Symmetric Hyperbolic Linear Differential
Equations

By K. 0. FRIEDRICHS

The present paper is concerned with symmetric systems of linear hyperbolic
differential equations of the second order. The existence of a solution of Cauchy’s
initial problem will be proved under weak conditions. It will further be proved
that the solution is differentiable in a sense to be specified if the right member
and the coefficients of the equation possess appropriate differentiability
properties.

This treatment uses the “Energy Integral” inequalities as the primary tool,
together with simple facts from the theory of Hilbert space.

The energy integral was used by H. Weber [1] to prove the uniqueness of
the solutions of Maxwell’s equations in the whole space and by Hadamard in
1900 [2] to prove the uniqueness of the solution of a mixed problem for the wave
equation.

We shall briefly describe the latter problem. Let 8, denote a region in the
x, y-plane and let 8, consist of the points (z, y, £) in space for which the projection
(x, y, 0) lies in §, . Suppose a function u(z, y, t) defined in the half-cylinder
swept out by all segments 8, for ¢ > 0 satisfies the differential equation

Upe — Uop — Uyy = 0,

vanishes at the boundary of $,—or has vanishing normal derivatives there—
and vanishes together with the derivative u, on the initial surface 8§, . Then the
relation

%f/s W 4w +lldedy = 2[/; Uelthyy — Uzy — u, ] dx dy = 0
shows that the energy integral
%f/ (W} + w2 + wi] dz dy
8¢

is constant. Since this expression vanishes initially, it vanishes for all ¢ > 0.
Hence u = 0.for ¢ > 0 follows.

Zaremba [3] observed in 1915 that a similar argnment could be used to prove
the uniqueness of the solution of the wave equation in domains partially bounded
by characteristic surfaces. The same fact was observed by Rubinowicz [4] in
1920 and Lewy [5A] in 1928. These two authors also deduced that the solu-
tion of the wave equation depends upon the initial data on only a section of the
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initial surface. Furthermore, they concluded from this fact that in processes
governed by the wave equation disturbances are propagated with finite speed.

Specifically, let us consider the characteristic domain ®, associated with a
point (zo , Yo , lo) with t, > 0,

0< i<t — (&= z)* + (¥ — y)*]°

Denoting by 8, the cross-section of this domain with the plane { = constant,
and by ®, the boundary of 8, , one derives the relation

ff [ + 2 + ul] de dy + f f& (e — zw)® + (uy — )] ds dt

- f[ W} + vl + u] do dy,

in which ds is the arc differential and (z, , y,) the exterior normal at any point
of ® . Ifu=wu, =0o0nS§,, it follows that « = 0 in the whole characteristic
region ®, . In particular, it is seen that the value of a solution at the point
(%o , Yo , to) depends only on the data in the “domain of dependence” §, .

Arguments of this type were also used to prove the uniqueness of solutions
of linear hyperbolic equations with non-constant coefficients [5A].

The question of continuable initial condilions can also be answered with the
aid of energy integrals. The type of conditions imposed on the data in the
initial domain, e.g. §, , are said to be “continuable” if a solution of the differential
equation exists which satisfies conditions of the same type in appropriate space-
like domains, e.g. 8, , ¢ > 0. A theorem about the existence of the solution can-
not be considered a satisfactory expression of Huygens’ principle in the wider
sense, as formulated by Hadamard, unless the conditions imposed on the initial
data are continuable.

From energy integral considerations one infers that quadratic integrability
of the function u and its derivatives up to any order r is a continuable condition,
provided one admits solutions in a sufficiently wide sense. Continuity and
existence of continuous derivatives of any order is implied by these conditions
if the order » of quadratically integrable derivatives is high enough. This was
pointed out—in connection with the equation w,, — u,, — u,, = 0 as typical
—by H. Lewy and the author in 1932 [5B].

Inequalities derived from energy integral identities can be used to establish
the existence of the solutions of linear, and even nonlinear, hyperbolic partial
differential equations." Such inequalities were used by Schauder [6], who in

1This possibility was indicated in the above-mentoned note [5B|, where the author
announced a proof of the existence of the solution of the initial problem for nonlinear hyperbolic
equations of second order involving continuable initial data. A complete manuscript con-
cerning functions of three variables existed early in 1932. The method of energy integrals
was combined with the method of finite differences. The manuscript was not published
because the treatment, in particular of the initial data, was very involved.
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1935 gave a proof of the existence of the solution of a nonlinear hyperbolic equation
of second order and any number of variables. In particular, these inequalities
involve the square integrals of the derivatives of the functions u as well as of the
coefficients of a sufficiently high order. Schauder approximates the coefficients
and the initial data by analytic functions and uses the solution of Cauchy-
Kowalewski. An important step in this approach consists in showing that this
solution of the approximate problem exists in a fixed domain, independent of
the approximation.

Schauder does not establish the fact that the initial data are continuable.
A remedy for this defect was described by Frank! 8] in 1937, who established
the proper energy integral inequalities under sufficiently economical differenti-
ability conditions. In his approximation procedure, which differs somewhat
from that of Schauder, he employes methods of Sobolev and Petrovskii. Under
continuable conditions which are definitely less restrictive than those needed
by Frankl, the unique existence of solutions of nonlinear hyperbolic equations
of second order was established by Sobolev [11] in 1939.%

A very peculiar approach to Cauchy’s problem for hyperbolic equations
was developed by Petrovskii [9]in 1937. He considers general hyperbolic systems
and employs square integrals after Fourier transformation. While energy
integral identities are essentially associated with symmetric hyperbolic systems,
no such restriction is necessary in Petrovski’s approach. Severe limitations of
this approach, concerning topological properties of the n-dimentional sphere,
were pointed out by Leray.

