
Complements and Exercises for Boundary Value
Problems

J. Rauch ∗

1 Lesson 1

In using the principal of dense convergence one needs handy dense subsets. I used linear
combinations of characteristic functions of rectangles.

Exercise 1.1 Show that the linear combinations of characteristic functions of rectangles
are dense in L2(Rd) by verifying that the only element of L2(Rd) that annihilates them all
is the zero element.

Exercise 1.2 Show that C∞0 (Rd) is dense in L2(Rd) by a similar argument.

The following are classic applications of the principal of dense convergence.

Exercise 1.3 For h ∈ Rd define the translation operator τh on Lp(Rd) by

(τhf)(x) := f(x− h) .

Prove that for all f ∈ Lp and 1 ≤ p <∞ one has

lim
h→0
‖τhf − f‖Lp = 0 .

Exercise 1.4 Prove that for all 1 < p <∞ and q the dual index that for all f ∈ Lp and
g ∈ Lq

lim
h→∞

∫
τhf g dx = 0 .

Exercise 1.5 Denote χBR
the characteristic function of the ball of radius R. Prove that

for all f ∈ Lp and 1 ≤ p <∞

χBR
f → 0 in Lp(Rd) .
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Exercise 1.6 Prove the Riemann-Lebesgue Lemma asserting that for all f ∈ L1(Rd) the
Fourier transform f̂ satisfies

lim
ξ→∞

f̂(ξ) = 0 .

Exercise 1.7 Show that τhf − f as h→ 0, χBR
f as R→∞, and jε ∗ f − f as ε→ 0, do

not converge to zero in L∞(Rd) for arbitrary f ∈ L∞. Discussion. They do converge to
zero on the weak star dense subset of continuous functions that tend to zero at infinity.

Exercise 1.8 Suppose that if Bj are Banach spaces and Tn : B1 → B2 is a sequence of
continous linear maps with

lim
n→∞

Tnb = 0

for all b ∈ B1. Prove that for any compact subset Γ ⊂ B1 the convergence is uniform on
Γ.

Exercise 1.9 Prove that a subset Γ ∈ Lp(Rd) is compact if and only if the family of
operators τh − I and χBR

tend uniformly to zero on Γ.

Exercise 1.10 Suppose that ϕ : Rd → R is C∞ and the set of critical points of ϕ has
Lebesgue measure zero. Prove that for all f ∈ L1(Rd)

lim
ε→0

∫
eiϕ(x)/ε f(x) dx = 0 .

Discussion. 1. This sufficient condition is clearly necessary. 2. As with the Riemann-
Lebesgue Lemma, the result does not extend from f(x) dx to finite measures µ. 3. The
dense set to take is the set of smooth functions compactly supported in the open subset
of nonstationary points of ϕ. 4. If you have never seen the prinicipal of (non)stationary
phase, look in my PDE book for example. Or most of E. Stein’s books.

The hypotheses Aj, B ∈ L∞ were used in showing that L maps H1 → L2.

Exercise 1.11 Verify that L(x, ∂)u = f in H−1(Rd) holds if and only if for all ϕ ∈
C∞0 (Rd) one has (

f, ϕ
)

= (u, L†(x, ∂)ϕ
)

Exercise 1.12 Show that u, v ∈ L2(Rd) then the convolution u∗v is a continuous function
tending to zero as x→∞ and satisfying

‖u ∗ v‖L∞ ≤ ‖u‖L2 ‖v‖L2 .

Formulate and prove an Lp × Lq version.
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2 Lesson 2

2.1 Friedrichs’ lemma

I want simple examples showing that the Lipschitz hypothesis in Friedrichs’ Lemma cannot
be much relaxed. For example, Cα with α < 1 does not suffice. If you find them I’ll make
them into an exercise!

Exercise 2.1 1. If Aj, B, ∂A, ∂B, ∂2A ∈ L∞(Rd) show that [L, Jε] is a bounded from
H1(Rd) to itself uniformly for 0 < ε < 1.
2. Show that for u ∈ H1(Rd), [L, Jε]u→ 0 in H1(Rd) as ε→ 0.

Exercise 2.2 Under the same hypotheses as above prove the analogous results with H−1(Rd)
in place of H1(Rd). Hint. Use a duality argument. Discussion. Interpolation with the
preceding exercise yields the same result for Hs(Rd) with |s| ≤ 1.

