
Symmetric Hyperbolic Linear Differential 
Equations 

B y  K .  0. F R I E D R I C H S  

The present paper is concerned with symmetric systems of linear hyperbolic 
differential equations of the second order. The existence of a solution of Cauchy’s 
initial problem will be proved under weak conditions. It will further be proved 
that the solution is differentiable in a sense to be specified if the right member 
and the coefficients of the equation possess appropriate differentiability 
properties. 

This treatment uses the “Energy Integral” inequalities as the primary tool, 
together with simple facts from the theory of Hilbert space. 

The energy integral was used by H. Weber [l] t o  prove the uniqueness of 
the solutions of Maxwell’s equations in the whole space and by Hadamard in 
1900 [a] to  prove the uniqueness of the solution of a mixed problem for the wave 
equation. 

We shall briefly describe the latter problem. Let So denote a region in the 
z, y-plane and let s, consist of the points (5,  y, t )  in space for which the projection 
(2, y, 0) lies in so . Suppose a function u(z,  y, t )  defined in the half-cylinder 
swept out by all segments S t  for t >_ 0 satisfies the differential equation 

B f t  - uz, - u,, = 0, 

vanishes at  the boundary of &-or has vanishing normal derivatives there- 
and vanishes together with the derivative U, on the initial surface So . Then the 
relation 

shows that the energy integral 

is constant. Since this expression vanishes initially, it vanishes for all t > 0. 
Hence u = O.for t > 0 follows. 

Zaremba 131 observed in 1915 that a similar argument could be used to prove 
the uniqueness of the solut,ion of the wave equation in domains partially bounded 
by characteristic surfaces. The same fact was observed by Rubinowicz [4] in 
1920 and Lewy [5A] in 1928. These two authors also deduced that the solu- 
tion of the wave equation depends upon the initial data on only a section of the 
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initial surface. Furthermore, they concluded from this fact that in processes 
governed by the wave equation disturbances are propagated with finite speed. 

Specifically, let us consider the characteristic domain a,, associated with a 
point (x, , yo , to)  with to > 0, 

0 I t I t o  - [(x - 20)2 + (y - 

Denoting by sf the cross-section of this domain with the plane 
and by at the boundary of S ,  , one derives the relation 

= constant, 

[u9 + u: + u:l dx dy + S‘’ / [(uI - xnuJ2 + (u, - ynuf)’1 ds dt 
0 at 

” ”  

in which ds is the arc differential and (2, , yn) the exterior normal a t  any point 
of a, . If u = u, = 0 on So , it follows that u = 0 in the whole characteristic 
region a, . In  particular, it is seen that the value of a solution a t  the point 
(x, , yo , to) depends only on the data in the “domain of dependence” S, . 

Arguments of this type were also used to  prove the uniqueness of solutions 
of linear hyperbolic equations with non-constant coefficients [5A]. 

The question of continuable initial condilions can also be answered with the 
aid of energy integrals. The type of conditions imposed on the data in the 
initial domain, e.g. So , are said to be “continuable” if a solution of the differential 
equation exists which satisfies conditions of the same type in appropriate space- 
like domains, e.g. s, , t > 0. A theorem about the existence of the solution can- 
not be considered a satisfactory expression of Huygeris’ principle i n  the wider 
sense, as formulated by Hadamard, unless the conditions imposed on the initial 
data are continuable. 

From energy integral considerations one infers that quadratic integrability 
of the function u and its derivatives up to any order r is a continuable condition, 
provided one admits solutions in a sufficiently wide sense. Continuity and 
existence of continuous derivatives of any order is implied by these conditions 
if the order T of quadratically integrable derivatives is high enough. This was 
pointed out-in connection with the equation u t t  - zi,, - u,, = 0 as typical 
-by H. Lewy and the author in 1932 [SB]. 

Inequalities derived from energy integral identities can be used to establish 
the existence of the solutions of linear, and even nonlinear, hyperbolic partial 
differential equations.’ Such inequalities were used by Schauder [GI, who in 

‘This possibility was indicated in the above-mentoned note [5BJ, where the author 
announced a proof of the existence of the solution of the initial problem for nonlinear hyperbolic 
equations of second order involving continuable initial data. A complete manuscript con- 
cerning functions of three variables existed early in 1932. The method of energy integrals 
was combined with the method of finite differences. The manuscript was not published 
because the treatment, in particular of the initial data, was very involved. 
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1935 gave a proof of the existence of the solution of a nonlinear hyperbolic equation. 
of second order and any number of variables. In particular, these inequalities 
involve the square integrals of the derivatives of the functions u as well as of the 
coefficients of a sufficiently high order. Schauder approximates the coefficients 
and the initial data by analytic functions and uses the solution of Cauchy- 
Kowalewski. An important step in this approach consists in showing that this 
solution of the approximate problem exists in a fixed domain, independent of 
the approximation. 

Schauder does not establish the fact that the initial data are continuabIe. 
A remedy for this defect was described by Frankl [8] in 1937, who established 
the proper energy integral inequalities under sufficiently economical differenti- 
ability conditions. In  his approximation procedure, which differs somewhat 
from that of Schauder, he employes methods of Sobolev and Petrovskii. Under 
continuable conditions which are definitely less restrictive than those needed 
by Frankl, the unique existence of solutions of nonlinear hyperbolic equations 
of second order was established by Sobolev [ 111 in 1939.2 

A very peculiar approach to Cauchy’s problem for hyperbolic equations 
was developed by Petrovskii [9] in 1937. He considers general hyperbolic systems 
and employs square integrals after Fourier transformation. While energy 
integral identities are essentially associated with symmetric hyperbolic systems, 
no such restriction is necessary in Petrovski’s approach. Severe limitations of 
this approach, concerning topological properties of the n-dimentional sphere, 
were pointed out by Leray. 

h new approach to hyperbolic equations was recently developed by Leray 
[13], who, in a certain sense, reduces general to symmetric hyperbolic systems 
and then employs energy integrals. 

In the present paper we shall treat only linear symmetric hyperbolic systems. 
We shall show that the existence of the solution-in a certain generalized sense- 
of Cauchy’s problem can be deduced from the simplest facts in the theory of the 
Hilbert space. Furthermore we shall prove a differentiability theorem with the 
aid of the solution of a simple finite difference equation. Continuous differ- 
entiability of the solution in the ordinary sense can then immediately be deduced 
if the data and the coefficients possess appropriate differentiability properties. 
There is little doubt that Schauder’s arguments could also be employed in 

There are various approaches to the theory of hyperbolic differential equations in which 
the energy integral method is not used. This applies in particular to the theory of equations 
for functions of two variables. (See the forthcoming report by P. Lax [19J.) Various ap- 
proaches to the theory of linear hyperbolic partial differential equations related to that 
developed by Hadamard [15] and Riesz [IS] have been treated by various authors. We mention 
that a particular such approach developed in 1936 by Sobolev [7B] was employed by Christiano- 
vitch [lo] in 1937 for the treatment of nonlinear hyperbolic equations. A related approach was 
used by Four&-Bruhat [18] in 1952 for a more extended treatment of such nonlinear equations. 

Extensive work on linear hyperbolic equatiom, in particular of higher than second order, 
waa done by Bureau. For a report of his work and work of others on hyperbolic equations 
see (171. 
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obtaining the main results of this paper. Nevertheless, i t  was felt to be of 
sufficient interest to  show that these results could be obtained through direct 
constructions, without using approximation by analytic functions and the 
theorem of Cauchy and Kowalewski. 

We proceed to give an outline of our methods and results. 
As mentioned above we are not concerned with one equation of second order, 

but with a symmetric system of first order. We denote by x = (XI, . . . , x-1 
the points in the m-dimensional space and introduce the differentiation D, = 
a/&?, p = 1, . . , m. With the aid of m + 1 matrices 

A” = {A:, , A:, , * - .  , 
B = { B l l ,  Bl, 7 . . .  , B,,J, 

p = I, - * *  7 m, 

which are given functions of x, we introduce the differential operator 

E = AID, + - . *  -+ AmD, + B.  
It transforms systems u = u(x) of p functions, 

u = {u , ,  . * -  , U D ]  

into systems 

here 
EU = A’D,u + * * . + A”D,u + Bu; 

D,u = (DPu1 , * - .  , D,u,]. 

Giving a system f = {f l  , . , . fm)  = f(z) as the “right member,” we 
formulate the differential equation as 

EU = f .  

The operator E is called hyperbolic a t  a point y, in the sense of Petrovskii 
[9], if among the systems of m numbers, 

t = I t 1  , * . -  , t m l  
there is a particular one, to, such that the set of matrices 

has simple elementary divisors and real eigenvalues A. 
We require that 

each of the matrices A” be symmetric and that there exist a particular set 6’ 
such that the matrix 

We impose more severe conditions on the matrices A’. 

is positive-definite. If these conditions are satisfied we call the system ‘(sym- 
metric hyperbolic.” Obviously, such a system is hyperbolic in the sense of 
Petrovskii. 
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One easily verifies that the initial problem of a hyperbolic equation of the 
second order 

2 apvDPDvu = f 

for a single function u is equivalent with the initial problem for a symmetric 
system. Without restriction we may assume that the 2,-direction is time-like 
and that the hyperplanes xm = constant are spare-like. Accordingly, we may 
assume a,, > 0 and further that the matrix aEF is negative-definite. Here the 
tilde indicates that values m of the subscript should be omitted. We then 
introduce the system 

I I , u = 1  

72 = ( u , ,  * . .  ,u, , u }  

and set up for it the equations 

- a,,D,,,uii + aiivDiiu, = 0, 
E 8.S 

D,u - U ,  = 0.  

Evidently this system satisfies the requirements formulated. 
The initial data should be so chosen that uii = D,u. Since for a solution of 

the new problem the relation 

D,u, = D,u, = D,D,u = D,D,u 
holds, the identity uy = D,u is valid, throughout, since it is valid initially. 

From the theorems which will be derived for symmetric hyperbolic systems 
one naturally could derive theorems about equations of second order for one 
function. Hornever, we shall not do this but confine ourselves to treating only 
symmetric hyperbolic systems of the first order. 

Actually we shall impose two further conditions on the matrices A’, namely 
that all of them be non-negative symmetric and that the sum cp A” be positive 
definite. This is no restriction of generality. One can easily achieve that this 
condition is satisfied in the neighborhood of any point, e.g. by introducing 
y” = cp t:xp - e,$x” as new independent variables. Assuming A” to be non- 
negative and c,, A” to be positive definite we shall in the following denote the 
independent variables by 

2/ = y’,  . . .  , ym, 
but otherwise retain the original notations. 

The domain 6t in the y-space in which the solution of the equation will be 
sought is bounded by an initial surface S and an end surface 3. It is an essential 
requirement of our approach that one should be permitted to interchange the 
roles of these two surfaces. For this reason we assume the region 6i to be “lens- 
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shaped”. Specifically, we assume that it should be possible to cover the region 
6i by a set of segments parallel to  the u,-axis, for each p, p = 1, . , m. We set 
dx’ - .  dxm = dx in (R and dx‘ - dxm/dx8 = dx: on S and 3. Automatically, 
the surfaces S and 3 are space-like. 

Having made these assumptions we can writ.e the energy integral identity 
in the form 

1 c (u, A’u) ax*, = 2 (u, Eu) dx + (u, Ju) dx + / c (u, A’u) dx*, , ’ .m S P  

where the abbreviation (u ,  v) is used for the ‘‘local” inner product, 

(u, v) = u1v1 + . . * + ug, . 
The matrix J depends on B and the derivatives of A ’ ,  - . . , A”. 

Let u be a solution of the equation E u  = 0 which vanishes on S. Suppose 
first J = 0. Then we may conclude that u vanishes also on 3. To this end one 
could sweep out the region (R by a set of lenses &ic , 0 5 c 5 1, with s, on S and 
3’ = 3 and then apply the statement made to  each region (Re . Instead we shall 
employ for this purpose minor modifications of the energy integral identity 
in order t o  conclude that u vanishes in the whole region @, even if J # 0. In 
either way, the iiniqueness of the solution of the equation Eu = f with given 
values on S can be proved. 

