piriou],
[Taylor 1981], [Hormander 1982 v.II], [Sakamoto], for more information.

§1.6.3. Reflected high frequency wave packets.

Consider solutions which for small time are equal to high frequency solutions from §1.3,

uε = ei(x.ξ−t|ξ|)/ε a(ε, t, x) , a(ε, t, x) ∼ a0(t, x) + ε a1(t, x) + · · · , (1.6.5)

with
ξ = (ξ1, ξ2, . . . , ξd) , ξ1 > 0 .

Then a0(t, x) = h(x− tξ/|ξ|) is constant on the rays x+ tξ/|ξ|. If the Cauchy data are supported
in a set O ⊂⊂ {x1 < 0} then the amplitudes aj are supported in the tube of rays

T :=
{

(t, x) : x = x + tξ/|ξ|, x ∈ O
}

, (1.6.6)

Finite speed shows that the wave as well as the geometric optics approximation stays strictly to
the left of the boundary for small t > 0.

The method of images computes the reflection. Define vε to be the reversed mirror image solution,

vε(t, x1, x2, . . . , xd) := −uε(t,−x1, x2, . . . , xd) .

The solution of the Dirichlet problem is then equal to the restriction of uε + vε to {x1 ≤ 0}.
Then

ṽε = − ei(x̃.ξ−t)/ε h(x̃− tξ) + h.o.t = − ei(x̃.ξ−t)/ε h̃(x − tξ̃) + h.o.t .

To leading order, uε + vε is equal to

ei(x.ξ−t)/ε h(x− tξ) − ei(x̃.ξ−t)/ε h̃(x − tξ̃) . (1.6.7)

The wave represented by uε has leading term which moves with velocity ξ/|ξ|. The wave corre-
sponding to vε has leading term with velocity ξ̃/|ξ̃|. which comes from ξ/|ξ| by reversing the first
component. At the boundary x1 = 0, the tangential components of ξ/|ξ| and ξ̃/|ξ̃| are equal and
their normal components are opposite. The directions are related by the standard law that the
angle of incidence equals the angle of reflection. The amplitude of the reflected wave vε on the
reflected ray is equal to −1 time the amplitude of the incoming wave uε on the incoming wave.
This is summarized by the statement that the reflection coefficient is equal to −1.

Suppose that t, x is a point on the boundary and O in a neighborhood of size large compared to
the wavelength ε and small compared to the scale on which h varies. Then, on O, the solution is
approximately equal to

ei(x.ξ−t)/ε h(x − tξ/|ξ|) − ei(x̃.ξ−t)/ε h̃(x − tξ̃/|ξ̃|) .
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This recovers the reflected plane waves of §1.6.2. An observer on such an intermediate scale sees
the structure of the plane waves. Thus, even though the plane waves are completely nonlocal, the
asymptotic solutions of geometric optics shows that they predict the local behavior at points of
reflection.

The method of images also solves the Neumann boundary value problem in a half space using even
mirror reflection in x1 = 0. It shows that for the Neumann condition, the reflection coefficient is
equal to 1.

Proposition 1.6.2. i. If u ∈ C∞(R1+d) is an even solution of u = 0, then its restiction to
{x1 ≤ 0} is a smooth solution of u = 0 satisfying the Neumann boundary condition

∂1u|x1=0 = 0 , (1.6.8)

ii. Conversely, if u ∈ C∞({x1 ≤ 0}) is a smooth solution of u = 0 satisfying (1.6.8) then the
even extension of u to R1+d is a smooth odd solution of u = 0.

The analogue of (1.6.3) in this case is

∀n ≥ 0,
∂2n+1u

∂x2n+1
1

∣∣∣∣
x1=0

= 0 . (1.6.9)

Exercise 1.6.1. Prove the Proposition.

Exercise 1.6.2. Prove uniqueness of solutions by the energy method. Hint. Use the local energy
identity.

