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Abstract

We present an algorithm for constructing approximate solutions to nonlinear
wave propagation problems in which diffractive effects and nonlinear effects
come into play on the same time scale. The approximate solutions describe the
propagation of short pulses. In a separate paper the equations used to construct
the approximate solutions are derived using the method of multiple scales and
the approximate solutions are proved accurate in the short wavelength limit.
We present numerical studies which even in the linear case indicate significant
qualitative differences between these approximations and those derived using
the slowly varying envelope ansatz.

1 Introduction

Wave propagation problems from water waves to electromagnetic waves have
been studied through high frequency asymptotics, analyzing the solutions in
the limit as the wavelength approaches zero. Solutions are often assumed to
be wavetrains, expressed as a slowly varying amplitude multiplying a rapidly
oscillating phase such as A(t, z)e!k@—«t/e To see diffractive effects, a slow time
scale T' = et is introduced, leading to solutions of the form A(et, t, z)etk-e—wt)/e,
This approach, applied to nonlinear Maxwell’s equations, yields the Nonlinear
Schrédinger equation (NLS) as a description of the evolution of the amplitude
function A(T,t,z). Note that the variations in the amplitude A happen on
space-time scales O(1) and O(1/¢), much slower than the variations in the
phase e%“/¢ which happen on space-time scale O(¢). The equations determining
the amplitude A(T,t,x) are simpler than the original system and A does not
vary on the short scale € so the equations can be solved numerically without
using an O(g) mesh.

The development of ultrafast lasers in the last decade raises questions about
the slowly varying amplitude assumption. These lasers typically pass a point in
times measured in femtoseconds and contain only a few wavelengths. Currently
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Figure 1: Example of a Wavetrain and a Short Pulse

scientists are working to develop lasers which produce “Half Cycle Pulses” [1].
The output of these lasers last only half a wavelength. Figure 1 gives examples
of a wavetrain, lasting many wavelengths, and a short pulse.

Notice that the wavetrain oscillates rapidly, and can be considered to have
integral zero. In other words, the spectrum of the wavetrain has no DC com-
ponent. This description does not apply to the short pulse solution. In fact,
ultrafast laser pulses are created using a broad spectrum including low frequency
components. This difference lies at the heart of the different profile equations
which describe the propagation of wavetrains or short pulses, as discussed at
the end of Section 3.

Two major approaches have been used to address this problem. The full
Maxwell’s equations can be studied as in [2]-[6]. This approach yields important
insight into the differences between short pulse and wavetrain solutions, but is
costly. Few physical experiments yield explicit solutions and computations on
the full system must use a mesh which resolves the solution on the small O(g)
scale.

Another line of inquiry, taken in [7]-[12] uses asymptotics to derive new ap-
proximate solutions valid for short pulse initial data. Sometimes weaker assump-
tions about the pulse length or the evolution of the amplitude are substituted
for the slowly varying envelope assumption.

In this Letter we present an approximate solution derived by asymptotic
analysis. Note that we make few assumptions, clearly stated in Section 3 and
derive approximate solutions for an entire class of nonlinear wave propagation
problems. This gives a result more general than those in [7] - [12] while avoiding
the intensive computations of [2] - [6].

2 Asymptotics for a Linear Example

First we consider the linear case, because an explicit solution can be found using
Fourier analysis. Consider solutions of the wave equation for ¢,z € R!*2:

Ofu—02 u—02u=0.

Denote by € a small parameter, representing the wavelength of light. Consider
the wavetrain with initial data having slowly varying amplitude, given by

uf (0,21, 22) = f(21,20)e™1/® Ouf(0,21,22) = 0.



The solution is a sum of the terms
1 2 (-
ui(t o) = - / f(& = 1/e, &) 7D de,

Make the change of variables (¢1,(2) = (& — 1/¢,£2), and expand the expo-
nent in powers of € to find

2
elél = V1 +e0)? + (@) ~ 1+eG + %C% +0(le¢l?) (1)

Using the leading term 1 + £(; in the integral yields

us, (t,7) ~ ie"(“*”/ : / F(O e @F) iz ge = () Tt 24)e@FD/2 1L O(et).