So far we have not specified the class of functions u(y) admitted for con- 
sideration. First we require that u, and also f ,  be quadratically integrable over 
a. In  order that the differential operator E be applicable on the function u, 
we do not require that the operator E be applicable in the “strict” sense, i.e. that 
u possess continuous derivatives. Instead, we use two extensions of the notion 
of differential operator. 

We first introduce the adjoint E” of the operator E in such a way that the 
“adjointness” identity 

the analogue of Green’s formula, holds for all continuously differentiable func- 
tions v which vanish on 3, provided u satisfies the equation Eu = f in &i with 
u = g on S in the strict sense. If to  any function u two functions j and g exist 
such that this identity holds for every function v with the described property, 
we say that u admits the operator E in the “weak” sense. We then set Eu  = j” 
in (R, u = g on S by definition. 

Similar weak definitions of differential operators, in particular of hyperbolic 
differential operators, have frequently been employed, see e.g. [7A], [la]. The 
extension of differentiation introduced by L. Schwartz is related to  this weak 
extension, but i t  differs from it, inasmuch as for the extension of Schwartz, 
derivatives are not required to exist either as quadratically integrable functions 
or as elements of a normed space. 
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We shall say that the function u admits the operator E in the “strong” 
sense if functions f and g and a sequence of continuously differentiable functions 
u“‘) exist such that, as u --+m, 

Again, we set Eu = f in (R and u = g on S. 
Clearly, the uniqueness theorem indicated above holds also if the operator 

E entering it is understood in the strong sense. 
It is remarkable that the solution u of the equation Eu = f, u = g on S i s  

unique even i f  the operator E involved i s  understood in the weak sense. 
This fact is closely related to the fact that the strong and the weak extensions 

of the operator E agree. 
We shall use the uniqueness of the weak solution in proving the existence 

in the region 6i of the strong solution3 of the equation Eu = f with u = g on S. 
In doing this we shall make use of a basic fact of the theory of Hilbert Space. 

For simplicity we assume g = 0. Let the function v(g) be orthogonal to 
all those functions f(y), called “special,” for which there exists a solution u(y) 
of the equation EU = f with u = 0 on S. Then v satisfies the equation 

E*v = 0 in (R, with v = 0 on 3 

in the weak sense. The theorem of the uniqueness of the weak solution, applied 
to v with E* instead of El yields v = 0 identically in (R. From the theory of the 
Hilbert space it then follows that the manifold of special functions f covers the 
whole space of quadratically integrable functions. Thus it is seen that the 
equation Etc. = f possesses a solution for an arbitrary function of this kind. 

The existence theorem proved in this manner guarantees that a solution, 
given on a space-like surface S, can be continued into a neighborhood a, provided 
this neighborhood is bounded by a space-like surface 3, in addition to S. No 
difficulty is anticipated in proving the existence of the solution in- the full domain 
of determinacy of S bounded by a characteristic surface 3; but this proof will 
not be given here. 

The arguments outlined will be carried out in detail in Part I of this paper. 
Part I1 contains a proof of the differentiability theorem, which states that 

the solution of the equation Eu = f with u = g on S admits all individual opera- 
tors D, , . . . , D, if this is the case of the right members f and g, provided the 
matrices ,4’ and B have continuous derivatives. 

SThus nre derive the existence of the strong solution of an equation from the uniqueness 
of the weak solution of the adjoint equation. In a certain sense this procedure is the opposite 
of that by Holmgren [14], who derives the uniquenese of the solution of an analytic differential 
equation from the existence of the solution of the adjoint equation. 
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With the aid of arguments in which the identity of the weak and the strong 
extension is coriveniently used we can reduce this theorem to the special case 
in which .i = 0 on S and g = 0. 

In order to prove this special differentiability theorem we shall approximate 
the solution u by solutions 1.1~ of finite difference equations. KO difficulty arises 
in setting up initial values for the solutions uA , since the initial valiies of 14 and 
Eu vanish. 

It turns out that the simplest way of setting up difference ecjrintions is 
perfectly sufficient to insure the existence of appropriate limits if one lets the 
mesh width X approach zero. Denoting by [ ~ ] y  the point 

[PIIYI , * I -  , Y P  7 . . *  , Yml = I Y l ,  . ’ *  , Y P  + A ,  * . *  , Y m 1 1  

we simply replace the equation 

by the equation 

Although the energy integral identity appears to have no analogue which involves 
only positive definite terms, there is an analogue to  the energy integral inequalities 
derived from it. 

The existence of the solution of the difference equation is obvious, and so is 
the analogue of the differentiability theorem. The convergence of these solutions 
of the difference equations to  the solution u of the differential equation when the 
mesh width approaches zero is easily deduced from the energy integral inequali- 
ties. 

The statement that the solution u admits the operators D, in the weak sense 
is an immediate outcome of the limit process. Since the weak and the strong 
extension of these operators coincide, the statement of the differentiability 
theorem ensues. 

It would seem likely that arguments similar to those employed by Schauder 
and Frank1 could be developed to  prove the unique existence of the solution of a 
quasilinear symmetric hyperbolic equation. However, this will not be done in 
this paper. 

PART I. EXISTENCE AND UNIQUENESS 

1. Domain and Functions 

We shall consider a space of m independent variables y’, * - * , ym or points 
y = { y’, . . . , y”) ; the set of variables y’, . . , ym from which y r  is omitted will 
be denoted by y: . In the space of points y we consider a “lens-shaped” region @’ 
which can be described as follows. 
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We assume that to every value of r for r = 1, . . . , m, a pair of continuous 
functions, sr(yT) and t‘(y*,), is given such that each of the conditions 

(1 .I) 

describes the same region @’ in the y-space; we also require that this domain be 
bounded. 

Of course, we could have described the domain by any one of these in- 
equalities together with appropriate conditions on s and t ;  we found it preferable, 
however, not to favor a particular variable y7 . 

s‘(y*,) < Y’ < f(yT) 

We further assume that each of the m conditions 

(1 4 s  s‘(y3 = y‘ < t’(y9 

s‘(y*l) < Y’ = f ( y 3  

describes the same surface, denoted by S‘, and that each of the conditions 

(1.2)5 

describes the same surface, denoted by 3’. Evidently, S’ and 3’ lie on the bound- 
ary of the domain a’. The remainder of the boundary of @’ may be visualized 
as the “edge” of the lens. An additional condition will be formulated in Section 3. 

The closures of the open sets a’, S’, 3’ will be denoted by 
- - - 

(1.3) @’ = (R, S’ = s, 3’ = 3. 

The surface S will carry the initial values of the solution of the differential 
equation to be considered. The reason for assuming the domain a’ to be lens- 
shaped is that our method depends essentially on the possibility of interchanging 
the roles of s and 3 as initial and end surface. Contrary to custom we have not 
employed a description of the domain in which a particular variable is dis- 
tinguished as the “time”; we found it convenient to have the possibility to let 
any one of the m variables assume the role of the time if this is opportune. 

On occasion we shall use the domain 6ii of all points y in 6i’ which satisfy 
each of the conditions (1.1) 

s‘(y?) < yr < t‘(y?) - 7 

for any number 7 2 0. In fact, this domain is of the same type as the domain 
a’. One need only replace the function t‘(y*,) in (1.1) by the function 

tXy3 = min ItW?, y p  + d, f(y?) - 71 ; 

here yTp* consists of the m-2 numbers obtained from y’, . . . , y” by omitting y r  
and yp. The surfaces S: , 3: and the closures , S, , 3, can then be introduced 
accordingly. 

with the inner product 

P #  - 

Weconsidervectorsu = {uI,u2, .-- ) , v  = { v 1 , v 2 ,  .-.),w = {w,, w 2  , 

(u, v> = u1v1 + u2vz + * * * , (1.4) 
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and the absolute value I u I = (u, u)l”. We need not specify the number of 
components of these vectors but we assume it to be finite. This assumption is 
not essential, however; the vectors could as well be assumed to be elements of 
a Hilbert space, since only slight, and rather obvious, changes of the wording 
would be necessary to  include such a generalization. 

We then consider functions u ( y ) ,  v(y), 
to every point y in the closed domain &; the functions u ( y ) ,  v(y), . * . could also 
be considered as systems of scalar functions. We introduce the linear space 
Q of all continuous functions defined in and the space Q1 of all functions in 
Q possessing continuous derivatives in &. The derivatives a t  boundary points 
of & are, of course, understood as one-sided derivatives. 

. of a point which ranges over S 
or 3. These functions may be considered as functions of m - 1 variables, namely, 
of any of the sets yZ , . - .  , or gz . We assume that the functions Q, B, . - are 
such that each of the m corresponding functions of y? , - . , or y2 is continuous. 
We simply write Z = G(y*), B = B(y*), - without specifying which of the m 
sets of m - 1 variables is to be taken. The classes of these functions will be 
denoted by 6 and Q respectively. 

In particular, such functions ii(y*) result as the “values” on S and 3 of 
functions u(y )  in Q when the argument y is specified to represent a point on 
S or 3 respectively. That is, these boundary values are obtained by replacing 
one of the variables y‘ by s‘(y$) or f(y;). It is convenient to use an operator 
notation for this operation of taking the “value” of u ( y )  on S and 3; we denote 
these operators by S and T and write the result of applying the operators S 
and T on u ( y )  in the forms Su(y*,) and Tu(y*,). That is, we write 

- , which assign vectors u, v, . 

We shall also consider functions Q, 16, 

0 . 5 )  

The spaces of all functions %(y*) which can be obtained as Z = Su(y*) and 
= Tu(y*) from a function u ( y )  in Ql will be denoted by 80, and TGS, re- 

spectively. 

2. Operators 

In the following we distinguish between ‘(matrices,” operating on vectors, 
and (linear) “operators,” operating on functions u(y ) .  If a matrix is considered 
as a function of y it is at the same time an operator. 

We shall employ various customary notions concerning matrices. We 
introduce the moddus I M I of M as the least upper bound of the absolute value 
I (v, Mu)  I of the inner product (v, Mu) taken for all vectors u, v with 1 u 1 = 
1 v 1 = 1. If the matrix M = M(y) depends continuously on the point y, the 
same is true of I M I. We also introduce the least upper bound of 1 M(y) I as 
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regards y in @, 

The transpose of a matric M will here he denoted by M*, i.e. 

(2.2) (u, Mu) = (M*u, u). 

A matrix 31 is symmetric if it is equal to its adjoint, M* = M ;  such a matrix is 
non-negative if (u, Mu) 2 0 for all vectors u and positive-definite if equality 
holds only for u = 0. 

We introduce a set of matrices A‘ = A‘(y) for r = I ,  . . , m, defined as 
continuous functions with continuous deviatives in the closed region @. We 
assume that all matrices A‘ are symmetric and non-negative; in addition, we 
assume t,hat cp A P  = xZl A’ is positive definite. Specifically, we assume 
that there is a positive constant a such that the inequality 

(2.3) (u, x A%) 1 a(u, u) in a 
P 

holds. Any such system of matrices -4‘ will be referred to as a system of type 
(‘4). 

By D, we denote differentiation with respect to y‘, i.e. we write 

(2.4) D,u = au/dy’ for u in 0, , r = 1, , m. 

With the aid of the operators D, we then introduce the “basic” symmetric 
hyperbolic differential operator 

(2.5) 
m 

A’D, = C A’D, , 
p - 1  

which transforms any function u(y) in 0, into the function A’D,u(y) in Q. 
The usual summation convention is used here and in the following for summation 
from 1 to m with respect to Creek indices appearing as sub and superscripts. 

We further introduce matrices (not necessarily symmetric) which as func- 
tions of g are continuous in @. We then also speak of a matrix of type (B) .  
We employ one such matrix B to form the operator 

(2.6) 

This operator E is the subject of the present investigation. 
Any operator of the form E with matrices A‘ and B as described will be 

called an operator of type (E) .  Each of the operators D, , for example, is of 
type ( E ) ,  since the matrices A‘ = 0 for r # 1, A‘  = 1, B = 0 satisfy the con- 
ditions formulated. 