Exercise 1.6.3 Verify the assertion concerning the reflection coefficient by following the examples
above. That is, consider the case of dimension d = 1, the case of spherical waves with d = 3 and
the behavior in the future of a solution which near t = 0 is a high frequency asymptotic solution
approaching the boundary.

§1.7. Snell’s law of refraction.

Refraction is the bending of waves as they pass through media whose propagation speeds vary from
point to point. The simplest situation is when media with different speeds occupy half spaces, for
example x1 < 0 and x1 > 0. The classical physical situations are when light passes from air to
water or from air to glass. It is observed that the angles of incidence and refraction are so that for
fixed materials the ratio sin θi/ sin θr is independent of the incidence angle. Fermat observed that
this would hold if the speed of light were different in the two media and light light path was a path
of least time. In that case, the quotient of sines equal to the ratio of the speeds, ci/cr. In this
section we derive this behavior for a model problem quite close to the natural Maxwell equations.

The simplified model with the same geometry is,

utt −∆u = 0 in x1 < 0 , utt − c2 ∆u = 0 in x1 > 0 , 0 < c < 1 . (1.7.1)

In x1 < 0 the speed is equal to 1 which is greater than the speed c in x > 0. To see that c is the speed
of the latter equation one can factor the one dimensional operator ∂2

t − c2∂2
x = (∂t = c∂x)(∂t− c∂x)

or use the formula for group velocity with dispersion relation τ2 = |ξ|2.
A transmission condition is required at x1 = 0 to encode the interaction of waves with the interface.
In the one dimesional case, there are waves which approach the boundary from both sides. The
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waves which move from the boundary into the interior must be determined from the waves which
arrive from the interior. There are two arriving waves and two departing waves. One needs two
boundary conditions.

We analyse the transmission condition that imposes continuity of u and ∂1u across {x1 = 0}. Seek
solutions of (1.7.1) satsifying the transmission condition,

u(t, 0−, x′) = u(t, 0+, x′) , ∂1u(t, 0−, x′) = ∂1u(t, 0+, x′) . (1.7.2)

Denote by square brackets the jump

[
u
]
(t, x′) := u(t, 0+, x′) − u(t, 0−, x′) .

The transmission condition is then

[
u
]

= 0 ,
[
∂1u

]
= 0 .

For solutions which are smooth on both sides of the boundary {x1 = 0}, the transmission condition
(1.7.2) and be differentiated in t or x2, . . . , xd to find

[
∂β

t,x′u
]

= 0 ,
[
∂β

t,x′∂1u
]

= 0 . (1.7.3)

The partial differential equations then imply that in x1 < 0 and x1 > 0 respectively one has

∂2u

∂x2
1

=
∂2u

∂t2
−

d∑

j=2

∂2u

∂x2
j

,
∂2u

∂x2
1

=
1

c2

∂2u

∂t2
−

d∑

j=2

∂2u

∂x2
j

,

Therefore at the boundary [
∂2u

∂x2
1

]
=

(
1 −

1

c2

)
∂2u

∂t2
.

The second derivative ∂2
1u is expected to be discontinuous at {x1 = 0}.

The physical conditions for Maxwell’s Equations at an air-water or air-glass interface can be anal-
ysed in the same way. In that case, the dielectric constant is discontinuous at the interface.

Define

γ(x) :=






1 when x1 > 0

c−2 when x1 < 0 ,
e(t, x) :=

γ u2
t + |∇xu|2

2
,

From (1.7.1) it follows that solutions suitably small at infinity satisfy

∂t

∫

x1<0
e dx =

∫
ut(t, 0

−, x′) ∂1u(t, 0+, x′) dx′ ,

∂t

∫

x1>0
e dx = −

∫
ut(t, 0

+, x′) ∂1u(t, 0+, x′) dx′ .