A new approach to hyperbolic equations was recently developed by Leray
[13], who, in a certain sense, reduces general to symmetric hyperbolic systems
and then employs energy integrals.

In the present paper we shall treat only linear symmetric hyperbolic systems.
We shall show that the existence of the solution—in a certain generalized sense—
of Cauchy’s problem can be deduced from the simplest facts in the theory of the
Hilbert space. Furthermore we shall prove a differentiability theorem with the
aid of the solution of a simple finite difference equation. Continuous differ-
entiability of the solution in the ordinary sense can then immediately be deduced
if the data and the coefficients possess appropriate differentiability properties.
There is little doubt that Schauder’s arguments could also be employed in

*There are various approaches to the theory of hyperbolic differential equations in which
the energy integral method is not used. This applies in particular to the theory of equations
for functions of two variables. (See the forthcoming report by P. Lax [19].) Various ap-
proaches to the theory of linear hyperbolic partial differential equations related to that
developed by Hadamard [15] and Riesz [16] have been treated by various authors. We mention
that a particular such approach developed in 1936 by Sobolev [7B] was employed by Christiano-
viteh [10]in 1937 for the treatment of nonlinear hyperbolic equations. A related approach was
used by Fourés-Bruhat [18] in 1952 for a more extended treatment of such nonlinear equations.

Extensive work on linear hyperbolic equations, in particular of higher than second order,
was done by Bureau. For a report of his work and work of others on hyperbolic equations

see {17].
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obtaining the main results of this paper. Nevertheless, it was felt to be of
sufficient interest to show that these results could be obtained through direct
constructions, without using approximation by analytic functions and the
theorem of Cauchy and Kowalewski.

We proceed to give an outline of our methods and results.

As mentioned above we are not concerned with one equation of second order,

but with a symmetric system of first order. We denote by z = {a', --- | 2™}
the points in the m-dimensional space and introduce the differentiation D, =
0/0x", u =1, --- , m. With the aid of m + 1 matrices
A“:{ I;I)A727"'7A;p}7 p=1 -, m,
B:{Bll;Bw""vap}:

which are given functions of z, we introduce the differential operator
E=AD + --- + A"D, + B.
It transforms systems u = u(x) of p functions,

w= {u, -, U}
into systems
Eu= A'Du+ --- + A"D,u + Bu;

here
Duu = {Duul y Ty Dnup}'
Giving a system f = {f,, -+, f.] = f(x) as the “right member,” we
formulate the differential equation as

Bu = f.

The operator E is called hyperbolic at a point y, in the sense of Petrovskii
[9], if among the systems of m numbers,

§= {517 "';Em}

there is a particular one, £, such that the set of matrices
2hAT =X gt
[ I

has simple elementary divisors and real eigenvalues A.

We impose more severe conditions on the matrices A*. We require that
each of the matrices A* be symmetric and that there exist a particular set £
such that the matrix

o BA”

is positive-definite. If these conditions are satisfied we call the system ‘‘sym-
metric hyperbolic.” Obviously, such a system is hyperbolic in the sense of
Petrovskii.
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One easily verifies that the initial problem of a hyperbolic equation of the
second order

m

> oD Du = f

w,r=1
for a single function u is equivalent with the initial problem for a symmetric
system. Without restriction we may assume that the z,-direction is time-like
and that the hyperplanes x,, = constant are space-like. Accordingly, we may
assume a,, > 0 and further that the matrix a;; is negative-definite. Here the
tilde indicates that values m of the subscript should be omitted. We then
introduce the system

d={ul)"'>um;u}
and set up for it the equations
- Z aws Doty + Z agsDau, = 0,
3 I
Z_ aﬁFDﬂu'i + (2 Z aﬁmDﬂ + ammDm)um = f’

Dy —u, =0.

Evidently this system satisfies the requirements formulated.
The initial data should be so chosen that u; = Dyu. Since for a solution of
the new problem the relation

Dmuii = Dﬁum = D",Dmu = D,,,D,;u

holds, the identity u; = Dju is valid, throughout, since it is valid initially.

From the theorems which will be derived for symmetric hyperbolic systems
one naturally could derive theorems about equations of second order for one
function. However, we shall not do this but confine ourselves to treating only
symmetric hyperbolic systems of the first order.

Actually we shall impose two further conditions on the matrices A*, namely
that all of them be non-negative symmetric and that the sum »_, A* be positive
definite. This is no restriction of generality. One can easily achieve that this
condition is satisfled in the neighborhood of any point, e.g. by introducing
y* = Y., & — ef,r* as new independent variables. Assuming A* to be non-
negative and D, A* to be positive definite we shall in the following denote the
independent variables by

]I=:l/1, "')ym,
but otherwise retain the original notations.

The domain ® in the y-space in which the solution of the equation will be
sought is bounded by an initial surface § and an end surface 3. It is an essential
requirement of our approach that one should be permitted to interchange the
roles of these two surfaces. For this reason we assume the region ® to be ‘“lens-
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shaped”. Specifically, we assume that it should be possible to cover the region
® by a set of segments parallel to the u,-axis, foreach p, p = 1, --- , m. Weset
dz' «-- d2" = drin ® and da' - -+ da"/dz* = dz* on $ and 3. Automatically,
the surfaces 8§ and 3 are space-like.