We assign to the operator E its “formal-adjoint” E* given by the expression 

E = A”,, +- B. 

(2.7) E* = -D,AP f B* 
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in which B* is the transpose of B.  
"local" adjoint of E is espressed by the relation 

The character of E* as the "formal" or 

(2.8) (w, Eu) - (E*w, U )  = Dp(w, A"), 
which holds for any functions 71 and w in  Q, . 

We denote by D,A". the matrix which is obtained by differentiation of the 
elements of the matrix L4*(y) with respect to y'. The operator L),il", without 
dot>, is not a matris; to  apply i t  on a function ~ ( y )  one should first apply the 
matrix il*(y) and then differentiate the result, A"(y)u(y), with respect to y. 
Evidently, the identity 

(2.9) 
holds. Using it, we may write the operator E* in the form 

D , A s  = A"D, + D,A"* 

(2.10) E* = - A p D D ,  - D p A p .  + B*, 

which shows that - E* is an operator of type ( E ) .  

3. Bilinear Forms; Adjointness Formula 

We use the abbreviations 

. dy = / ...  / ... ay' - -  a dy", 

Integrations over the open domains a', s', 5' will respectively be denoted b y  

For functions u, UJ in the space 6 we introduce the bilinear form 

(3.1) (w, 4 a l  = s, (W, U> dY. 

We now formulate the additional condition to be imposed on the surfaces 
S and 3 referred to in Section 1. There should be positive numbers uy defined 
as continuous functions of the points of s such that the ratio dgT/u, is independent 
of r, 

(3 -2) s d?j*r/gr = dyT/ur I 

If the surface S possesses a continuous normal, which we might just as well 
have assumed, the components of this normal could be taken as the numbers ur . 

We make this assumption (ur) for convenience although the results of Part 
I could be obtained independently of it. 
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For funct,ions 5, a in Qs we then set 

(3.3)s 

and note that this expression is independent of r. 
Similarly, we make the assumption (T,) that continuous positive functions 

T ,  can be introduced on the surface 5 ,  such that the ratio d y T / r ,  is independent 
of r ,  
(3.2)s dy*,/r, = ay:/n * 

We then set 

(3.313 

for functions 2 ,   ti^ in Q a  . 
belong to the classes SO,  or T&, ; 

i.e. let them he boundary values of functions in 6, defined in a. If functions 

(a, $3 = s, (a, a) dYT/T,  

In general me shall let the functions 0, 

.ii = Su or iZ = Tu 

of this type enter any of the bilinear forms me shall in general onlit the operator 
sign S or T ,  i.e. we shall write 

(3.4)s ( 2 2 ,  84, = (a,& , 

(a, T43 = (a, 4 3  

and 

(3.4>3 

Similarly, we shall omit S or T if is expressed as S w  or Tw. 
For functions u, w in 0, we evidently have the identity 

whence, using the definitions (3.3), 

Similarly, we have 

[@ D,(w, A'u) dy = (w, A ' T , ~ ) ,  - (w, A'u,u)s . 

By integrating identity (2.8) over a' we therefore obtain 

THEOREM 3: The identity 
(3.6) (20, EU)m - (E*w, u)@ + (w, A'u,u)~ - (w, A ' T ~ U ) ~  = 0 

i s  valid for functions u and ul in 6, . 
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Identity (3.6), which corresponds to  “Green’s formula”, expresses the 
relationship between the adjoint operators E and E* in terms of the bilinear 
forms; we shall refer to  it as the “adjointness formula.” 

Clearly, the quantities APup and AP7, , which occur in the adjointness 
formula, are non-negative on s and 3. This fact implies that these surfaces are 
spacelike. 

We further note that the combinations 

(3.7) u , S D ~  - u ~ S D ,  , r,TDk - rkTDr 
involve differentiation in a direction within the surfaces S and 3. 

4. Hilbert Spaces 

Evidently, the quadratic form (u, u), , given by (3.1), does not vanish for 
functions u(y) + 0 in 6. Also the quadratic forms (a, ds and (a, G) , given by 
(3.3,  do not vanish for functions Z(y) # 0 in GP and a 3  , as is readily verified 
in view of assumption (2.3). 

(4.1) / I  u \ I m  = (u, u):I2 for u in Q, 

(4.2) P I (  ii = (ii, ii):” for in Q, , 
(4 -2) 3 I [  ii ] I 3  = (z, z ) ” ~  for in Oa , 
we may, consequently, extend the spaces 6, OS , Ga to complete spaces, i.e. t o  
Hilbert spaces, denoted by $5, $5s , a3 respectively. 

Whether this completing process is performed by adjoining certain Lebesgue- 
measurable functions or by adjoining ideal elements is irrelevant for our investi- 
gation. The elements of these three Hilbert spaces are again called functions 
and again denoted by u(y) and i i (g*) .  

The following approximation properties of the spaces $5, as , and &j3 are 
easily proved; they involve the operators S and T defined by (1.5). 

The space of all functions u in Q, with Su = 0 and Tu = 0 is 
dense in @ with respect to the norm 1 1  

The space of all functions Su(Tu) resulting from functions 
u in 6, with Tu = O(Su = 0)  is dense in BS(@ 3) with respect to the norm 1 1  

With respect t o  the norms 

LEMMA 4: 
I [ . 

LEMMA 4,(4,): 
1 )  

( 1 1  I1 3 ) .  

5 .  Extension of the Differential Operator 

We proceed to  introduce subspaces of the Hilbert space 4 which contain 
Q1 and to  define in them closed operators which are extensions of the operator 
E defined in Q, . We shall set up a “weak” and a “strong” extension of E. 
Eventually i t  will be shown that these two extensions coincide. 
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Weak and strong extensions of differential operators with constant co- 
efficients and the proof of their identity are treated in various papers [7], [12]. 
Also the identity of both extensions of differential operators of first order with 
non-constant coefficients was proved in an earlier paper [lZB]. For the present 
purpose we need slightly modified versions of these extensions; accordingly, the 
proof of the identity of the different extensions must be adapted to these modi- 
fications. For the sake of completeness we shall present certain details which 
could have been taken over from the earlier work without modification. 

as the space of all functions u in 8 for which functions 
f in 4, i j  in 8 
(5.1) 
holds for all functions w(y) in G1 . 

We then show : if u = 0, also f = 0, i j  = 0, h = 0. To this end we first 
restrict the function w by requiring Sw = 0 and Tw = 0 so that relation (5.1) 
reduces to (w, f ) m  = 0. As seen from Lemma 4, the function f can be approxi- 
mated with reference to the norm 1 1  118 by functions f i n  Q1 with Sf = Tf = 0. 
Clearly (f, f ) m  = 0 entails (f, j ) m  = 0 and thus f = 0 follows. We now restrict 
w only by the condition Tw = 0; then (w, APa,Q) = 0 remains. By virtue of 
Lemma 4s , the function 8 can be approximated with reference to 1 1  j j 9  by 
functions Sg with g in Q, and Tg = 0. Clearly, ( g ,  APa,Q) = 0 entails (9, APa,ij) 
= 0 and thus Q = 0 follows. In the same way R = 0 is derived. 

The fact thus proved guarantees that the functions j ,  i j ,  h are uniquely and 
linearly determined by u. Consequently, for functions u in  8 three linear 
operators, denoted by il D,  S, and T, are defined by 
(5.2) A h  = f ,  SU = 0, TU = R .  
If the function u lies in 0, it also lies in (35, and the operators just defined coincide 
with those originally denoted by A P D p  , S, and T, respectively, as is easily 
verified. The new operators will be called the “weak” extensions of the original 
operators acting in B, . 

We observe that the matrix B considered as a linear operator acting on 
functions u(y) in (3 is bounded with respect to / /  ; therefore it can be ex- 
tended to a bounded operator B in @ which transforms “functions” u(y) in 
$j into ‘Lfunctionsf’ B(y)u(y) in $5. The same remark applies to any matrix 
of the type ( B )  such as B* and D,AP. Using the bounded operators we can 
define the operators 
(5.3) E = A D + B  
and 

We define the space 
and R in 8 exist such that the relation 

(DPApw, u)m + (w, f ) m  + (w, A p g d s  - (w, AP7p& = 0 

(5.3)* EL = - A D  - D p A P *  f B* 
acting on functions u(g) in (3, cf. (2.6), (2.7). These operators E and E* are then 
extensions, the “weak” extensions, of the operators E and E* originally defined 
in GI . 
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As a consequence of the definition of the extended operator E,  S, and T 
the adjointriess formula (3.6) holds also for functions u in 6. Of course, our 
convention of omitting the operator signs S and T i n  the bouiidary forms has 
been retained. 

We now turn to the “strong” extension produced by a process of closure. 
\Ye define the 5 = ;V(AD) as the manifold of all functions u in S;, to  which 
functions J in  4, ij in Q, , h in $j3 , and a sequence u, of functions in  6, exist 
such that, as E --f 0 

i l ~ l ~  - 21 l I a + O ,  

I1 - 0 / I s  -0 ,  I1 21, - 11s -+o. 

I /  ApDD,ut - f I I R + O ,  
(5.4) 

From relation (3.6) applied to u = u, we immediately infer that relation 
(4.1) holds for u in 5. Hence the function u in 7j is also in 6 and ilDii = ,i, 
Su = 0 ,  Tzc = I;. Thus the operators AD,  S ,  T and also B, E* are defined i u  

I t  is remarkable that. also the converse holds: every function I L  in 6 also 

IDENTIFICATION THEOREM 5: 63 = 8. 
It states that the weak and the strong extensions of the operator A”,, coin- 

cide. At  the end of Section 8 its proof will be reduced to  other statements 
proved in Part I.  

belongs to 8; we formulate this fact as the 

6. Initial Value Problem 

We are now in a position to formulate the initial value problem. It consists 
in prescribing functions f in 4 and 0 in as , and asking for a function u in 5 
such that the differential equation 

(6.1) Eu = f 

(6 3 su = 0 
and the initial condition 

are satisfied. The main theorem of Part I is that this initial value problem has 
one and only one solution. We split this statement into a uniqueness and an 
existielice theorem: 

UNIQUEN~SS THEOREM 6;. Suppose Eu = 0 and Su = Ofor afunction in 8. 

EXISTENCE THEOREM 6: : Let f be any function in 4 and be any function 

Corresponding theorems 6: and 6: hold. 

Then u = 0. 

in  QS . Then a Junction u in 8 exists such that Eu = f Su = g .  
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7. Energy Integral Inequality 

The uniqueness theorem will be a consequence of the “energy integral 
inequality” contained in the 

INEQUALITY THEOREM 7s A number y > 0 exists such that for all functions 
u in 3 the relation 

(7.1)s II 11: + II 11: I Y2 I I  Eu 11: + Y2 I 1  11: 
holds. 

inequality (7.1) . 

in the space 6, . We then introduce the function 

Upon interchanging the roles of S and 3 we obtain the formulation of an 

In order to prove inequality (7.1)s we first assume that the function u lies 

(7 4 P(Y) = exp { - 8  c YP1, 

in which 6 is a positive number at our disposal, and insert the function 

w = p u  
in the adjointness formula (3.6). Evidently, we have 

APDppu = p[APDPu - 8 C A’u], 
P 

and hence 

(7.3) Epu = ~ [ E u  - 8 c Apu]. 

Next we conclude from formula (2.10) that the operator E* can be written in 
the form 

with 

P 

E* = - E + C  

(7 -4) C = B - B* - DpAp*.  

Combining relation E*u = - Eu + Cu with relation (7.3) we find 

E*pu = -p[E - C - 8 C AP]u. 
Insertion of this expression with w = pu into formula (3.6) and a slight re- 
arrangement of the resulting terms yields the relation 

@, 13 C APu)a + (pu, A P 7 p ~ ) 3  = 2(pu1 Eu), - (PU, cu)a + (PU, APbp~)s  . 
Making use of assumption (2.3) and of Schwarz’s inequality we obtain the 
relation 

0 

w p u ,  ~1~ + (put u13 5 (PEU, E U ) ~  + (1 + c ) o l ~ ,  ula + h, u)s , 
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in which 

(7.5) 
cf. (2.1). We now choose the number e as 

c = 1 C(Y) Im 5 2 1 B lm + 1 D d P .  Im 1 

(7.6) e = [2 + c]u-’ 

and obtain the relation 

(7.7) 
Finally, we introduce the number 

(7.8) 

(PU, 4 m  + (PU, 4 s  5 (PEu, JW, + (F, 4 s  - 

y = 1.u.b. exp { O  ( y p  - $’))2) 
v . 0  i n a  P 

and then obtain inequality (7.1)s from (7.7). 
However, by 

virtue of the very definition of the space 8 and the operators E, S ,  T defined in 
8, the inequality also holds for functions u in 8. 