The transmission condition guarantees that the terms on the right compensate exactly so

∂t

∫

R3

e dx = 0 .
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This suffices to prove uniqueness of solutions. A localized argument as in §1.6.1, shows that signals
travel at most at speed one.

Exercise 1.7.1. Prove this finite speed result.

A function u(t, x) is called piecewise smooth if its restriction to x1 < 0 (resp. x1 > 0) has a
C∞ extension to x1 ≤ 0 (resp. x1 ≥ 0). The Cauchy data of piecewise smooth solutions must be
piecewise smooth (with the analogous definition for functions of x only). They must, in addition,
satisfy conditions analogous to (1.6.3).

Propostion 1.7.1. If u is a piecewise smooth solutions u of the transmission problem, then the
partial derivatives satisfy the sequence of compatibility conditions, for all j ≥ 0,

∆j{u, ut}(t, 0−, x2, x3) = (c2∆)j{u, ut}(t, 0+, x2, x3) ,

∆j∂1{u, , ut}(t, 0−, x2, x3) = (c2∆)j∂1{u, ut}(t, 0+, x2, x3) .

ii. Conversely, if the piecewise smooth f, g satisfy for all j ≥ 0,

∆j{f, g}(0−, x2, x3) = (c2∆)j{f, g}(0+, x2, x3) , (1.7.4)

∆j∂1{f, g}(0−, x2, x3) = (c2∆)j∂1{f, g}(0+, x2, x3) , (1.7.5)

then there is a piecewise smooth solution with these Cauchy data.

Proof. i. If u is a piecewise smooth solution then so is ∂j
t u for any j. Use (1.7.2) for pure time

derivatives, [
∂j

t u
]

= 0 ,
[
∂j

t ∂1u
]

= 0 . (1.7.6)

The case j = 1 yields the necessary condition

[
g
]

= 0 ,
[
∂1g

]
= 0 .

For the higher orders, compute with k ≥ 1,

∂2k
t u

∣∣
t=0

=






∆ku when x1 < 0

(c2∆)ku when x1 > 0,

∂2k−1
t u

∣∣
t=0

=






∆ku when x1 < 0

(c2∆)ku when x1 > 0.

Thus, the transmission conditions (1.7.6) proves i.

The proof of ii. is technical, interesting, and omitted. One can construct solutions using finite
differences almost as in §2.2. The shortest existence proof to state uses the spectral theorem for self
adjoint operators.∗ The general regularity theory for such transmission problems can be obtained

∗ For those with sufficient background, the Hilbert space is H := L2(Rd ; γ dx).

D(A) :=
{
w ∈ H2(Rd

+) ∩ H2(Rd
−) : [w] = [∂1w] = 0

}
,
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by folding them to a boundary value problem and using the results of [Rauch-Massey, Sakamoto].

Next consider the mathematical problem whose solution explains Snell’s law. The idea is to send
a wave in x1 < 0 toward the boundary and ask how it behaves in the future. Suppose

ξ ∈ R
d, |ξ| = 1 , ξ1 > 0 ,

and consider a short wavelength asymptotic solution in {x1 < 0} as in §1.6.3,

Iε ∼ ei(x.ξ−t)/ε a(ε, t, x) , a(ε, t, x) ∼ a0(t, x) + ε a1(t, x) + · · · , (1.7.5)

where for t < 0 the support of the aj is contained in a tube of rays with compact cross section
and moving with speed ξ. One can take a to vanish outside the tube. Since the incoming waves
are smooth and initially vanish identically on a neighborhood of the interface {x1 = 0}, the
compatibilities are satisfied and there is a family of piecewise smooth solutions uε defined on R1+d.
The tools prepared yield an infinitely accurate description of the family of solutions uε.

To solve the problem, seek an asymptotic solution which at {t = 0} is equal to this incoming wave.
A first idea is to find a transmitted wave which continues the incoming wave into {x1} > 0.