In other words, for times ¢ < 1/¢, the solution u%. travels with speed £1 in
the positive z; direction without changing shape.

This approximation has a clear flaw. Amplitudes remain constant along
rays £1 — t = ¢, however exact solutions to the wave equation on R%;z decay
like t~1/2 as t — co. Therefore for long times, a more accurate asymptotic
description is needed which includes diffractive effects. This can be found by
including the next term in (1):

1 3 - £ ) i€ 2 7 1\Z1— i2Z2
ui(t,m)wﬂe’(“ 8/ /f(C)e 82 /2iC1 (@1—1) giC22 )

To analyze this formula, introduce the slow time variable T' = et. Then
us (t,x) = A(et,z; — t, x9)e! @171/ where

1 ~ . . .
AT) = o [ f(Qe 8 e @)
7r
Note that A(T,z1,x2) satisfies the Schrodinger equation:
i
OrA = —3 2,4 A0, x1,22) = f(x1,22) 3)
This is how the Schrédinger equation arises to describe the evolution of

amplitudes of wavetrain solutions.

Differences arise when short pulse initial data are studied. Consider solutions
with new initial data:

u(0,21,22) = f(22,71/¢) O,uf(0,21,22) =0

where lim,, _, o f(22,¢) = 0. These initial data represent a pulse of width O(e)
in z; and width O(1) in z3. Such initial data better describe the output of an
ultrafast laser. The width in the z» direction could correspond to the width of
the laser beam.

The short pulse solution is a sum of the terms

1 A .
W (t2) = o= [ ef(En sl Dg

Make the change of variables p = €£; and expand the exponent in powers of

€ to find

okl = /T Gl ~ 1ol (1+ S s o)



Using the leading term [p| in the integral, and regrouping u5. yields a sum
of terms of the form

ui(t,z) ~ % /f(§2,P)eingei”(m?t)/sd&dp = f(z2, (21 Ft)/e) + Ofet).

This has the same form, valid for times ¢t < 1/e, as found for wavetrain
initial data, and faces the same problems. Again we include additional terms
from (4) to find an asymptotic description valid for longer times. The additional
terms yield

1 A .o ) .
ui(t,z) ~ yy /f(§2,p)e¢’5t§2/2”e'52z2e’f’(zﬁt)/gd@dp_

Introduce the slow time variable T' = et. Then u? (t,x) ~ B(et, z2, (x1—t)/€)
where

1 . . . .
B(Taa¢) = o [ fle e T8 e dtady

Note that B(T,z2, ) satisfies a different linear equation.
1
6Ta¢>B = _§ 632B B(O, T2, 90) = f($25 (P) (5)

Differences emerge even in the linear case because of the different form of the
initial data. Section 4 shows some qualitative differences between the wavetrain
approximation given by (3) and the short pulse approximation given by (5).

3 Nonlinear Problem

An approximate solution can be constructed for a general class of semilinear
problems. Let y = (t,z) € RS‘H and consider the behavior for t ~ 1/e of
solutions to a system of equations

L(9,)u® + ®(u®) =0 u®(0,z2) =P f(z, (k- x)/e) (6)

where k € R%, which satisfies the following assumptions.

Assumption 0. Short pulse initial data. The function f(z,¢) is in H*(RZ1})
for all s > 0 and decays rapidly in .

Assumption 1. Symmetric hyperbolicity. The operator L(J,) can be written

as 0, +Z;l:1 A;0,, where the coefficients A; are N x N are hermitian symmetric
matrices. This condition holds for most wave equations.

Assumption 2. Order J nonlinearity. The nonlinear function ®(u) is of order
J > 2 in the sense that for all || < J —1, 93®(0) = 0. We denote by ® ;(u)
the homogeneous polynomial of degree J which is the first nonzero term of the
Taylor expansion of ®(u) about 0. For optics applications, typically J = 2 or
J=3.