This inequality has been derived for functions u in a1 . 

For a later application we mention 

LEMMA 7: : Let ~ ( I J )  be a function with continuous derivatives for which 
Then  a constant 0 0 5 w 5 1 and which vanishes in a neighborhood of S. 

exists such that the inequality 

(7.9) (wu, 4 3  5 Y2 I1 11: + -t2Q II u 112 
holds for all functions in 3. 

We need only replace p by u p  in the proof of Lemma 7, and set 
€2 = 1 ApDpw. 1,; then formula (7.9) follows with the same value of y as before, 
given by (7.8). 

8. Proof of the Uniqueness, Existence and Identification Theorems 

The Uniqueness Theorem S! is an immediate consequence of the inequality 
(7.1)s for functions u in 8. 

In the proof of the Existence Theorem (3: we shall make use of the fact that 
the only closed subspace of a Hilbert space which is orthogonal to only the 
element 0 is the whole Hilbert space itself. Owing to this theorem i t  is possible 
to  reduce the existence of the solution of an equation to  the uniqueness of the 
solution of the adjoint equation. Specifically, we shall derive Theorem 6: from 
the following 

UNIQUENESS LEMMA 8; : Suppose E*u = 0 and Tu = 0 for a function u in 
(8. T h e n u  = 0. 

If the identity of the strong and weak extension of the operator E and 
hence of E* were proved, Lemma 8; would follow from the Uniqueness Theorem 
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6:. Actually, we shall prove Lemma S‘j directly, in Sections 10 to 14, and 
derive the Identification Theorem 5 from it, a t  the end of this section. 

We now turn to the reduction of the Existence Theorem 6: to the Uniqueness 
Lemma 8;. We consider the space $5 X @$ of all pairs (f,  91 of functions f in 
4 and g in BS , and assign to these pairs the unit form (f, f ) m  + (8, g), . The 
space EB X Sg  of all pairs { Ew, Sw) resulting from a function w in 5 is evidently 
a subspace of @ x Qs . This subspace is closed by virtue of inequality (7.1) 3. 

It is now clear that the Existence Theorem 6; can be formulated as the statement 
that the space EB X S g  coincides with the whole space @ X 4 8 .  

In order to prove this statement we consider an element (u, 8 )  in the space 
Q X Q8 perpendicular to the space EB X S g ;  i.e. we assume that the relation 

(Ew, &I + (w, 018 = 0 
holds for all functions 20 in 8 and hence for all functions w in O1 . We mag 
write this relation in the form 

(D,A’w, 4 8  + (w, fh + (w, APupg)r - (w, A’T& = 0 
with f = (B* - D,AP.)u and h = 0. We then see that relation (5.1) holds for 
all w in Q1 . It follows that the function u belongs to the space @ and that 
ADu = (B* - DpAP.)u  or E*u = 0, S u  = 0, and Tu = 0, in accordance with 
(5 .2)  and (2.7). 

Lemma 8; now yields u = 0. Consequently, Su = 0 and hence also 8 = 0. 
Thus we have shown that (0, 0} is the only element in the space $5 X ,fj8 which 
is perpendicular to the space EB X SS.  By virtue of the basic fact of the theory 
of the Hilbert space mentioned at  the beginning of this section, the identity 
EB X SS = @ X as ensues. Thus Theorem 6; is reduced to Lemma 8;. We 
shall prove Lemma 8: in Sections 10 to 14. 

At present we observe that combined with Theorem 6; this lemma im- 
mediately yields a proof of Theorem 5 ,  which expresses the identity of the weak 
and the strong extension of the operator E. 

Let u be a function in @. According to Theorem 6: a function u’ in 8 
exists such that Eu’ = Eu and Tu‘ = Tu. The function u - u’ lies in @ and 
satisfies the assumptions of Lemma S’j for E instead of E*. Hence u’ - u = 0 
follows. Therefore, the function u in @ is at the same time in 8 and the identity 
@ = 8 follows. 

9. Modified Weak Extension 

For later purposes it is necessary to prove a lemma which is somewhat 
stronger than the Uniqueness Lemma 8; ; it refers to an extension of the operator 
APD, which is somewhat weaker than the extension into @. 

We define gia as the space of all functions u in @ to which functions f in 
4, h in Q3 exist such that the relation 

(9.1)s (DpApw,  u)cr( + (w, f > m  - (w, A ’ ~ p @ i a  = 0 



364 K. 0. FRIEDRICHS 

holds for all functions w in 

and that therefore linear operators A D  and T can be defined by 

(9 -215 ADu = f ,  TU = h. 
Operators E and E* can then be introduced by (5.3), (5.3)*. 

AD, T ,  El E* in 

with Sw = 0. 
In the manner used for 8, one shows that u = 0 implies f = 0 and R = 0, 

The operators thus defined in the space are extensions of the operators 
. Furthermore we observe: if u is in as , the relation 

(9.3) 3 (E*w, u)@ - (w, EU) ,  + (w,  A P ~ , ~ ) Z  = 0 
holds for all functions w' in 6, with Sw = 0. 

Similarly we see that a space as can be defined through a relation (9.1)s . 
Clearly, operators AD, S ,  E, E* can be defined in as and the relation (9.2)s 
holds. 

The analogue of Lemma 8: is the 

MODIFIED UNIQUENESS LEMMA 9: : Suppose E*u = 0 and Tu = 0 for a 
function u in B3 . Then u = 0. 

We shall start the proof of this lemma in Section 10. Evidently, the 
space ($5 contains the space B since no boundary values Su are required of u in 
as . For this reason Lemma 8: follows from Lemma 9: . 

and @ are identical and, instead of Theorem 5,  
we have the 

Actually the two spaces 

MODIFIED IDENTIFICATION THEOREM 9; (9:) : 

This statement follows from Lemma 9: by literally the same arguments by 
which at the end of Section 8 Theorem 5 was derived from Lemma 8' (note that 
Theorem 6:, being a consequence of Lemma 8:, is also a consequence of Lemma 

= 8 (as = 8). 

9 4 .  

10. Main Lemma 

The modified Uniqueness Lemma 9: will be derived from the 

MAIN LEMMA los : To every function u in B which satisfies the equations 
Eu = 0 and T u  = 0 there i s  a sequence of functions u. in @, with Tu ,  = 0, E -+ 0, 
such that 

(10.1) 

(10.2) 
Since inequality (7.1) may be applied to the functions u, , relation (10.2) 

leads to relation 

(10.3) 1 1  u, ) l a  -+o as € + O .  
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Relation (10.1) then leads to  I /  u = 0 or u = 0. Thus Lemma 9; for E 
instead of E* is reduced to  the main lemma. 

The approximating functions u, in GI , to be established in proving the 
main lemma, will be constructed by means of a sequence of certain integral 
operators, the “mollifiers” J, . For the sake of completeness, and because of 
minor modifications needed, we shall formulate and derive various properties 
of integral operators in general and of the mollifiers in particular, although this 
was essentially done in an earlier work [12B]. 

11. Integral Operators 

Let k(y, 8) be a matrix which depends continuously on the pair of points 
(y, a) in and is bounded there. This matrix may be taken as the kernel 
of an integral operator K ,  which transforms the function u(y) in Q into the 
function 

X 

(11.1) Ku(?l) = J MY, !7)4a) d?71 

/ J k ( Y , a )  I d a 5  I lKI I  for Y in a, 

i l k ( Y , $  I & <  IlKII for ?7 in a 

a 

in 0. Various familiar notions will be employed in connection with such opera- 
tors. We assign to the operator K as its “norm” the smallest number 1 1  K ( 1  
such that the inequalities 

(11.2) 

hold. Then the inequality 

(11.3) 

holds for functions u in &. In fact, we have from Schwara’s inequality 
I1 Ku I I m  I II K I1 II u 11a 

I W Y )  l 2  I 1 I N?/, !7) I /  I k(Yl%) I I u(a) l2 d!7 
a m 

(11.4) 

and hence 

whence (lL3). 
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Relation (11.3) shows that the operator K ,  so far defined in 0, can be 
extended to  the whole space @ so that (11.3) remains valid. Relation 

I K4Y) l 2  5 I1 K I1 1-U.b- I k(Y, I71 I I1 u 1 1 2 ,  
Y i n  R , 9  in  

which follows from (11.4), shows that the function Ku(y) lies in Q when u is 
in $5. If k ( y ,  g) possesses continuous derivatives with respect to  y', it is clear 
that the function Ku(y )  also possesses continuous derivatives. 

The adjoint K* of the operator K ,  defined as the integral operator with 
the kernel k ( g ,  y), transforms the function u(y )  in @ into the function 

K*4Y) = 1 w?7, Y)4I7) @. 
a 

The operators K and K* are related through the identity 

(11.5) 

which holds for functions u, w in 4. 

depending on a parameter e > 0. 
properties: 

(K*w, 4 m  = (w,  Ku)m 7 

We now consider a set of integral operators K ,  with the kernels k,(y, Q) 
We assume that they enjoy the following 

P I. There is a number ko 2 0 such that the relation 

(11.6) I1 K ,  I1 I ko 
holds for all e. 

be uniformly bounded. 
In other words, the norms of the operators K ,  , defined by (11.2), should 

P 11. There is a number K and for every T > 0 a number E(T) > 0 such that 

(11.7) s, kJY, dg = K 

if y lies in the domain (R7 , defined through ( l . l ) r  , and e 5 e(7). 
P 111. The relation 

(11.8) kdv, I7) = 0 

should hold outside of the cube 1 y' - 9' I 5 3 e, r = 1, . . * , m. 

(11.9) 1 1  K,u - KU -+ O as e .+ 0 

holds for all functions u in $5. 

may deduce from (1 1.7, 11 .G)  the relation 

From these three properties we shall deduce that the relation 

Suppose first that the function u is in &. For y in (R, and e 2 E ( T )  we then 



HYPERBOLIC EQUATIONS 367 

where M 3 ,  is the maximum of 1 u(y) - u(%) 1 in the cube 1 yr - fj' I 5 3 E ,  

r = 1, . - - , m. Owing to  the uniform continuity of u(y) in @L, the last member of 
relation (11.10) tends to zero with e. Hence we have 

ji I Keu(y) - m(y) 1' dy --f 0 as e + 0. 

On applying inequality (11.3) to the domain 6i - a, instead of we find 

Hence we obtain 

The right member can be made arbitrarily small by chosing first T and then 
Thus relation (11.9) is proved for functions u in Q. 

A function u in 4 can be approximated by functions u in 4 such that 

( I u  - u' ( I  + o .  
Using relation (11.3) we may derive the inequality 

e. 

I (h + I K I) II u - U' l l m  + j j  Keu' - ~ u '  l l m  . 
The last member can be made arbitrarily small by choosing first u and then e. 
Thus relation (11.9) is proved to hold for the function u in 4. 

12. Mollifiers 

We now introduce a special set of integral operators, the "mollifiers." 
Their effect is to smooth out the functions on which they are applied; a t  the 
same time they approximate the identity. 

Let j ( z )  be a function of the number z which possesses derivatives of every 
order and which satisfies the conditions 

(12.1) j ( z )  2 0, 
(12.2) j (z)  = 0 for 1 z 1 2 1, 

J j (2)  dz = 1. 
-1 

(12.3) 
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and define the mollifier J ,  as the integral operator with the kernel j , ( y  - g ) ,  
This operator transforms a function u in 4 into the function 

J d Y )  = J jdY - I-h(?7) &Jl 
6i 

which possesses continuous derivatives. 
The terms 26 were added in the arguments of the functions j in expression 

(12.4) in order to  make sure that j,(y - 9) = 0 when the point g is near the 
surface S. In  the addition of these terms the present definition of the mollifiers 
differs from that given earlier [12B]. 