Having made these assumptions we can write the energy integral identity
in the form

f X G, 4%) dat = 2 [ (u, Ew) do + f (u, Ju) dz + f 3 (u, A*) da*,,
[T YR @ S m
where the abbreviation (u, v) is used for the “local” inner product,

u,v) = uwpy + -+ + uw, .

The matrix J depends on B and the derivatives of A", --- , A™.

Let u be a solution of the equation Fu = 0 which vanishes on 8. Suppose
first J/ = 0. Then we may conclude that « vanishes also on 3. To this end one
could sweep out the region ® by a set of lenses ®, , 0 < ¢ < 1, with 8, on 8 and
3, = 3 and then apply the statement made to each region &, . Instead we shall
employ for this purpose minor modifications of the energy integral identity
in order to conclude that u vanishes in the whole region &, even if J == 0. In
either way, the uniqueness of the solution of the equation Eu = f with given
values on § can be proved.

So far we have not specified the class of functions u(y) admitted for con-
sideration. First we require that u, and also f, be quadratically integrable over
®. In order that the differential operator E be applicable on the function u,
we do not require that the operator E be applicable in the “‘strict” sense, i.e. that
u possess continuous derivatives. Instead, we use two extensions of the notion
of differential operator. .

We first introduce the adjoint E* of the operator E in such a way that the
“adjointness” identity

fm (E*, w) do = fm @, f) do + fs 5 @, 4% dat,

the analogue of Green’s formula, holds for all continuously differentiable fune-
tions » which vanish on 3, provided u satisfies the equation Eu = f in ® with
% = g on § in the strict sense. If to any function « two functions f and ¢ exist
such that this identity holds for every function » with the described property,
we say that u admits the operator E in the “weak” sense. We then set Eu = f
in ®, u = g on $ by definition.

Similar weak definitions of differential operators, in particular of hyperbolic
differential operators, have frequently been employed, see e.g. [7A], [12]. The
extension of differentiation introduced by I.. Schwartz is related to this weak
extension, but it differs from it, inasmuch as for the extension of Schwartz,
derivatives are not required to exist either as quadratieally integrable functions
or as elements of a normed space.
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We shall say that the function % admits the operator E in the “strong”
sense if functions f and g and a sequence of continuously differentiable functions

u'” exist such that, as ¢ — o,

f [ —u*dz—0,
®

f | Eu — f Fdz—0, f (4 — g | dz/dx, — 0.
®R 8

Again, weset Bu = fin R andu = gon 8.

Clearly, the uniqueness theorem indicated above holds also if the operator
E entering it is understood in the strong sense.

It is remarkable that the solution wu of the equation Eu = f, u = g on 8 is
unique even if the operator E involved 1s understood in the weak sense.

This fact is closely related to the fact that the strong and the weak exfensions
of the operator E agree.

We shall use the uniqueness of the weak solution in proving the existence
in the region ® of the strong solution® of the equation Eu = f with u = gon 8.
In doing this we shall make use of a basic fact of the theory of Hilbert Space.

For simplicity we assume g = 0. Let the function »(y) be orthogonal to
all those functions f(y), called “special,” for which there exists a solution u(y)
of the equation Eu = f with w = O on 8. Then v satisfies the equation

E%=0 in ® with »=0 on J

in the weak sense. The theorem of the uniqueness of the weak solution, applied
to v with E* instead of B, yields v = 0 identically in ® From the theory of the
Hilbert space it then follows that the manifold of special functions f covers the
whole space of quadratically integrable functions. Thus it is seen that the
equation Eu = f possesses a solution for an arbitrary function of this kind.

The existence theorem proved in this manner guarantees that a solution,
given on a space-like surface §, can be continued into a neighborhood ®, provided
this neighborhood is bounded by a space-like surface 3, in addition to 8. No
difficulty is anticipated in proving the existence of the solution in the full domain
of determinacy of $ bounded by a characteristic surface 3; but this proof will
not be given here.

The arguments outlined will be carried out in detail in Part I of this paper.

Part II contains a proof of the differentiability theorem, which states that
the solution of the equation Eu = f with u = g on § admits all individual opera-
tors Dy, -+, D, if this is the case of the right members f and ¢, provided the
matrices A* and B have continuous derivatives.

¥Thus we derive the existence of the strong solution of an equation from the uniqueness
of the weak solution of the adjoint equation. In a certain sense this procedure is the opposite
of that by Holmgren {14], who derives the uniqueness of the solution of an analytic differential
equation from the existence of the solution of the adjoint equation.
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With the aid of arguments in which the identity of the weak and the strong
extension is conveniently used we can reduce this theorem to the special case
in which f = OonSand g = 0.

In order to prove this special differentiability theorem we shall approximate
the solution u by solutions u, of finite difference equations. No difficulty arises
in setting up initial values for the solutions u, , since the initial values of % and
Ev vanish.

It turns out that the simplest way of setting up difference equations is
perfectly sufficient to insure the existence of appropriate limits if one lets the
mesh width A approach zero. Denoting by [u]y the point

[#]{yly oy Yuy "';ym} = {yly e )yu+>\7 7?/m})

we simply replace the equation
; A"y Daly) = @)
by the equation
Z“ A*(yuly) — ; A*(yu(lply) = N(y).