Exercise 2.3 With the hypotheses of the preceding exercises prove that if u, v ∈ H1/2(Rd)
then Lu, L†v ∈ H−1/2(Rd) and Greens’ identity(

Lu , v
)

=
(
u , L†v

)
holds, Here parentheses indicate the pairing H1/2 × H−1/2 → C that is conjugate linear
in the second variable. That is, the unique continuation of the L2 scalar product from
C∞0 × C∞0 to H1/2 ×H−1/2. Discussion. One can also interpolate the hypotheses. The
H1/2 result only requires C3/2 regularity of A.

3 Lesson 3

3.1 Boundary value problems for ordinary differential equations

Consider boundary value problems for the constant coefficient system of ordinary differ-
ential operators

L = A
d

dx
+ B

on the half line Ω := {x < 0}.

Hypothesis 3.1 The matrix A is invertivle and the spectrum of A−1B is disjoint from
the imaginary axis.

The spectral assumption shows that solutions of Lu = 0 either grow exponentially or
decay exponentially as x→ ±∞. There are no bounded solutions at either infinity.
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3.1.1 Greens’ function on R

Denote by E+ ⊂ CN the set of vectors w so that exA−1Bw → 0 as x → −∞. They
are indicated with a plus because they are associated to the eigenvalues of A−1B that
have positive real part. Similarly define E− as initial data of solutions decaying as x →
+∞. Then hypthesis 3.1 implies that E+ ⊕ E− = CN with corresponding projectors Π±
satisfying Π+ + Π− = I

Exercise 3.1 Verify.

The subspaces E± are invariant under exA−1B. The matrix valued function exA−1B χx>0 Π−
jumps from 0 on ]−∞, 0[ to Π− at 0+ so in the sense of distributions

L
(
exA

−1B χx>0 Π−

)
= Π− δ .

A fundamental solution exponentially small at infinty is found by adding two such ex-
pressions to find

E := exA
−1B χx>0 Π− − exA

−1B χx<0 Π+ , L E = I δ .

For f ∈ L2, L(E ∗ f) = f . Write

(E ∗ f)′ = L(E ∗ f) − BE − f ,

a sum of three terms in L2. Therefore (E ∗ f)′ ∈ L2(Rd), so

E ∗ f = exA
−1B χx>0 ∗ Π−f − exA

−1B χx<0 ∗ Π+f ∈ H1(R) (3.1)

3.1.2 Boundary value problems in x < 0

For f ∈ L2(R) supportedf in x ≤ 0 the summand in the middle of (3.1) vanishes on [0,∞[.
The first term takes values in E−. The next exercise asks you to show that the values of
the first term in (3.1) at x = 0 yield arbitrary elements in E−.

Exercise 3.2 Show that for any vector w ∈ E− there is an f ∈ C∞0 (]−∞, 0[) so that(
exA

−1B χx>0 Π− ∗ f
)∣∣∣

x=0
= w .

Hint. The set of values attained is a subspace of E− hence closed. Take f = ϕ(x)w with
ϕ supported very close to 0. Discussion. Therefore, if f ∈ L2(R) has support in x ≤ 0,
the values at x = 0 of the solutions of Lu = f that tend to zero as x→ −∞ are exactly
the vectors in E−.

Proposition 3.1 When Hypothesis 3.1 is satisfied and N ⊂ CN is a subspace, the fol-
lowing two conditions are equivalent.
i. For every f ∈ L2(]−∞, 0]), the boundary value problem

Lu = f , u(0) ∈ N
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has a unique solution u ∈ H1(]−∞, 0]).
ii. The complementarity conditon

N ⊕ E+ = CN (3.2)

is satisfied.

Proof. u ∈ L2(]−∞, 0[) satisfies

Lu = 0, u(0) ∈ N

if and only if u(0) ∈ E+ ∩N . Therefore uniquenss of solutions is equivalent to

N ∩ E+ = {0} . (3.3)

is necessary for uniqueness.
Extend f by zero in x ≥ 0. In x ≤ 0 the general solution of Lu = f that tends to zero as
x→ −∞ is equal to

u = E ∗ f + exA
−1B e+ , e+ ∈ E+ .