The operators K ,  = J ,  and k ,  = J:  evidently enjoy property P I with 

Relation (11.3) takes the form 

II J.u ll6i I II 24 I la 1 I 1  J %  ll6i I I1 u II6i * 

In  order to establish further properties of the operator J ,  we make the 
following observations which involve the domains & and &r defined by (1.1) 
and ( l . l ) T .  

When the point y is on the surface S, the set of points y with yr < grl 
r = 1, * - , m, lies outside of a. Hence we have 

(12.7) j,(y - fj) = 0 for Q on S, y in a; 
of course, a t  the same time the derivatives of j ,  vanish; i.e., 

a 
3' 

(12.7)' - j * (y - g) = 0 for fj on S, y in (R. 

When y is on 3, the set of points $! with fj' > yr, r = 1, * - - , m lies outside 
(R. Hence we have 

(12.8) j,(y - g) = 0 for y on 3, g in (R. 

is outside a,, . Hence we have 

(12.9) j.(y - g) = 0 for g on 3, y in . 

r = 1, - , m, is in a. Hence we have 

W h e n j i i s o n ~ , t h e s e t 0 f p o i n t s y w i t h ~ ~ - 3 ~ < y ' < ~ ' - ~ , r  = 1, , m  

When y is in 6t4* , the set of points g with y' + E < 8' < 8' + 3s, 
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The statements (12.7) and (12.8) insure that the functions J,u(y)  vanish 
on the surface 3 and that the funct,ions Jqu(y)  vanish on S; 

(12.11) T J ,  = 0, 

(12.12) SJ*, = 0. 
In addition, it is clear that the functions J,u(y) and JTu(y) vanish also 

in the neighborhoods of 3 and S respectively. 
Statement (12.8) implies the relation 

(12.13) TJ:w = 0 

for any function w in 6 which vanishes in (R - (Rst ; the function TJ’: w then 
vanishes even in a neighborhood of the surface 5 .  

The fourth statement, (12.9) establishes property P I1 with ~ ( 6 )  = l e ,  

Property P I11 follows from the definition of j ,  . 
We note that relation (11.9) takes the form 

K = 1. 

(12.14) ~ ( J , u - u ~ ( R + O  BS e - + O  

for all functions u in 4. 

13. Commutator Identity 
An important property of the operator J, is that it approximately commutes 

with the operator E. We shall show that under certain conditions the com- 
mutator EJ .  - J,E is equal to an integral operator to which the statements of 
Section 11 can be applied. 

Evidently, the operator E J ,  is an integral operator with the kernel 

[A’(Y)D, + H Y ) l l . e ( Y  - i l l .  

(D, + ~ , > l . , ( Y  - ti) = 0,  

IZj,AP(Y) + B(Y)Ijc(Y - i l l .  

Using the abbreviation z, = a/ag’ and using the relation 

we can write this kernel in the form 

We express this fact symbolically by writing 
(13.1) EJ .  = [D,AP + BIJ,. . 

Similarly, the operator E* J*, is an integral operator with the kernel 

[-D,A’ + B*lj*(g - Y). 

1-5,”) + B(i81jdY - a; 
The adjoint (E*J*,)* of this integral operator has the kernel 
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therefore we write symbolically 

(13 2) 

Combining (13.2) with (13.1) we obtain the identity 

(13.3) 

- _  
(E*J*,)* = [-D,A’ + B 1 J . s  . 

_ -  
E J ,  - (E*J*,)* = [D,(Ap - A’) - (E - B ) ] J , *  . 

Now, under certain circumstances the operator (E*J*,)* equals the operator 
J,E. Specifically we formulate 

LEMhiA 13: The relation 

(13.4) J,Eu = (E*JX,)*ZL 

holds 
(1) in (R for all functions u in the space 6 with Tu = 0, 
(2) in 
The qualifications “in (R” and “in @3r’ ’  refer t o  the argument y of the func- 

In order to prove the lemma we first note that with arbitrary functions w 

for all functions u in a3 . 

tions which result on both sides of (13.4). 

in 4 relation 

(13.5) 

holds, as seen from (11.5). Then 
we make use of the adjointness formula (3.6), which holds for u in 0 ,  since 
Sw = 0; it gives 

(w,  J3u)m = ( J % ,  3461 9 

We next assume w to be in 0, with Sw = 0. 

(w, J.Eu), = (E*J:w, ZL)R + (J:w, A”T,EU)S . 
If Tu = 0, the last term on the right hand side vanishes. Otherwise, the last 
term vanishes because of relation (12.13). We restrict w to  vanish in 6i - 6i3, ; 
again using (11.5), we then obtain the formula 

(w, J ,EU) .  = (E*J““., t i ) m  = (w, (E*J$,)*ti)m . 
If w is arbitrary in 0, wit,h Sw = 0 we may apply Lemma 4 and conclude that 
relation (13.4) holds. If the function w is arbitrary and lies in the domain 
(RZs , we may only conclude that this relation holds in (Rae . In any case, Lemma 
13 is proved. 

Combining it with identity (13.3) we have 

THEOREM 13: The relation 
_ _  

(13.6) 

holds 

( E J ,  - J,E)u = [D’(A’ - A’) - ( E  - B)]J,* 

(1) in (R for  all functions u in c3 with Tu  = 0, 
(2) in (Rae for all functions in 6 . 
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14. Conclusion 

One observes that relation (13.6) would reduce to relation J ,E  - E J ,  = 0 
if the matrices Ap and B were constant. In any case, though, the right member 
of this relation becomes small if t is small. 

The precise formulation of this statement will result from 

LEMMA 14: For a function u in B 3  relation 

[ I  [D,(A' - A') - (B - B)]J;u /la -+ 0 
_ -  

.(14.1) 

hoZds. 

a~ E 4 0 

To prove this statement we first derive the relation 

(14.2) / I  (B  - B)J,.u / I R 1  -+ 0 as e +o, 
which, in obvious notation, involves the second part of the right member of 
formula (13.6). 

Relation (14.2) follows from the estimate 

(14.3) 
in which 

I I  (B  - B ) J ~ + u  IIm i ~ ( t )  [ I  J ~ U  IIa I P(E) I I  u IIm > 

P(t) = mar; 1 B(y) - B(g) 1 for 1 y' - g' 1 5 3e, r = 0, . , m 
has been used. Clearly B(t) ---f 0 as 6 -+ 0 by virtue of the uniform continuity 
of B(y) and (12.6). 

Secondly, we shall prove that for any function u in BS the relation 

(14.4) 1 1  D , ( A ~  - AP)J,-u / l a  - t o  as E - + o  

holds. 
To this end we observe that the kernel 

(14.5) k(Y, !A = D,IA"Y) - AP(g)ljje(y - g )  
of the operator E,[A' - ApJJ, - enjoys properties P I, P 11, P I11 of Section 11 
with K = 0 and E(T) = 7/4. 

It is obvious that k, has property P 111. 
In order to establish property P I1 with K = 0, e ( 7 )  = 7/4, we write k,(y, g )  

in the form 

k k l ,  g )  = EPW, !?) 
W Y ,  g) = [A'(?/) - Ar(alje(Y - $ 9  

with 

2nd observe 
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Both terms on the right side vanish. For, cP'(y, Q) = 0 for Q on S by (12.7)' 
and, by (12.9), also for Q on 3 if y lies in 

In  order to  prove that the kernel k,(y, fj) possesses property P I we split 
it up: 
(14.6) 

Using (12.6) we then obtain the estimate. 

with T 2 3s. 

k b ,  fj) = -DpAP(Q)-.je(y - Q) + [ (AP(y )  - AP($llDpj.(~ - Q). 

(14.7) 

Introducing the quantities 
a(€)  = max e-' 1 Ak(y )  - Ak(g) I 
and 

I l ) ,AP(d)- j . (y  - Q) I dQ I I D , A P .  la . 

for 1 yr - fj' I 2 3e, r ,  k = 1, , m 

v($ = max E 1 1 D k j , ( y  - fj) [ dg for y in a, k = 1, - . .  , m 
(R 

we obtain the estimate 

(14.8) 

Ak(Y), 

1 I [AP(y) - A"Q)I~Pj<(Y - Q) I dg 5 md4rl(d. 
The quantity a (€ )  is bounded because of the continuous differentiability of 

a(€) 5 3 max I D , A ~  [ m  . 
k.r 

The quantity ~ ( e )  is bounded because of 

Inserting these estimates in (14.10) and combining them with (14.9) we obtain 

/ 1 kXy, 17) I dg 2 4 1  + 3rlJ max I D,Ak .  1 ;  
thus it is seen that the kernel k,(y, Q) defined by (14.5) possesses property P I. 

Having established the three properties of the operator Dp[AP - A"]Jc .  with 
the kernel k,(y, fj), we know that relation (11.9) holds. Thus relation (14.4) 
follows. Combining it with relation (14.2), the statement of Lemma 14 results. 

Combining the statement of Lemma 14 with that of Theorem 13 we obtain 

THEOREM 14: For a function u in aJ3 the relation 

k , r  

(14.9) IIEJ,u - J,Eu I j a - + O  as B - 0  
hoZds i j  Tu = 0. Otherwise, the relation 
(14 .% 1 1  EJ,u - J,Eu I la , - fO as E - 0  

holds for  any r > 0. 
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The statement of the Main Lemma 10, which refers to a function u in @ 3  

with Eu = 0 and Tu = 0, results from the first part of this theorem combined 
with relation (12.14) by setting 
(14.10) u, = J,u. 
For, if u, is so chosen, we have Tu, = TJ,u = 0 by (12.11) and relation (14.9) 
goes over into (10.2). 

Thus the theorems and lemmas formulated in Sections 6 , 8 , 9  are established. 
The second part of Theorem 14, involving relation (14.9),, will be used in 

Part 11. 

PART 11. DIFFERENTIABILITY 

15. Di#erentiability Problem 

In this part we shall prove that the solutions u of the equation Eu = f 
have derivatives if the right member f and the initial values have derivatives. 
To have derivatives here means to admit the operators D, , . . . , D,  in the strong 
sense introduced in Part I .  The derivatives will further be proved to satisfy the 
differential equation which results by formal differentiation from Eu = f .  That 
the resulting differential equation possesses a solution follows from the existence 
theorem proved in Part I. We shall show that this solution consists of precisely 
the derivatives of the function u. 

If we were to follow the procedure which is customary for ordinary differ- 
ential equations, we would start with setting up a differential equation for the 
difference quotients of u. We do not find it feasible to proceed in this manner. 
Instead, we shall first approximate the solution u of Eu = f by solutions u' of a 
finite ditrerence equation E'u' = f'. It is easy to set up an appropriate differ- 
ence equation, pass to the limit, and prove that the limit function uo satisfies 
the equation Eu, = f in the weak sense. The identity of the solutions u, and 
u then follows from the theorem of the identity of the strong and weak extensions 
proved in Part I. 

The finite difference equations are not easily adjusted to the initial surface 
s. Awkward special constructions would seem to be necessary unless the initial 
values of the functions u' and f '  on S were zero. With the aid of the solutions 
of the difference equations with initial values zero one can easily prove a re- 
stricted differentiability theorem which concerns solutions u of Eu = 0 with 
Su = 0. Fortunately, it is possible to reduce the general to the restricted 
differentiability theorem. 

We mention incidentally that the method of finite differences used here to 
prove the differentiability theorem could also be used to design an existence 
proof independently of the method used in Part I. 

To this end one would approximate the data which satisfy the conditions 
imposed in Part I by data which satisfy the conditions imposed in Part IT. The 
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solution constructed by the method of finite differences can be seen to have 
strong derivatives. Using the basic energy inequality of Part I one can con- 
struct a solution corresponding to  the data imposed in Part I. 

Since the identity of the strong and the weak extension can be derived from 
the existence theorem, the differentiability theorem could then be proved in the 
same way as is done below. 