Seek the transmitted wave in x1 > 0 in the form

T ε ∼ ei(x.η+tτ)/ε d(ε, t, x) , d(ε, t, x) ∼ d0(t, x) + ε d1(t, x) + · · · ,

In order that this be an approximate solution moving away from the interface one must have

τ2 = c2|η|2, |η| = 1/c .

The incoming wave, when restricted to the interface x1 = 0 oscillates with phase (x′.ξ′ − t)/ε. At
the interface, the proposed transmitted wave oscillates with phase (x′.η′ − tτ)/ε. In order that
there be any chance at all of satisfying the transmission condtions one must take

η′ = ξ′, τ = −1,

so that the two expressions oscillate together.

Aw := ∆w in x1 < 0, Aw := c2∆ in x1 > 0 .

Then,

(Au, v)H = (u,Av)H = −
∫

∇u.∇v dx ,

so −A ≥ 0. The elliptic regularity theorem implies that A is self adjoint. The regularity theorem
is proved, for example, by the methods in [Rauch 1992, Chapter 10]. The solution of the initial
value problem is

u = cos t
√
−A f +

sin t
√
−A√

−A
g .

For piecwise H∞ data, the sequence of compatibilities is equivalent to the data belonging to
∩jD(Aj).
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The equation τ2 = c2|η|2 implies

η2
1 =

τ2

c2
− |η′|2 =

1

c2
− |ξ′|2 .

Impose η1 > 0 so the transmitted wave moves into the region x1 > 0 to find

η1 =

(
1

c2
− |ξ′|2

)1/2

> ξ1.

Thus,

T ε ∼ ei(x.η−t)/ε d(ε, t, x) , η =

((
1

c2
− |ξ′|2

)1/2

, ξ′
)

. (1.7.6)

From section 1.6.3 we know that the leading amplitude d0 must be constant on the rays t /→
(t, x + c t η/|η|). To determine d0 it suffices to know the values d0(t, 0+, x′) at the interface. One
could choose d0 to guarantee the continuity of u or of ∂1u, but not both. One cannot construct an
good approximated solution consisting of just an incident and transmitted wave.

Add to the recipe a reflected wave. Seek a reflected wave in x1 ≥ 0 in the form

Rε ∼ ei(x.ζ+tσ)/ε b(ε, t, x) , b(ε, t, x) ∼ b0(t, x) + ε b1(t, x) + · · · .

In order that the reflected wave oscillate with the same phase as the incident wave in the boundary
x1 = 0, one must have ζ ′ = ξ′ and σ = −1. To satisfy the wave equation in x1 < 0 requires
σ2 = |ζ|2. Together these imply ζ2

1 = ξ2
1 . To have propagation away from the boundary requires

ζ1 = −ξ1 so ζ = ξ̃. Therefore,

Rε ∼ ei(x.ξ̃−t)/ε b(ε, t, x) , b(ε, t, x) ∼ b0(t, x) + ε b1(t, x) + · · · . (1.7.7)

Summarizing seek

vε =

{
Iε + Rε in x1 < 0

T ε in x1 > 0
.

The continuity required at x1 = 0 forces

ei(x′.ξ′−t)/ε (a(ε, t, 0, x′) + b(ε, t, 0, x′)) = ei(x′.ξ′−t)/ε d(ε, t, 0, x′) . (1.7.8)

The continuity of u and ∂1u hold if and only if at x1 = 0 one has

a + b = d , and,
iξ1

ε
a + ∂1a −

iξ1

ε
b + ∂1b =

iη1

ε
d + ∂1d . (1.7.9)

The first of these relations yields

(
aj + bj − dj

)

x1=0
= 0, j = 0, 1, 2, . . . , (1.7.10)

The second relation in (1.7.9) is expanded in powers of ε. The coefficients of εj must match for all
all j ≥ −1. The leading order is ε−1 and yields

(
a0 − b0 − (η1/ξ1)d0

)
x1=0

= 0 . (1.7.11)
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Since a0 is known, the j = 0 equation from (1.7.10) together with (1.7.11) yield a system of two
linear equations for the two unknown b0, d0

(
−1 1
1 η1/ξ1

) (
b0

d0

)
=

(
a0

a0

)
.