Although the energy integral identity appears to have no analogue which involves
only positive definite terms, there is an analogue to the energy integral inequalities
derived from it.

The existence of the solution of the difference equation is obvious, and so is
the analogue of the differentiability theorem. The convergence of these solutions
of the difference equations to the solution u of the differential equation when the
mesh width approaches zero is easily deduced from the energy integral inequali-
ties.

The statement that the solution u admits the operators D, in the weak sense
is an immediate outcome of the limit process. Since the weak and the strong
extension of these operators coincide, the statement of the differentiability
theorem ensues.

It would seem likely that arguments similar to those employed by Schauder
and Frankl could be developed to prove the unique existence of the solution of a
quasilinear symmetric hyperbolic equation. However, this will not be done in
this paper.

PART I EXISTENCE AND UNIQUENESS

1. Domain and Functions

We shall consider a space of m independent variables y', -+ , ¥™ or points
y = {y', ---,y"}; the set of variables y', - - - , ¥ from which y" is omitted will
be denoted by y* . In the space of points ¥ we consider a “lens-shaped” region &'
which can be described as follows.
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We assume that to every value of r for r = 1, --- | m, a pair of continuous
functions, s"(y*) and ¢ (y*), is given such that each of the conditions
(1.1) Sy <y <WH

describes the same region ®’ in the y-space; we also require that this domain be
bounded.

Of course, we could have described the domain by any one of these in-
equalities together with appropriate conditions on s and ¢; we found it preferable,
however, not to favor a particular variable y, .

We further assume that each of the m conditions

(1.2)s sy =y <WH
describes the same surface, denoted by 8', and that each of the conditions
(1.2); sy <y =1@H

deseribes the same surface, denoted by 3’. Evidently, 8’ and 3’ lie on the bound-

ary of the domain ®’. The remainder of the boundary of ® may be visualized

as the “edge’ of the lens. An additional eondition will be formulated in Section 3.
The closures of the open sets &', §', I’ will be denoted by

(1.3) ®R=® §=8 3 =3

The surface $ will carry the initial values of the solution of the differential
equation to be considered. The reason for assuming the domain ®’ to be lens-
shaped is that our method depends essentially on the possibility of interchanging
the roles of § and 3 as initial and end surface. Contrary to custom we have not
employed a description of the domain in which a particular variable is dis-
tinguished as the “time”; we found it convenient to have the possibility to let
any one of the m variables assume the role of the time if this is opportune.

On oceasion we shall use the domain ®] of all points ¥ in & which satisfy
each of the conditions (1.1)

Sy <y <t@yh) — -~

for any number » > 0. In fact, this domain is of the same type as the domain
®’. One need only replace the function ¢"(y*) in (1.1) by the function

L) = min {Fy3F, ¥ + 0, Tl%) — )5
P

here y** consists of the m-2 numbers obtained from y', --- , y" by omitting ¥’
and y®. The surfaces 8! , 3, and the closures &, , S, , 3, can then be introduced
accordingly.

We consider vectors u = {u,,uz, -}, v = {v,0, -}, w={w, wy, ---}

with the inner product

(1.4) (U, 0) = uwy + U, + -+,
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and the absolute value | u | = (u, u)'>. We need not specify the number of
components of these vectors but we assume it to be finite. This assumption is
not essential, however; the vectors could as well be assumed to be elements of
a Hilbert space, since only slight, and rather obvious, changes of the wording
would be necessary to include such a generalization.

We then consider functions u(y), v(y), - -+ , which assign vectors u, v, - - -
to every point y in the closed domain ®; the functions u(y), »(y), - - - could also
be considered as systems of scalar functions. We introduce the linear space
€ of all continuous functions defined in ® and the space €, of all functions in
@ possessing. continuous derivatives in ®. The derivatives at boundary points
of ® are, of course, understood as one-sided derivatives.

We shall also consider functions %, b, --- of a point which ranges over $
or 3. These functions may be considered as functions of m — 1 variables, namely,
of any of the sets y%¥, --- , or y% . We assume that the functions #, 9, - -- are
such that each of the m corresponding functions of y%, -+ -, or y¥ is continuous.
We simply write # = #{y*), # = #(y*), - -+ without specifying which of the m
sets of m — 1 variables is to be taken. The classes of these functions will be
denoted by € and €; respectively.

In particular, such functions #(y*) result as the “values” on $ and 3 of
functions u(y) in € when the argument y is specified to represent a point on
8 or 3 respectively. That is, these boundary values are obtained by replacing
one of the variables y" by s"(y*) or ¢£'(y*). It is convenient to use an operator
notation for this operation of taking the ‘“value’” of u(y) on § and 3; we denote
these operators by 8 and T and write the result of applying the operators S
and T on u(y) in the forms Su(y*) and Tu(y*). That is, we write

Su(y®) = ulyt, s'(y*),
{1.5)
Tu(y®) = uly*, '(y%).

The spaces of all functions %(y*) which can be obtained as # = Su(y*) and
# = Tu(y*) from a function u(y) in €, will be denoted by SE,; and TE; re-
spectively.

2. Operators

In the following we distinguish between ‘“matrices,” operating on vectors,

and (linear) “operators,” operating on functions u(y). Xf a matrix is considered
as a function of y it is at the same time an operator.