It may be said that approximation by solutions of difference equations 
would take the place of approximation by mollifiers in this different approach. 

16. The Space S ( D )  
The space 8 of functions which admit the operator A D  will from now on 

be denoted by S ( A D ) .  We recall that every operator E = A D  + B is defined 
in S ( A D )  whatever the continuous matrix B may be. This remark applies in 
particular to the operator - E* = A D  + D P i l p .  - B*. 

We recall that for I = 1, . . - , m every operator D ,  is of the type (E) .  The 
corresponding matrix A' is simply A' = 1 if r = I ,  A' = 0 if r # I, while B = 0; 
the conditions imposed on A' and B in Section 2 are of course satisfied. For the 
operator D ,  the adjointness identity (3.6) of Section 3 becomes 

(16.1) (w ,  D,u)m + (Diw, u)m + (w, a i ~ ) o  - (w, TiU),  = 0. 
Here at and T~ are the numbers introduced in Section 3. 

The space 8 with reference to the operator D ,  is denoted by S ( D , ) ;  the 
intersection of the spaces B(D, ) ,  By 
s ( A D D )  we denote the space of functions u in S ( D )  for which each D l u  is in 
8 ( A D ) .  

By definition, every function u in 8 ( D )  can be approximated with respect 
t o  the norm 11 by functions in Q1 together with each derivative D,zi. We 
shall show that for functions u in B ( A D D )  such an approximation can be per- 
formed simultaneously for 1 = 1, . . . , m, a t  least in subregions @, . 

As in Section 1, we denote by @: the domain which consists of all points 
y that satisfy the m conditions below: 

, B(Dm) will be denoted by s(0). 

(16.2) s'(y$) < yr < t'(y$) - T, r = 1, * * 7 m. 
By ar we denote the closure of 

We now proceed to derive 

LEMMA 16 : Let u be a function in S ( A ' D D )  so that for I = 1, ' ' . , m the 
function D,u i s  in a space B(A'D),  where A' refers to any set of matrices of the 
type ( A ) .  Then there exists a sequence of functions u, in Q1 with D ,u  in O1 for 
1 = 1, - .  . ) m, such that for 7 > 0 

(16.3)i 

(16.312 

. 

/ I  uc - u I l &  -0, 
I I Diu, - D ~ u  [ lm, --+ 0, 
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(16.31, 1 1  Diu, - D ~ u  IIsI + O US E --+ 0. 

If T u  = 0, TD,u = 0, the functions u. vanish in a neighborhood of tl and 
the relations (16.3) hold for 7 = 0, i.e. for 6% instead of @L . 

To prove Lemma 16, we use the mollifiers J ,  (see Section 12) and state 
that  the functions u, = J,u possess the desired properties. Indeed, J ,u  vanishes 
in a neighborhood of 3, as stated in the remark following formula (12.12). Re- 
lation (14.6)1 follows immediately from (12.14). In case Tu = 0, relation 
(13.6), applied to D, instead of E, reduces to 

(1 6.4) I DZJ,U = J,D,u. 

Without assuming Tu = 0, this relation was only proved to hold in a subdomain 
@ B e  . 

Relation (14.9)3c , applied to Diu instead of u, yields the relation 

1 1  EJ,Dlu - J,ED,u / l a , €  -+ 0 as e + 0 

and hence, by (16.4), , 
( 16.412 [ /  ED,J,u - J,EDlu 1Ia., --+ 0 as e -+ 0; 

if Tu = TD,u = 0, relation (16.4), holds for @ in place of @3c . 
From (16.4), , (16.4), and (12.14) the relations (16.3), and (16.3), follow. 

Relations (16.3), and (16.3)5 for > 0 can be derived from the latter two re- 
lations with the aid of inequality (7.1) if Tu = TD,u = 0. Otherwise we use 
the inequality 

(16.5) 

which follows from inequality (7.8) when w is chosen as w = 1 in S, . Inequality 
(16.5) applied to m7,  with 0 < r’ < 7, instead of @, to u and D,u or D,u and 
ED,u instead of u and Eu, yields (16.3)4 and (16.3), . Thus Lemma 16 is proved. 

I t  must be remarked that the initial value S u  of a function u in %(D) 
depends on 1, since Su is assigned to u with reference to each operator D,u in 
place of E. For the continuously differentiable function u, , however, Sue is 
independent of 1; hence relation (16.3), in Lemma 16, implies that Su is in- 
dependent of 1. The same is true for SD,u in view of (16.3), . 

Note also that the space S ( D )  is contained in 8(.4D); therefore A D  = APD,  
and hence Eu = APD,u + Bu for u in S(D) .  Indeed, the quantity f = APD,u 
with 0 = Su evidently satisfies relation (9.1)o for every w in Q1 with Tw = 0; 
hence u is in 

I1 7.4 l l s 2 ,  5 Y I I  Eu 11: + Q2y I /  110: j 

and, according to Theorem 9: , u is in %(AD). 
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17. Differentiability Theorem 

The main theorem of Part I1 to be formulated in this section states under 
what circumstances the solution u of the initial problem Eu = j ,  Xu = Sg, 
formulated in Section 6, possesses strong derivatives, i.e. lies in the space B(D) .  
We shall make four assumptions: The right member f is itself in B(D). The 
initial value of u is at the same time the initial value of a function g which itself 
is in B(D)  and whose derivatives have initial values in $jS . The matrix B 
possesses continuous derivatives. The initial surface S is sufficiently smooth. 
Specifically: 
I f is in B(D).  
I1 There is a function g in S ( D )  whose derivatives D,g are in a space B(A’D) 
such that Su = Sg. Here A’ refers to  any set of matrices of the type ( A ) .  

This form of condition I1 was chosen in order to  make sure that the deriva- 
tives Dlu possess initial values SD,g. We shall express the initial values SD,u 
of D,u in terms of the initial values SD,g. 

It may appear unnatural to characterize the behavior of the function u on 
S by means of a function defined in @ instead of characterizing this behavior 
directly by differentiability conditions on S. The latter possibility may, how- 
ever, be subsumed under our definition. A function defined on S need only be 
continued as a function g in 6i so as to be independent of y1 ; then D,g = 0. Our 
requirement that g be in S ( D )  is then equivalent to  certain differentiability 
conditions on S and the additional requirement that Dlg be in B ( D l )  is no re- 
striction in view of DIDlg = 0. 
I11 The matrices B(y) are in Q, . 
IV There exists a function u(y) in 0, which vanishes on S, 

(17.1) u(g) = 0 on S, 
and whose derivatives 

(17.2) uAY) = DdY)  

(17.3) u,(y) > 0 on S, r = 1, 1 m. 

are positive on S, 

Evidently, the numbers u, introduced by (17.2) may be taken as the numbers 
u7 int,roduced in Section 3. 

The condition that the function u(y) be in 6, is made for convenience; i t  
is stronger than necessary. It could be shown-but we shall not do so-that it 
would be sufficient t o  assume that u(y) is in Ql . 

The main theorem of Part I1 will now be formulated as 

DIFFERENTIABILITY THEOREM 17% : Assume that the initial surface S of the 
lens-shaped region @ satisfies condition IT’ and that the operator E = A D  + B 
of type (E)  satisfies condition I I I .  Suppose that u i s  a function in ‘fj(AD) for which 
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the function Eu is in F(D)  and whose initial values Su satisfy condition I I .  Then 
the function u belongs to the space O(D) and satisfies the equations 

(17.4) EDIu = DLEU - D , A P * D P u  - D ~ B - u  
and 

(17.5) S D ~ U  = S (  Dig + (A’a,)-’ui[EU - E g ] } .  
Here the quantities ul are the numbers introduced by (17.2). 

Relation (17.4) certainly holds for functions u in tSZ , as is immediately 
verified by formal differentiation. Relation (17.5) enables one to express the 
initial values of the derivatives D,u in terms of Eu and the initial values g of u. 
Note that the expression S (Big - (APa,)-’uEg) actually involves the deriva- 
tives of y only in directions within the surface S. We have 

(17.6) APapD,g - UEg = AP[aPDz - ~ i D p ] g  - CLBg 
and the expression apD, - ulDp represents differentiation in a direction in the 
surface S; cf. (3.7). 

We have already indicated in Section 15 that, instead of proving Theorem 
17 directly, we shall reduce this theorem to a weakened form in which the initial 
values of u and Eu are zero. We formulate this weakened theorem separately: 

SPECIAL DIFFERENTIABILITY THEOREM 1780 : Assume that the operator 
E = A D  + B of type ( E )  satisjies condition I I I .  Let u be a function in O(AD) 
such that Eu i s  in O(D) and 

(17.7) u = 0 on S ,  

(17 8) E u = O  on S. 

Then the function u belongs to the space 3(D);  further D l u  belongs to S ( A D )  and 
satisfies the equation (17.4) and moreover 

(17.9) D ~ u  = 0 S .  

Note that in this special theorem condition IV is not imposed. 
We shall first put the relations stated in these two theorems into a somewhat 

Werent form, then prove Theorem 17’, and finally reduce Theorem 17 to 17’. 

18. Operators h and b 
It is convenient to introduce functions which are systems 

(18.1) 

of m + 1 functions in any of the spaces considered. We also characterize the 
corresponding spaces of systems .22 by a “caret.” E.g. if u and ur , 1 = 1, - * - , m, 

.d = [u, U l l  = [uo ,% , - ‘ * , urn1 
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are in 4 we say .ii is in $5. 
0 

0 

-4 r ,  

(18.2) 

9 

4' 

0 

0 

B 
D I B -  
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For systems Q we introduce the matrices 
0 . . .  

,4' ... 

... 

0 ... 

0 
D I A 1 * + B  

D,B* 

D*ilrn* O I  

... 

... 

* I .  ... 

The operator & = A D  + 3 acting on functions u can then be formed. Specific- 
ally, we have 

(18.3) Ri2 = [Eu, , Eu, + DLAP*up + DiB*uo].  

The space of functions i2 for which the operator ,!? is defined strongly mill be 
called &AD).  

For functions u in S ( D )  we introduce the operator 5 by means of 

(18.4) 

For functions u in E(DD) the identity 

(18.5) G6u = ~ E u  
holds. In fact, as seen from (18.3), equation (17.4) together with &u = Eu is 
equivalent with this identity. 

We introduce the vector 

DU = [u, D ~ U ]  = [u, D ~ u ,  * * *  , D,u]. 

(18.6) 

so that we may write 

(18.7) 

(18.8) 

b = {O, u1 , * . *  , a,) 

(6, h ) s  = (up , u,u)s . 

shu = # { f i g  + (A~~ , ) - 'B (EU - E g ) ) .  

Using this vector we can express the initial conditions Su = Sg and (17.5) as 

Let u be the function with which Theorem 17, is concerned, and let g be 
the function entering the formulation of this theorem, which agrees with u on 
the surface S. 

Using these functions we may formulate the problem of finding a function 
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Q in $(AD) which satisfies the differential equation 

(18.9) 8.li = hEu 
and the initial conditions 

(18.10) S.li = S{h>s + ( A P a P ) - l B ( E ~  - Eg) ) .  
This problem is of the type for which in Part I the unique existence of a solution 
was proved, cf. Theorem 6: . Let the function .li in $ ( A D )  be this solution. 
Then, evidently, the statement of Theorem 17 is simply equivalent with the 
statement that the function u lies in the space S ( D )  and that 

(18.11) 6u = Q. 
A similar formulation could be given for Theorem 17: , but we shall not 

need it. 

19. Difference Operators 
In order to prove Theorem 17; we replace differential operators by difference 

operators in such a way that 
(i) the existence of the solution t,o the corresponding initial value problem 

is obvious, 
(ii) the properties corresponding to those stated in Theorem 17; are obvious 

for these solutions, 
(iii) when the mesh width approaches zero, a subsequence of such solutions 

converges weakly to a limit function in @(AD)  possessing the desired properties. 
By virtue of the coincidence of the operators E in the weak and strong sense, 
Theorem 17; will follow. 