We then seek an approximate solution of the form
U (y) = 6IJ[JO (T7 Y, 90) (7)
T=ct,o=(k-z—wt)/e

Assumption 3. Smooth characteristic variety. w and k satisfy the dispersion
relation smoothly. In other words, the matrix L(w, k) is singular, equivalently



(w, k) is characteristic, and the characteristic variety is smooth there. Fix k = kg
and write w = w(ko).

Assumption 4. Magnitude of the solution. The exponent p is chosen so that
p =1/(1 — J). This insures that nonlinear effects and diffractive effects both
have the same order of magnitude and come into play on the same time scale.

Definition 1. Define the orthogonal projection operator @ = m(kg) which
projects into the kernel of L(w, ko). Define a partial inverse @) (ko) by

Qmr=0 QL(w, ko)w = (I — m)w
for all vectors w € R4.

Assumption 5. Polarization. Both Uy and the initial data f satisfy the polar-
ization condition 7Uo (T, y,p) = Uo(T,y, ) and 7 f(x,p) = f(z, ).

Definition 2. Define the group velocity v by

Ow
v = (v1,...,0q) where v; = ——— ®)
! Ok | ek
Definition 3. Define the second order differential operator R(9,) by
d
1 62(4) 62
R(3,) 2 1221 k10K |y, D710 (9)

The approximate solution U¢(y) in (7) is determined by ?Uy (T, y, ) which
can be written
UO(T; Y, (P) = F(T,SL' - Uta (P) (10)

where F(T,x, ) satisfies
070, F + R(O,)F +0,78,(F) =0  F(0,5,0) = f(x,) (1)

Equation (11) is a bit unusual, and the surface T' = 0 is characteristic. Theo-
rem 1, proved in [13] and [14] shows that this initial value problem has a unique
local solution F € N,C([0,T*); H*(R4t!)). By imposing an additional bound-
ary condition and seeking a solution in L*(RZ*1), a unique solution is selected.
If the initial data have derivatives in L?, the solution will be in appropriate
Sobolev spaces. Precisely:

Theorem 1 Given f(x,p) in Ngso H S(Rg’t}), there exists a mazimal (possi-
bly infinite) time T* > 0 and a unique function F(T,z,p) in Ng>o C([0,T*) :
H*(RZH1)) which solves

8r0,F = —R(,)F — 8,7® ;(F)
F(0,2,9) = f(z, ).

Equations (10) and (11) can be used to construct an approximate solution
Ue(y) := ePUp(et, y, (ko - * — wt)/e). Theorem 2, proved in [13] and [14] shows
that U®(y) provides a good approximation to the exact solution of (6). Stan-
dard Sobolev norms cannot be used to show convergence because derivatives
of the approximate solution typically grow like 1/¢ and hence are not bounded
independent of ¢. Define a set of directions in RY, 81, ..., 0_, to be a basis for
the set of constant coefficient vector fields that vanish on kg - z. Define 8 to
be one of the remaining directions, chosen so that 8+ (kg - z) = 1.



Theorem 2 The percentage error of the approximate solution goes to zero as
€—0. For oll T <T* and all o, 8

lim  sup

tim sy €047 @) W) = VW) gy =0

and

1
1. - 1o 1AV¢] £ — € =
o €70 (0 0) U)oy =

142

¢ - In this case, the differential operator

Example: The wave equation on R,
L(9,) is given by

c c 1 0 c 01 c
L(9,)u® := Ou +(0 1 )6:01“ —}—(1 0 )amu

Choose kg = (1,0). Then w = w(kg) = 1, the group velocity v = (1,0), and
the differential operator R(9,) = 102 . Let ®(u) be a cubic nonlinearity. This
determines the exponent p = 1/2. The approximate solution U¢(y) is then given
by Us(y) = \/EUO(Et,y, (wl - t)/&) where Uo(T,y,(,D) = F(T7 I — t7$27§0) and
F(t,x, ) satisfies