We shall employ various customary notions concerning matrices. We
introduce the modulus | M | of M as the least upper bound of the absolute value
| (v, Mu) | of the inner product (v, Mu) taken for all vectors u, v with | u | =
| v| = 1. If the matrix M = M(y) depends continuously on the point y, the
same is true of | M |. We also introduce the least upper bound of | M(y) | as
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regards y in ®,

2.9 | M s = lu.b. | M) |.

yin®
The transpose of a matric M will here be denoted by M¥ i.e.
2.2) @, Mu) = (M*, u).

A matrix M is symmetric if it is equal to its adjoint, M* = M; such a matrix is
non-negative if (u, Mu) > 0 for all vectors u and positive-definite if equality
holds only for v = 0.

We introduce a set of matrices A" = A"(y) forr = 1, --- , m, defined as
continuous functions with continuous deviatives in the closed region ®. We
assume that all matrices A” are symmetric and non-negative; in addition, we
assume that ., A* = D =, A®is positive definite. Specifically, we assume
that there is a positive constant a such that the inequality

2.3) (w, Y A%) > afu,w) in @&
I
holds. Any such system of matrices A” will be referred to as a system of type
(4).
By D, we denote differentiation with respect to 3", i.e. we write
2.4) Du = du/dy for u« in G, r=1 -, m.

With the aid of the operators D, we then introduce the “basic” symmetric
hyperbolic differential operator

(2.5) A’D, = 3. A°D,,

which transforms any function u(y) in G, into the function A’D,u(y) in G.
The usual summation convention is used here and in the following for summation
from 1 to m with respect to Greek indices appearing as sub and superseripts.

We further introduce matrices (not necessarily symmetric) which as fune-
tions of y are continuous in ® We then also speak of a matrix of type (B).
We employ one such matrix B to form the operator

(2.6) E = A’D, + B.

This operator E is the subject of the present investigation.

Any operator of the form E with matrices A" and B as described will be
called an operator of type (E). Each of the operators D, , for example, is of
type (E), since the matrices A = 0 for r ¢ |, A’ = 1, B = 0 satisfy the con-
ditions formulated.

We assign to the operator E its “formal-adjoint” E* given by the expression

@.7) E* = —D,4° + B*
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in which B* is the transpose of B. The character of E* as the “formal” or
“Jocal” adjoint of E is expressed by the relation

(2.8) (w, Bu) — (E*w, w) = D, (w, A"),

which holds for any functions v and w in G, .

We denote by D,A®- the matrix which is obtained by differentiation of the
elements of the matrix A°(y) with respect to y". The operator D.A°, without
dot, is not a matrix; to apply it on a function u(y) one should first apply the
matrix A°(y) and then differentiate the result, 4°(y)u(y), with respect to y.
Evidently, the identity

(2.9) D.A" = A°D, + D.A”-
holds. Using it, we may write the operator E* in the form
(2.10) E* = —A'D, — D,A"- + B*,

which shows that — E* is an operator of type (E).

3. Bilinear Forms; Adjoininess Formula

We use the abbreviations

[otym [ [y a,
f...dyss;=f...fdy‘---dy'"/dy'.

Integrations over the open domains ®’, §’, 3’ will respectively be denoted by

fm...dy, fs...dy*;’ ‘/;---dy":.

For functions u, w in the space § we introduce the bilinear form

3.1) (w, 00 = [ (w,) dy.

We now formulate the additional condition to be imposed on the surfaces
$ and 7 referred to in Section 1. There should be positive numbers ¢, defined
as continuous functions of the points of § such that the ratio dy* /s, is independent
of r,

(3-2)s dy*/o, = dy’/o, .

If the surface 8 possesses a continuous normal, which we might just as well
have assumed, the components of this normal could be taken as the numbers o, .

We make this assumption (s,) for convenience although the results of Part
I could be obtained independently of it.
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For functions #, @ in §s we then set

(3.3)s (@, @) = f (@, @) dy*/o.

and note that this expression is independent of r.

Similarly, we make the assumption (r,) that continuous positive functions
. can be introduced on the surface 3, such that the ratio dy*/+. is independent
of r,

(3.2); dy*/r, = dy*/7 .
We then set
(3.3), (@, &), = f (s, 7) dy* /1,

for functions @, win €5 .
In general we shall let the functions #, @ belong to the classes SC, or TG, ;
i.e. let them he boundary values of functions in G, defined in ®. If functions

i = Su or i = Tu

of this type enter any of the bilinear forms we shall in general omit the operator
sign S or T, 1.e. we shall write

(3.4)s (w, Sws = (w, ws ,
and
3.4); (w, Tu); = (@, ws

Similarly, we shall omit S or T if @ is expressed as Sw or Tw.

For functions u, w in €, we evidently have the identity
fa D (w, u) dy = [5 (w, w) dy* — f; (w, w) dy%
whence, using the definitions (3.3),
(3.5) fm D.(w, w) dy = (w, ru)s — (w, o5 .
Similarly, we have
fm D.(w, AW) dy = (w, A"rai)s — (w, Ao .

By integrating identity (2.8) over ®’ we therefore obtain

Turorem 3:  The identity
(3.6) (w, Bwg ~ (B*w, we + (w, Aou)s — (w, A’ru); = 0

18 valid for funciions u and w in €, .
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Identity (3.6), which corresponds to ‘“Green’s formula”, expresses the
relationship between the adjoint operators I/ and E* in terms of the bilinear
forms; we shall refer to it as the “adjointness formula.”

Clearly, the quantities 4’0, and A®r, , which occur in the adjointness
formula, are non-negative on 8 and 3. This fact implies that these surfaces are
spacelike.