(19.1) [rly' = y' - X and [r]yz = yz if 1 # T ,  

We introduce the translation fr] defined by 

(19.2) [rlly', * . -  ? 2/"1 = UTIY', * . *  ? [TIY"l. 

Here the "mesh width" X is any positive number a t  our disposal. The trans- 
lation [TI-' is defined, similarly, by substituting - X for A. 

From the assumptions about the nature of the region a, made in Section 1, 
one easily deduces the 

REMARK: If the points y and [Z] [r]y lie in a, then [ r ] y  and [Z]y also lie in a; 
if the points y and [I]- '  [r]-'y lie in a, then [r]-'y and [Z]-'y also lie in a. 

To prove this we need only observe: Suppose for two points y and g on S 

y' = g' for p # r # 1 and y' < ij'; 
then 

.'(y*l> > .'(yi>. 
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The symbol [r] is also used to denote the operation which transforms a func- 
tion u(y) in CS into the function 

(19.3) [rIu(v? = u([rIar), 
provided the point [r]y lies in (R. We define 

(19.4) [rIu(Y) = u([rIY) = 0 

if [r]y lies outside (R. Similarly, for functions v in 6 we define the operator [TI-' by 

(19.3)" 

provided [r]-'y liea in (R, and by 

(19.4)* 

if [r]-'y lies outside (R. 

(19.5) 

for any functions u, v, in 6; it expresses the fact that the operator [TI-' is the 
adjoint of [r]. For any function in 6 we further have 

(19.6) ([rlu, [Tlu)a I (u, u)m 

and, more generally, 

(19.6)' "474 [rlKU>* s (u, KU)a , 
whenever K = K(y) is a continuous bounded non-negative symmetric matrix. 

By virtue of inequality (19.6) we can extend the operator [r] as a bounded 
operator to the whole Hilbert space 4; the same is, of course, true of the operator 
[TI-'. Relations (19.5), (19.6), (19.6') evidently carry over to u and v in 8. 

With the aid of the traxhtions [TI, [TI-' we define the difference operators 

[r]-'v(y) = v([r]-'y) = O 

We easily verify the identity 

([TI-% u)a = (v, [rlu)a 

(19.7) A, = X-'(l - [PI), 

(19.7)* A*, = ~"(1 - [rl-'); 

they serve as substitutes for the differential operators D, and - D, . 
Let f be a function in G1 which vanishes on 3. Since f is continuous across 

3 when we set f([r]y) = 0 in agreement with (19.4), it is clear that A,f(y) can 
be written as 

A 

A J ~ )  = 1 orf(9? 9 g* - dp,  

for every point y in (R. As a consequence, the inequality 

(19.8) II Avf lla 5 II Drf lh 
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and the relation 

(19.9) 1 1  Arf - Drf l la 4 0  88 

hold. By virtue of the definition of the strong extension of the operator D, 
inequality (19.10), and hence also relation (19.9), carry over to functions f in 
5(Dr) with Tf = 0. 

Let A' = A'(y), r = 1, - - -  , m, be non-negative symmetric matrices with 
continuous derivatives defined in (R such that with an appropriate positive 
constant a the matrix cC AC - a is non-negative, cf. (2.3). 

Furthermore, let B; = B{(y) be a set of continuous matiices defined in (R. 

We assume that there is a constant b such that 

(19.10) I Bi(y) I 5 by r = 1, , m, for y in (R. 

Then we introduce the difference operator Ek aa the expression 

(19.1 1) EX ACA, + B ~ P ] ,  
in which summation with respect to p is implied in both terms. This operator 
transforms the function u(y) into the function 

(19.12) J%&) = ,-lApk/b(l!) - ~-'AP(~)u(IPltl) + %/)4[PIV). 

Let f&) be a fulzetion in Q. Then zoe a& for a fundion u(g) = u&) in (R 
whkh 8at&@ the e q u d m  

Note that the stipdation (19.4) talces the place of an initial wnddth vn 8. 
The expression E,,u(y) involves the values of u at the pointg y, [lly, . . , 

[m]y. The coefficient of u(y) is the matrix X-' cc AP(y); because of (2.3) it 
possesses an inverse. Therefore, since the value of EXU = fx is given at each 
point y, the value of u at the point y can be expressed through the values of u 
at the m point [ply. Successive application of this reduction ends in a Gnite 
number of steps because of condition (19.4). Thus one can express the value 
of u at any point of (R in terms of the values of f h  in (R. In this way the solution 
of the initial value problem described by (19.15), (19.14), is constructed. It is 
evident that this solution is continuous. 

(19.13) E ~ u  = j A  . 

In the following we shall use the operator 

(19.14) 
it is the adjoint of the operator El , as seen from the identity 

(19.15) (El@, 4 a  = Exu)a 
which follows from identity (19.5). 

We proceed to derive an inequality by which the norm 11 u lla of a function 
u is estimated by the norm 11 EXu lla of EX%; it is analogous to inequality (7.1) 
for functions u in 8 with Su = 0. 

El = A;Ap + [p]-'B;*; 
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In doing this we shall employ the function 

(1 9.16) 

keeping the positive number 6' a t  our disposal. 
satisfies the relation 

We note that this function 

(1 9.17) [rldy) = exp { - 0x1 d?/) ' 

We now write the relatioil AP Apu + B{ [plu = EAu, cf. (19.12), in the form 

multiply it by q2u, and integrate over (Ti. The resulting relation may be written 
in the form 

C ( q ~ ,  Apqu)m = (nu, Apqb1u)m - X(W, EdpIu)rn + X(qu, qExu)m 
P 

or, using formula (19.17), in the form 

C (P, APQU)m = exp { - ~ X I ( P ,  Ap"PJdm 

- 
(19.18) 

~ X P  {-eh)(qu, K[~lqu)m + X(P, @xu). - 
At this place we make essential use of the assumption that the matrices A'(y) 
are non-negative definite: we infer from it that the estimates 

2 ( 9 ,  A ' k ] ~ > m  I exp Ww, Arqu)m + exp { - e ~ l ( [ r l ~ ,  A'[rl~dm 
hold for r = 1, . . , m. 
relation 

Insertion of this inequality in (19.18) leads to  the 

C (P, Apqu)m I e~ i - 2 e ~ J  C ([PIP, Ap"PI~u.U)m 
P P 

(19.19) 
- 2X ~ X P  { - ~ X I ( P ,  Kbl@)m + ~ V P ,  qExu)m 

We now use the relation 

A'[r] = [r]A' - AA,A'*[T], 
which follows from (19.7) and write accordingly 
(19.20) 

The value of the difference quotient A,A'. at points y for which [rly lies outside 
of IR is not defined; but the expression ([rlqu, A,A'- [r]qu)a is independent of 
these values since [r]qu vanishes at such points. 

Clearly, since D,A'. is assumed to be bounded, there is an upper bound 
for the modulus 1 A,A'. I of the matrix A,A'. a t  all points y in (Ti with [r]y in IR 
independently of the mesh width A; we denote it by c.  Accordingly, 

I A,A'. I 5 c for y in IR if [r]y in IR. 

([~IQu, A'[rlqu)m = ([TIP, [rIA'qu)m - X ( [ r l ~ ,  ArAr*b1&m 



HYPERBOLIC EQUATIONS 383 

Using this bound, thee last trm of (19.20) can be estimated in the form 

I ( [ ~ I P u ,  A,A‘.[rl~)rn I i c(kI~u ,  k1QU)rn a 

Using this estimate and the bound (19.10) we obtain from relations 
(19.19) and (19.20) in an obvious manner the estimate 

C (qu, Apqcru>rn L ~ X P  ( - 2 8 ~ )  C ([PIP, [PIA’P)~ 
P P 

(19.21) 

+ Vmb + ~>(Pu, P)m + UqExu, qEiu)rn 

We now employ inequality (19.6) with k = qA’ and Ic = q; we then obtain 
from (19.21) 

fl - exp (-2flhll c (Qu, A”)a 
P 

I M m  + 2mb + NP, &m + h(qExu, qEhU)a . 
whence, using (2.2), we find 

(19.22) {[I - exp (-2tX+)la - X(m + 2mb + 1))(qu, P U ~  L: X(qExu, qExu)rn . 
We now choose 

(19.23) 

and then require X to be so small that 

(19 24) exp {zxe) 5 2  

so that 

0 = 2 ( m  + 2mb + 1) 

1 - exp {-28h} 2 ex. 
From (19.22) we then have 

e b ,  &rn I 2(qExu, q E d m  . 
Setting 

(19.25) 

we finally obtain the inequality 

(19.26) 
for any function u in 8. 

yz = 28-l max q,‘min q, 
m a 

(u, ~ ) a  5 r2(Ei~, ExU)rn 

For the solution u = uA of equation (19.13) we thus have 

(19.27) ( I  ui ( l a  I Y I I  f i  l l m  - 
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This solution was constructed under the assumption that the right member f x  
belongs to  6. Since every function fx in $3 can be approximated in the sense of 
the 1 1  

THEOREM 19: To every function fx in $3 a solution u = ux of the diference 
equation (19.23), EAu = f x  , exists which satisjes condition (19.4). For this solution 
inequality (19.26) holds. 

A general remark may be added concerning the derivation of inequality 
(19.26). In  an earlier work on hyperbolic difference equations [5C] the differ- 
ence operator was set up in such a way that in the analogue of identity (19.18) 
the first term on its right member involved a positive definite 'form. Such a 
set-up would also be possible in the present, more general, problem. To this 
end one need only replace the operator A, in expression (19.11) by the 
average of the 2"-' operators of the form A, , A,,[pLl], - * - , A,[p,] [ p J ,  . . , in 
which [ p J ,  [pJ, [p3],  * - . represent distinct translations different from [ p ] .  The 
resulting difference operator connects the value of u at the point y with the 
values of u a t  all points of the cube spanned by the points y, [lly, . . [I]  . . 
[mly. The form of the operator (19.11) which we have chosen is certainly 
simpler and, although i t  does not lead to an identity of the type (7.2) involving 
positive definite forms associated with the surfaces S and 3, it is still sufficient 
to  derive inequality (19.26). 

//.-norm by functions in 6, we may state 

20. Limit Process 
We now iiivestigate what happens when the mesh width X approaches zero. 

We say that functions +o(y) converge mod S and 3 to  a continuous limit function 
cpo(y) if they converge uniformly to  +o(y) in Gi outside every neighborhood of 
S and 3 respectively while 1 +x(y) 1 remains bounded in such neighborhoods. 

In  this sense the matrices Ar il'- converge mod 3 to the matrices D, A' .  
since it was assumed that the A' possess continuous derivatives. As regards 
the matrices Bi we stipulate that they approach mod 3 continuous matrices 
B' for which 

(20.1) C B' = B. 
P 

We further assume that the common bound b of I Bi I is independent of X; cf. 
(19.10). The independence of the constant c of X has already been established, 
cf. (19.21). 

Further we assume that the norm 1 1  f h  1 l a  of the right member f x  of equation 
(19.13) remains bounded, 
(20.2) 
By virtue of inequality (19.27) the norm of the solution u = ux of the initial 
value problem (19.13), (19.4) is then also bounded, 
(20.3) I \  UA 11. = Xk. 

I 1  fx 11. 5 k *  
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A well-known consequence of inequalities (20.3) and (20.2) is that a sequence 
X 4 0 exists such that uA and EAuA converge weakly; i.e. functions uo and j o  
in @ exist such that 

(wh  , U J m  -+ (wo 7 uo)m 9 (20.4) 

(20.5) (WX i EAu$Ci * (WO 7 j 0 ) B  y as 0, 
whenever wA and wo are functions in @ for which 

(20.6) 1 1  WA - WO I l L R  as X + O .  