To have existence for arbitrary f , the boundary condition u(0) ∈ N together with the
preceding exercise demands that for arbitrary w ∈ E− one find an element e+ ∈ E+ so
that w + e+ ∈ N . Existence of solutions is equivalent to is

∀w ∈ E−, ∃e+ ∈ E+, w + e+ ∈ N . (3.4)

Thus i is equivalent to (3.3) and (3.4) holding simultaneously.
They hold simultaneously if and only if

∀w ∈ E−, ∃! e+ ∈ E+, w + e+ ∈ N .

This defines a one to one map w 7→ w + e+ from E− → N . Therefore dimN ≥ dimE−.
Therefore dimN + dimE+ ≥ N . Together with (3.3) this is equivalent to (3.2).

Thus one must have dimN = dimE−. In particular the number of boundary conditons
required is dimE+. That is equal to the number, counting multiplicity, of eigenvalues of
A−1B that have strictly postive real parts.

3.2 Complementarity, elliptic and otherwise

In the elliptic case one can reverse the process, constructing good approximate solutions
of boundary value problems by changing coordinates, freezing coefficients, analysing as
above and then summing in ξ′. The key is that as ξ′ → ∞ M(ξ′) is of size ξ′, the lower
order term is negligible, M is essentially homogeneous in ξ′ and one obtains uniform
estimates from homogeneity and the compact set of |ξ′| = 1.
In the non elliptic case, general arguments of this style don’t work. Control for |ξ′ large
must come from elsewhere. The count of boundary conditions needed is general and very
instructive.
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3.3 H(L,Ω)

Definition 3.1 Suppose that Aj, B,∇Aj ∈ L∞(Ω).

H(L,Ω) :=
{
u ∈ L2(Ω) : Lu ∈ L2(Ω)

}
, ‖u‖2

H(L,Ω) := ‖u‖2
L2(Ω) + ‖Lu‖2

L2(Ω)

Proposition 3.2 i. H(L,Ω) is complete, therefore Hilbert.
ii. H1(Ω) is dense in H(L,Ω).

Exercise 3.3 Prove that C∞0 (Ω) is dense in H(L,Ω). Hint. Use the Proposition and
density of C∞(0)(Ω) in H1(Ω). Discussion. C∞0 (Ω) is not dense when ∂Ω is nonempty
and

∑
Ajνj is invertible at the boundary.

Proposition 3.3 First Trace Theorem. Suppose that the boundary is noncharacter-
istic. The the map

C∞(0)(Ω) 3 u 7→ u|∂Ω ∈ C∞0 (∂Ω)

extends unquely to a continuous linear map

H(L,Ω) 3 u 7→ u|∂Ω ∈ H−1/2(Ω) .

Proposition 3.4 Second Trace Theorem. Suppose that the boundary is noncharac-
teristic. The the map

C∞(0)(Ω)× C∞(0)(Ω) 3 u 7→
〈∑

Ajνju , v
〉
∈ C0(∂Ω)

extends unquely to a continuous linear map

H(L,Ω)×H(L†,Ω)) 7→
〈∑

Ajνj u , v
〉
∈ Lip(∂Ω)′ .

And Green’s identity∫
Ω

〈
Lu, v

〉
dx =

∫
Ω

〈
u, L†v

〉
dx +

∫
∂Ω

〈∑
Ajνj u , v

〉
dS(x)

holds for u, v ∈ H(L,Ω)×H(L†,Ω). The boundary integral has the sense of the value of
an element in Lip(Ω)′ at the test function 1.

Remark 3.1 The traces of u, v at the boundary are H−1/2. The product in the second
trace theorem has no right to exist from that regularity. This is an example of the
phenomenon sometimes called compensated compactness. There are quadratric forms
that exist because of the differential equations satisfied by u and v and not just from
regularity.
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4 Lesson 4

Exercise 4.1 The first trace theorem is sharp. Show that for any s > −1/2 there is an
L even with constant coefficients and a uHL on a half space so that the trace of u on the
boundary is not Hs.

Exercise 4.2 Show that it is impossible for the trace of 〈
∑
Ajνju, v〉 to be equal to the

derivative of the Dirac delta.

Open Question. I don’t know if the Lip′ regularity for the trace of 〈
∑
Ajνju, v〉 is

comparably sharp. Is there an example where the trace is a distribution of order -1 and
of no higher order?

Exercise 4.3 Show that the adjoint of L† is the original operator L

Exercise 4.4 Show that the adoint boundary space of the adjoint boundary space is the
original boundary space.

Exercise 4.5 Show that in the C(I;L2) lemma, continuity conclusion can not be strength-
ened to Cα with α > 0.
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