We further note that the combinations

3.7 o,8D; — 8D, , 7ID, — nTD,

involve differentiation in a direction within the surfaces 8 and 3.

4. Hilbert Spaces

Evidently, the quadratic form (u, u)s , given by (3.1), does not vanish for
functions u(y) £ 01in G. Also the quadratic forms (%, #); and (%, %) 5 , given by
(8.3), do not vanish for functions #(y) $ 0 in € and €, as is readily verified
in view of assumption (2.3).

With respect to the norms

(4.1) Nulle = &, wg® for u in G,
(4.2)s W#|ls = @ @) for @& in G,
(4.2)4 ||l = @ @) for @ in &,

we may, consequently, extend the spaces €, s, €5 to complete spaces, i.e. to
Hilbert spaces, denoted by 9, s, D; respectively.

Whether this completing process is performed by adjoining certain Lebesgue-
measurable functions or by adjoining ideal elements is irrelevant for our investi-
gation. The elements of these three Hilbert spaces are again called functions
and again denoted by u(y) and #(y*).

The following approximation properties of the spaces §, 95, and £, are
easily proved; they involve the operators S and T defined by (1.5).

LeEMMa 4: The space of all funcitons u tn €, with Su = 0 and Tu = 0 is
dense in © with respect to the norm || ||a -

LEmMa 45(d4): The space of all functions Su(Tu) resulting from functions
win G with Tu = 0(Su = 0) is dense in D s(Ds) with respect to the norm || ||s

()

5. Extension of the Differential Operator

We proceed to introduce subspaces of the Hilbert space $ which contain
@, and to define in them closed operators which are extensions of the operator
E defined in €, . We shall set up a “weak” and a ‘“‘strong” extension of E.
Eventually it will be shown that these two extensions coincide.
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Weak and strong extensions of differential operators with constant co-
efficients and the proof of their identity are treated in various papers [7], [12].
Also the identity of both extensions of differential operators of first order with
non-constant coefficients was proved in an earlier paper [12B]. For the present
purpose we need slightly modified versions of these extensions; accordingly, the
proof of the identity of the different extensions must be adapted to these modi-
fications. For the sake of completeness we shall present certain details which
could have been taken over from the earlier work without modification.

We define the space @ as the space of all functions u in $ for which functions
fin §, §in $;, and £ in O exist such that the relation
(51) (Dppr; u)m + (w: f)a + (w) Apapg)s - (w7 APTPE):K = O
holds for all funetions w(y) in €, .

We then show :if w = 0Q,also f = 0, § = 0, 2 = 0. To this end we first
restrict the function w by requiring Sw = 0 and Tw = 0 so that felation (5.1)
reduces to (w, f)a = 0. As seen from Lemma 4, the function f can be approxi-
mated with reference to the norm || ||a by functions fin G, with Sf = Tf = 0.
Clearly (f, f)a = 0 entails (f, /)a = 0 and thus f = 0 follows. We now restrict
w only by the condition Tw = 0; then (w, A%,§) = 0 remains. By virtue of
Lemma 4; , the function § can be approximated with reference to || [|s by
funetions Sg with ¢in €, and 7g = 0. Clearly, (¢, A’s.§) = 0 entails (g, A%s,§)
= 0 and thus § = 0 follows. In the same way % = 0 is derived.

The fact thus proved guarantees that the functions f, §, % are uniquely and

linearly determined by u. Consequently, for functions % in & three linear
operators, denoted by AD, 8, and T, are defined by
(5.2) ADu = f, Su = §, Tu = h.
If the function u lies in @, it also lies in &, and the operators just defined coincide
with those originally denoted by A’D, , 8, and T, respectively, as is easily
verified. The new operators will be called the “weak’” extensions of the original
operators acting in €, .

We observe that the matrix B considered as a linear operator acting on
functions u(y) in € is bounded with respect to || |la ; therefore it can be ex-
tended to a bounded operator B in § which transforms ‘“functions” u(y) in
$ into “functions” B(y)u(y) in . The same remark applies to any matrix
of the type (B) such as B* and D,A’. Using the bounded operators we can
define the operators

(5.3) E=AD + B
and
5.3* E*= —AD — D, A" 4+ B*

acting on functions u(y) in ®, cf. (2.6), (2.7). These operators E and E* are then
extensions, the “weak” extensions, of the operators E and E* originally defined

in §, .
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As a consequence of the definition of the extended operator E, S, and T

the adjointness formula (3.6) holds also for functions « in ®. Of course, our
convention of omitting the operator signs S and T in the boundary forms has
been retained.
. We now turn to the “strong” extension produced by a process of closure.
We define the § = F(AD) as the manifold of all functions u in $ to which
functions fin 9, §in Hs, £in O, and a sequence u, of functions in G, exist
such that, ase— 0

Hus—uH(ﬂ—_)Oy I{Aprué—me—)Oy

(13

b.4) )
Hut—'gHS—_)O} Hue_hHs——)O

From relation (3.6) applied to 4 = u, we immediately infer that relation
(4.1) holds for w in §. Hence the function u in § is also in @ and ADu = /,
Su = §, Tu = h. 'Thus the operators AD, S, T and also E, E* are defined in

3.
It is remarkable that also the converse holds: every function « in (& also
belongs to §; we formulate this fact as the

IpEnTiFicaTION THEOREM 5: @ = §.

It states that the weak and the strong extensions of the operator A’D, coin-
cide. At the end of Section 8 its proof will be reduced to other statements
proved in Part 1.