Let v be a function in 6, which vanishes on S. Note that the operator 
ET involves difference operators A: , which connect points across S but not points 
across 3. Therefore the function EXv converges uniformly in 6l to E"v. Hence, 
when we set wA = E f v ,  we obtain from (20.14) the relation 

( E ~ v ,  UX), * (E*v, u O ) ~  w X 4 0. 
From (19.15) combined with (20.5) for wx = wo we then deduce that relation 
(20.7) 
holds. In view of the definition of the space 6j5 given in Section 9, the latter 
statement is equivalent to saying that the function uo lies in 6jJ3 and satisfies 
Euo = f o  , Tu, = 0. Theorem 9j, which states that the modified weak and the 
strong extension of the operator E coincide, now implies that the function uo 
lies in %(AD).  We may formulate the result as 

LEMMA 20 : Let the matrices Bi approach mod 3 the matrices B' for which cp Bp = B; let f A  be func ths  in 6, with SMhA = 0, and let 1 1  f h  114 be bounded. 
Further let be the solution of the difference equation EAuA = f A  and satisfy the 
initial condition (10.4). Then a function uo in g ( A D )  with Tu, = 0 exists such 
that for an appropriate sequence X --+ 0 relations 
(20.8) 

(E*v, uo) = (0, ui>m 

(w, d m  -+ (w, Uo)m 1 

(20.9) (w, EA%)(R ---t (wi EuO)b 
hold with every function w in 8. 

21. Diferentiuted Difference Operator 
The preceding result will be applied to two particular operators, in place 

of Eh , namely to A I  EA and to A, . 
In doing this we specify B; by 

B{ = B' = m-'B, 

B being assumed to have bounded continuous derivatives in a. We assume 
that the function h is in B(D) and vanishes on S, i.e. Sh = 0; furthermore we set 
(21 .l) f h  = f .  
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B' 0 0 

A,B' 61A1A-' + [l]Br - 61A,AT 
I 

(21.4) B;I = 

,A,B 6:A,A? * 6:A,A" + [m]B:, 

We then apply the operation A t  to  equation (19.13) and obtain 

(21.2) -4'A,Al~h + A I A P . [ l ] A p U h  + [Z]BP.[p]Ai~x + AIBp.[p]Ux = A i f .  

The coefficients occurring in this expression are defined at points y in @i 

for which [Z]y is in 6i. If [Z]y is not in 6l we define [Z]B: = B', All?! = 0, AlL4L = 0. 
If y but not [r]y is in a, also [ E l  [r]y is not in a, as seen from the remark made in 
Section 19. Therefore, we have 

121.3) [r] &u(y) = 0 when [r]y is outside @i. 

Equation (21.2) can be considered an equation of the type treated in 
Section 19. T o  this end we consider systems of functions .iL = [u, up) with the 
inner product (0, 6) = (8, u) + (v, , uw). To such systems we assign the matrices 

[A' 0 . 
O l  

(21.6) 

(21.7) 

ef. (21.1), equations (21.2) and (19.13) can be combined to  

(21.8) EAaA = f h  



HYPERBOLIC EQUATIONS 387 

Relations (21.3) and (19.4) take the place of (19.4). Inequality (19.27) therefore 
holds in the form 

(21.9) 1 1  OX 118 5 7 I I .fA 118 

or, by (21.6), (21.7), 

(21.10) (UX 7 uX)8 + ( A p u X  9 ApuX)R 5 ‘Yz(.f, . f ) B  f ?*(Ap.f~ Ap.f)8 * 

The results of Section 20 are also applicable. For, the matrix & approaches 
mod 3 the matrix 

(21.11) B’ = 

We observe that the requirement (20.1), cp Bp = 6, is met when 
matrix defined by (18.2). 
by (21.5) are bounded by virtue of (19.8) since Th  = 0. 

such t.hat, for a sub-sequence X -+ 0, 

is the 
of the right members & defined 

Lemma 20, now shows that a function 0, in $ ( A D )  exists with ?u, = 0 

The norms 1 1  f’h 

(21.12) 

(21.13) 
zi, being any function in 8. Relation (21 .lo) in particular, implies 

(21.14) (w, U X ) ~  -+ (w, uo)m , 
(21.15) (w, Aiux)m -+ (w, uo>)m 

w being any function in 8. 

of E,  with f x  = A t  uX since ( 1  AtuX 
function uio in g ( D l )  exists with Sulo = 0 such that 

(21.16) 
(21.17) (w, Aiudot --j (w, Diuto)a as X -+ 0. 

Comparison of (21.16) vith (21.14) yields ul0 = u, , comparison of (21.17) 
with (21.15) yields uoI = D1ulo = Dluo . Thus i t  is proved that uo is in S ( D t ) ,  
hence in s ( D ) ,  and that 

On the other hand, we may apply Lemma 20a to the operator D, , instead 
is bounded by virtue of (21.10). Hence a 

(20, UdcR -+ (w, % o h  , 

(21.18) ii, = & A o .  

Further. we note that L& is in s ( A D )  with S&, = 0. 
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Relation (21.13) implies, in particular, the relation (w, Ekuh)m -+ (w, Eu,), 
as h + 0, whence, because of Exuh = f ,  the identity (w, .f)m = (w, Euo)m results. 

Since w is arbitrary, this means EU, = j”. Using the uniqueness of the 
solution u with Tu = 0 of equation Eu = f ,  with which Theorem 17; is con- 
cerned, we obtain the identification 

(21.19) uo = u. 

Thus it follows that the function u lies in %(ADD).  

(19.9), which holds because of Sf = 0, we deduce the relation 

(21.20) l l f h  - ijj IIa+O as X A O .  

Now, fk = I?A,.12A by (21.8). Hence relation (21.13) yields 

From the definitions (21.7) of jA and (18.4) of fij, combined with relation 

(tt, h j > a  = (tt, 2 i I o ) m  - 
Since zi, is arbitrary in ,$$, we conclude 

(21.21) S ~ U  = = Df = ~ E u .  

Since this relation implies relation (18.9) and hence (17.4), Theorem 17; is 
proved. 

22. Reduction of the General to the Special Di#erentiabiZity Theorem 

It is likely that  the general Differentiability Theorem 17 can be proved, just 
as the special one, by employing solutions of finite difference equations. A 
difficulty would arise only in prescribing values of the solution a t  points of the 
form [r]y and [r]  Illy, so as to simulate prescribing on the surface S initial data 
together with their derivatives. This difficulty can be avoided by reducing the 
general to  the special differentiability theorem. 

Naturally, one will try such a reduction by subtracting from the function 
u a function so chosen that the special differentiability theorem is applicable 
to  the difference u - i?. Accordingly, the function ii should have the following 
properties: 
A) 6 agrees with u on S, 

(22.1) S% = xu = s g ,  

B) ii is in % ( A D ) .  
C) Eii agrees with Eu = f on S, 

(22.2) 

D) E% is in 8(D). 
It is easy to  construct such a fuiiction ii if the matrices A and B and the 

functions g and f possess higher differentiability properties than have been 

SEfi = SEu = Sf, 
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Tequired so far. We first assume these properties and then eliminate them by an 
approximation procedure. 

These properties are 
1) The matrices A'(y) and B(y) belong to GZ , 
2) The function g(y) belongs to CL , 
3) The function f(y) belongs to GZ . 

If these conditions are satisfied we simply set 

~(22.3) 6 = g - cr[APu,]-"Eg - f]. 

Here u,(y) are the quantities introduced in Section 17 in connection with con- 
dition IV. Clearly, this function %(y) satisfies conditions A,  B, and, since 

(22.4) 

also conditions C and D. 
The special Theorem 17; is therefore applicable to the function u - 6. It 

yields that this function, and hence the function u itself, belongs to %(D).  It 
yields further that the relations 

Eil = f - uEIAPup]-l[Eg - f] ,  

122.5) ED,(u - 6) = D,E(u - 6) - D,AP.DP(u - 6) - DJ?*(u - 6) 

and 

SD,(u - 6) = 0 

hold. By virtue of SEu = SE4, the latter relation is equivalent with 

(22.6) SD~(U - 4) = S(APuP)- 'u l (E~ - E%). 

We know that relation (17.4) holds for the function %, since this relation 
is a formal identity for all functions which possess second derivatives DzD,u = 
D,D,u. From the remarks made in connection with relation (17.6) we infer 
that also relation (17.5) is a formal identity for all functions g and u in E(D)  
with Su = SQ; therefore this relation holds for % in place of u. Hence we may 
conclude from (22.5), (22.6) that the function u, with which Theorem 17, is 
concerned, satisfies relations (17.4) and (17.5). Thus Theorem 17, is reduced 
to Theorem 17; , provided conditions 1 to 3 are satisfied. 

Before we can eliminate these conditions we must establish an a priori 
inequality valid for the solution u which exists under these conditions. 

To this end we use the notions introduced in Section 18 and write equations 
(17.4), (17.5) in the form 

mu = Bf, 
s42 = S@g - (A'u,)-'a(f - E g ) ] ,  

I /  ihl 11; I Y2 II Qf 11: + Y* I I  hl - (APa,)-'df - Ed 11: - 
cf. (18.9), (18.10). Then we use inequality (7.1) for .@ instead of E and fhd 
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Note that  the constant y depends only on the bounds I A l a  , I ( x p A P ) - l  la , 
I D,A' l a  , 1 B l M  and on the domain a; obviously the same constant y can be 
taken if 6i is replaced by 6iT for any 7 > 0. Using relations (17.6) we may 
derive the inequality 

(22.7) I I  fiu lla: I 17 I1 fif Ha: + 17 I I  f 11: + 17 I I  bs 11: 
in which 9 is a constant which depends on bounds for ] A' 1, ] (L4pup)-1 I, I U, 1, 
and 1 B 1 on s. 

We let K be a positive number such that 

APup 2 C1 on S. 

We then select a number r > 0 and consider the domain 6i7 introduced in Section 
1. We approximate the functions A'(y), B(y) uniformly in R by functions 
Aly(y), B,(y) satisfying the conditions formulated in Section 2 which are in (I2 
and for which 

APaP 2 ( 2 ~ ) ~ '  on S. 

Next we approximate the functions .f and g by functions f Y  in B ( D 2 )  and g. in 
8(D3)  such that 

(22.8) 
I /  bf" - bf I l &  + I 1  f. - f Ils, .--f 0, 

/ /  i ~ g ,  - bg I\,, --to as v 3  m .  

According to the Existence Theorem 6:a solutionu, of the equations E,u, = f Y  , 
Su, = Sg, exists. The statement of Theorem 17, holds for this solution u, and 
inequality (22.7) is valid in the form 

(22.9) 

The constant q actually depends on the subscript v and on the domain 6ir ; but 
evidently, we may replace i t  by a common constant, independent of v and r. 

From the sequence 'li, = 6u, we now may select a subsequence which 
converges weakly to  a limit function 'li, defined in (Itr , 

1 1  h Ilk 5 r )  1 1  f ) f u  Ilk + 17 1 1  f. Ilk rl 1 1  6 9 ,  \Isr - 

(4 b U " ) @ ,  --+ (&, Q0)(RI as v + m .  

Clearly, the function fin can be defined with reference to the whole domain 6i 
so as to satisfy the inequality 

I I  an I I ~  I 7 I I  13, I 10c  + 17 I I  f IL + 17 II f i g  / I s  - 
Since also Xu, = Sg  = Su i t  is clear that the function uo lies in &(D) and that, 

bun = Q. 

From the identity Q, = 8 i t  follows that u,, lies in B(D). 
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We next use relation 

(EW, &)a?, = (% f?fJa, - (8, (+E”S)S, + (% i f f y ) &  + (w, bd8, , 
which holds for any function t’h in g1 which vanishes on ST . Since / /  Q, \ I i R ,  is 
bounded we may conclude from it and (22.8) that relation 

(E*fi, do)@, = @, M a ,  + (w, bds, - (d, m d s ,  + (a 8, f)s, 

holds. Since functions w in @l with T 8  = 0 can uniformly be approximated by 
functions in which vanish on ST i t  follows that the latter relation holds for th 
in 0, with Tt i  = 0. Hence &, lies in &(AD) and satisfies the relations @Go = 
bf, SG, = S(Dg - aEg + u f ) .  From the uniqueness of the solution of Eu = f ,  
Su = S g  it is clear that uo is identical with u. Thus Theorem 17s is proved. 

It may be mentioned that Theorem 17 could have been proved in a different 
way, by reducing it to Theorem 17 ,” for the adjoint #* of the operator 8, cf. (18.3). 
However, the procedure employed here seems to be simpler. 
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