1
I, F = —§3§2F —0,m®(F)  F(0,2,¢) = f(z,¢) (12)

Difference from Wavetrain Approximation. The slowly varying ampli-
tude equation is related to equation (11). The SVEA approximation constructs
a function Up(T,y,0) which is 27 periodic in 6 and satisfies fozw Uopdf = 0.
The function Uy(T,y,0) also satisfies equation (11), and because it has dis-
crete spectrum with mean zero, 0, 1U()(T,y,é?) is bounded. For models with
monochromatic solutions, 0, ! becomes —% leading to an equation such as the
Nonlinear Schrédinger Equation (NLS),

opU = ;—k6§2U+U|U|2. (13)

4 Numerics

At this point one would like to compare directly the predictions of the short
pulse approximation and the wavetrain approximation in a problem like the
example at the end of Section 3. Difficulties arise when trying to compute a
solution to an equation like (13) with initial data which decay on the O(¢) scale.
Treating the short pulse as a slowly varying amplitude requires introduction of
the parameter € into the function. This requires that computations for the NLS
be performed on an extremely fine mesh to capture behavior on the O(g) scale.
The short pulse approximation is adapted to such initial data and the parameter
€ does not appear in the computations.

Because the wavetrain approximation could not be computed reliably with
short pulse initial data, we compare the two approximations in a specific linear
example where choice of € is not required. The choice of initial data yields
an explicit solution for the wavetrain approximation. Even in this linear case,
clear differences occur between the wavetrain and short pulse approximations.



Choose the initial datum to be u®(0,z1,z2) = e—(21/2) =23 sin(zy /). The
wavetrain approximation considers the “slowly varying amplitude” A(0, z1, z2)
to be e~(#1/2)*e=73_ Of course this is preposterous, because it decays on a length
scale O(g). Because of the specific form of the initial datum, an explicit solution
for A°(T,x1,x2) can be found at T' = 1 = &t, namely

e—T5/5 1225 /5

———— | sin(z1/e
Viza )
With the same initial datum, the short pulse asymptotics constructs an ap-

proximate solution B(et, z2, 1 /) where B(T, z2, ) satisfies (5). This equation

can be solved numerically using a spectral method. The ODE on the Fourier
side is solved using a Crank-Nicholson method.

A (1,21,20) = e~ @/’ R ( (14)

Figure 2 shows a the solution of (5) with the same initial datum, at time
t = 1/e. Note the emergence of the additional pulse at the trailing edge, and
the splitting of the pulse in the transverse, or z2, direction.

0.3

-10 -15 -10 -5

2 (x,~t)e

Figure 2: Solution to (5) at time et = 1

The numerical short pulse solution can be compared to the explicit formula
(14) resulting from an unfounded slowly varying amplitude assumption. Striking
qualitative differences between the two approximations emerge.

Figure 3 shows a cross section for x, fixed at 0. For x; — ¢ > 0, the two
approximations agree fairly closely. On the other side, the short pulse approx-
imation has a significantly greater amplitude. This shift of the energy to the
trailing edge of the pulse confirms the numerical studies of Rothenberg [7] and
reveals qualitative errors resulting from inappropriately using the wavetrain ap-
proximation.

Figure 4 shows two transverse cross sections, for z; — ¢ fixed. In the trailing
edge, for 1 —t < 0, the short pulse approximation gives a narrower solution.
This explains how the trailing edge of the pulse can have a larger intensity than
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Figure 3: Comparison of the two approximations for x» fixed at 0.
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Figure 4: Comparison of the two approximations for x; — ¢ fixed.

the wavetrain approximation, as it is concentrated over a smaller area. For
x1 —t > 0, the short pulse approximation splits into two pulses, an effect not
seen in the wavetrain approximation.

5 Conclusions

In both nonlinear and linear cases, asymptotic analysis reveals a different profile
equation than the commonly used one arising from a slowly varying amplitude
assumption, that must be used to describe approximate short pulse solutions to
wave propagation and other hyperbolic systems of equations. In Section 4, we
see that this gives rise to a qualitatively different description of the pulse. These
differences, emerging even in the linear case, underline the importance of using
short pulse approximation when describing the the propagation of short pulses.
The short pulse approximation also has computational advantages, eliminating
the need for a fine mesh which can resolve on a spatial scale O(g).
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