6. Initial Value Problem

We are now in a position to formulate the initial value problem. It consists
in prescribing functions f in § and § in s, and asking for a function w in §
such that the differential equation

(6.1 Eu=f
and the initial condition
(6.2) Su = j

are satisfied. The main theorem of Part I is that this initial value problem has
one and only one solution. We split this statement into a uniqueness and an
existience theorem:

UNIQUENEsS THEOREM 65.  Suppose Eu = 0 and Su = 0 for a function in §.
Then uw = 0.

Ex1sTENCE THEOREM 6% : Let f be any function in § and § be any function
in Os . Then a function w in § exists such that Ew = f Su = g.

Corresponding theorems 65 and 6 hold.
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7. Energy Integral Inequality

The uniqueness theorem will be a consequence of the “energy integral
inequality” contained in the

INEQUALITY THEOREM 75 : A number y > 0 exists such that for all functions
u in § the relation

(7.1)s Hulla + Hulls <"1 Bulls + 9" [ ulls
holds.

Upon interchanging the roles of $ and 3 we obtain the formulation of an
inequality (7.1} .

In order to prove inequality (7.1); we first assume that the function u lies
in the space €, . We then introduce the function

(7.2) py) = exp {—0 29},
p
in which 6 is a positive number at our disposal, and insert the function

W= pu
in the adjointness formula (3.6). Evidently, we have
A’D,pu = plA*Du — 6 Y, A'ul,
and hence
(7.3) Epu = plEu — 0 3, A4].
'y

Next we conclude from formula (2.10) that the operator E* can be written in
the form

E*= —-E+C
with
(7.4) C=B-—~B*— DA’
Combining relation E*u = — Eu + Cu with relation (7.3) we find
E*pu = —plE —~ C — § 2, A’lu.

Insertion of this expression with w = pu into formula (3.6) and a slight re-
arrangement of the resulting terms yields the relation

(pu, 6 Y, AWa + (pu, A°7u)5 = 2(pu, Ew)a — (pu, CW)a + (pu, A’0u); .

Making use of assumption (2.3) and of Schwarz’s inequality we obtain the
relation

falpu, w)s + (pu, w; < (pEu, Ewa + (1 + o)(pu, we + (pu, w)s ,
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in which

(7.5) ¢c=|CWla <2|Bla+|DA" |a,
cf. (2.1). We now choose the number 6 as

(7.6) g =1[2+cla’

and obtain the relation

(7.7 (pu, Wa + (pu, w)s < (pEu, Eu)g + (pu, v)s .
Finally, we introduce the number

(7.8) v = lub.exp {6 2 (& — 7)/2}

v, 7in® 14

and then obtain inequality (7.1)s from (7.7).

This inequality has been derived for functions v in €, . However, by
virtue of the very definition of the space § and the operators E, S, T defined in
¥, the inequality also holds for functions « in §.

For a later application we mention

LEMMa 7% : Let o(y) be a function with continuous derivatives for which
0 < w < 1 and which vanishes in a neighborhood of 8. Then a constani Q
exists such that the tnequality

(7.9 (e, Ws < 7° [ Bu g + " || u g
holds for all functions in §.

We need only replace p by wp in the proof of Lemma 7 and set
Q = | A’D - |g; then formula (7.9) follows with the same value of v as before,
given by (7.8).

8. Proof of the Uniqueness, Existence and Identification Theorems

The Uniqueness Theorem 6% is an immediate consequence of the inequality
(7.1); for functions » in §.

In the proof of the Existence Theorem 6% we shall make use of the fact that
the only closed subspace of a Hilbert space which is orthogonal to only the
element 0 is the whole Hilbert space itself. Owing to this theorem it is possible
to reduce the existence of the solution of an equation to the uniqueness of the
solution of the adjoint equation. Specifically, we shall derive Theorem 6 from
the following

UntoueNEss LEmma 85 1 Suppose E*u = 0 and Tu = 0 for a function u in
®. Thenu = 0.

If the identity of the strong and weak extension of the operator £ and
hence of E* were proved, Lemma 8% would follow from the Uniqueness Theorem
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63. Actually, we shall prove Lemma 8% directly, in Sections 10 to 14, and
derive the Identification Theorem 5 from it, at the end of this section.

We now turn to the reduction of the Existence Theorem 6% to the Uniqueness
Lemma 8%. We consider the space § X s of all pairs {f, §} of functions f in
$and §in H;, and assign to these pairs the unit form (f, f)a + (G, §)s. The
space EF X S§ of all pairs { Ew, Sw} resulting from a function w in § is evidently
a subspace of $ X s . This subspace is closed by virtue of inequality (7.1) ;.
It is now clear that the Existence Theorem 6% can be formulated as the statement,
that the space EF X S§ coincides with the whole space X s .

In order to prove this statement we consider an element {u, §} in the space
$ X s perpendicular to the space EF X S§; i.e. we assume that the relation

(Ew: u)m + (w; g)s =0

holds for all funetions w in § and hence for all functions w in €, . We may
write this relation in the form

(Dppr: u)(ﬁ + (w; f)m + (wy Apo'ag)s - ('w, APTph)S =

with f = (B* — D,A*-)uand i = 0. We then see that relation (5.1) holds for
all win €, . It follows that the function u belongs to the space @ and that
ADu = (B* — D, A" Yuor E*u = 0, Su = §, and Tu = 0, in accordance with
(5.2) and (2.7).