Since the matrix is invertible, this determines the values of b0 and d0 at x1 = 0.

The amplitude b0 (resp. d0) is constant on rays with velocity ξ̃ (resp. cη/|η|). Thus the leading
amplitudes are determined throughout the half spaces on which they are defined.

Once these leading terms are known the ε0 term from the second equation in (1.7.9) shows that on
x1 = 0,

a1 − b1 − d1 = known .

Note that a1 is also known so that together with the case j = 2 from (1.7.10) this suffices to
determine b1, d1 on x1 = 0. Each satisfies a transport equation along rays which is the analogue of
(1.4.12). Thus from the initial values just computed on x1 = 0 they are determined everywhere.
The higher order correctors are detemined analogously.

Once the bj , dj are determined, one can choose b, c as functions of ε with the known Taylor ex-
pansions at x = 0. They can be chosen to have supports in the appropriate tubes of rays and to
satisfy the transmission conditions (1.7.9) exactly.

The function uε is then an infinitely accurate approximate solution in the sense that it satisfies the
transmission and initial conditions exactly while the residuals

vε
tt −∆ vε := rε in x1 < 0 , vε

tt − c2 ∆ vε := ρε,

satisfy for all N, s, T there is a C so that

∥∥rε
∥∥

Hs([−T,T ]×{x1<0})
+

∥∥ρε
∥∥

Hs([−T,T ]×{x1>0})
≤ C εN .

From the analysis of the transmission problem it follows that with new constants,

∥∥uε − vε
∥∥

Hs([−T,T ]×{x1>0})
≤ C εN .

The proposed problem of describing the family of solutions uε is solved.

The angles of incidence and refraction, θi and θr, given by the directions of propagation of the
incident and transmitted waves. From the figure

’

ξ ’

ξ

η

η

one finds,

sin θi =
|ξ′|
|ξ|

, and, sin θr =
|η′|
|η|

=
|ξ′|
|ξ|/c

.
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Therefore
sin θi

sin θr
=

1

c
,

is independent of θi. The high frequency asymptotic solutions explain Snell’s law. This is the last
of the three basic laws of geometric optics. The law depends only on the phases. The phases are
determined by the requirement that the restriction of the phases to x1 = 0 equal the restriction
of the incoming phase. They do not depend on the transmission condition that we chose. It is
for this reason that the conclusion is the same for the correct transmission problem for Maxwell’s
equations.

On a neighborhood (t, x) ∈ {x1 = 0} which is small compared to the scale on which a, b, c vary
and large compared to ε, the solution resembles three interacting plane waves. In science texts
one usually computes for which such triples the transmission condition is satisfied in order to find
Snell’s law. The asymmptotic solutions of geometric optics show how to overcome the criticism
that the plane waves have modulus independent of (t, x) so cannot reasonably be viewed as either
incoming or outgoing.

For a more complete discussion of reflection and refraction see [Taylor 1981, Benzoni-Gavage and
Serre]. In particular these treat the phenomenon of total reflection which can anticipated as
follows. From Snell’s law one sees that sin θr < 1/c and approaches that value as θi approaches
π/2. The refracted rays lie in the cone θr < arcsin(1/c). Reversing time shows that light rays
from below approaching the surface at angles smaller than this critical angle traverse the surface
tracing backward the old incident rays. For angles larger than arcsin(1/c) there is no continuation
as a ray above the surface possible. One can show by constructing infinitely accurate approximate
solutions that there is total reflection. Below the surface there is a reflected ray with the usual law
of reflection. The role of a third wave is played by a boundary layer of thickness ∼ ε above which
the solution is O(ε∞).
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