Lemma 8% now yields u = 0. Consequently, Su = 0 and hence also § = 0.
Thus we have shown that {0, 0} is the only element in the space § X $; which
is perpendicular to the space EF X S§. By virtue of the basic fact of the theory
of the Hilbert space mentioned at the beginning of this section, the identity
EF X SF = © X $s ensues. Thus Theorem 67 is reduced to Lemma 8%, We
shall prove Lemma 87 in Sections 10 to 14.

At present we observe that combined with Theorem 6% this lemma im-
mediately yields a proof of Theorem 5, which expresses the identity of the weak
and the strong extension of the operator E.

Let u be a function in @. According to Theorem 6% a function u’ in §
exists such that By’ = Eu and Tu’ = Tu. The function u — u’ lies in & and
satisfies the assumptions of Lemma 8% for E instead of E*. Hence w’ — u = 0
follows. Therefore, the function % in @ is at the same time in F and the identity
& = § follows.

9. Modified Weak Extension

For later purposes it is necessary to prove a lemma which is somewhat
stronger than the Uniqueness Lemma 87 ; it refers to an extension of the operator
A’D, which is somewhat weaker than the extension into §.

We define @, as the space of all functions u in © to which functions f in
9, kin §; exist such that the relation

(9.1)5 (D, A", u)g + (w, fa — (w, A’7,h); = 0
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holds for all funetions w in @, with Sw = 0.
In the manner used for ®, one shows that «# = 0 implies f = 0and 2 = 0,
and that therefore linear operators AD and T can be defined by

(9.2), ADu = f, Tu = h.

Operators E and E* can then be introduced by (5.3}, (5.3)*.
The operators thus defined in the space ®; are extensions of the operators
AD, T, E, E* in ¥, . Furthermore we observe: if # isin @, , the relation

(9.3)5 (E*'w, u)m - (w, Eu)m + ('w, Apru)g = 0

holds for all functions v’ in €, with Sw = 0.

Similarly we see that a space ®; can be defined through a relation (9.1); .
Clearly, operators AD, S, E, E* can be defined in &; and the relation (9.2)
holds.

The analogue of Lemma 87 is the

Mobiriep UNiQUENEss LEmma 9% : Suppose E*u = 0 and Tu = 0 for a
SJunction u in &5 . Thenu = 0.

We shall start the proof of this lemma in Section 10. Evidently, the
space @ ; contains the space @ since no boundary values Su are required of  in
®; . For this reason Lemma 87 follows from Lemma, 95 .

Actually the two spaces @; and ® are identical and, instead of Theorem 5,
we have the

Mobiriep IpENTIFICATION THEOREM 95 (95): ®; = § (O = §).

This statement follows from Lemma 9% by literally the same arguments by
which at the end of Section 8 Theorem 5 was derived from Lemma 8" (note that
Theorem 6%, being a consequence of Lemma 83, is also a consequence of Lemma
9%).

10. Main Lemma

The modified Uniqueness Lemma 9% will be derived from the

Main LEmma 10, @ To every function u in @ 5 which satisfies the equations
Eu = 0 and Tu = 0 there is a sequence of functions u. in &, with Tu, = 0, ¢ — 0,
such that

(10.1) Hue = ulla—0,
(10.2) I Bue |]la — 0, as e—0.

Since inequality (7.1) ;s may be applied to the functions . , relation (10.2)
leads to relation

(10.3) Hu, {la =0 as e—0.
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Relation (10.1) then leads to || % ||s = 0 or v = 0. Thus Lemma 95 for E
instead of E* is reduced to the main lemma.

The approximating functions u, in €, , to be established in proving the
main lemma, will be constructed by means of a sequence of certain integral
operators, the “mollifiers” J, . For the sake of completeness, and because of
minor modifications needed, we shall formulate and derive various properties
of integral operators in general and of the mollifiers in particular, although this
was essentially done in an earlier work [12B].

11. Integral Operators

Let k(y, ) be a matrix which depends continuously on the pair of points
(, % in ® X & and is bounded there. This matrix may be taken as the kernel
of an integral operator K, which transforms the function u(y) in € into the
function

(11.1) Ku(g) = [ by, 9ug) dp,

in €. Various familiar notions will be employed in connection with such opera-
tors. We assign to the operator K as its “norm” the smallest number || K |
such that the inequalities

[1kg,p 1@<kl for y i o,
(11.2)

[ew 21y <IE) for 7 i@
hold. Then the inequality
(113) 1Kl < K1) 1]

holds for functions 4 in €. In fact, we have from Schwarz’s inequality

|Ku@) ' < [ ko, 0 g 1 1+, 0) | 1) 1 a7
(11.4)
UK [ 1k 0 | 1w [ dg

and hence

[k Pay < 0 [ | [ k0,9 tay] 1@ P ag

<HEIP [ 1u@ P a,

whence (11.3).
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Relation (11.3) shows that the operator K, so far defined in €, can be
extended to the whole space  so that (11.3) remains valid. Relation
| Kuy) " < [|K || lub. Ky, 9 | [lu]P,
yin®,7in &
which follows from (11.4), shows that the function Ku(y) lies in € when u is
in . If k(y, §) possesses continuous derivatives with respect to y", it is clear
that the function Ku(y) also possesses continuous derivatives.
The adjoint K* of the operator K, defined as the integral operator with
the kernel k(g, y), transforms the function u(y) in § into the function

Krufy) = [ kg, pu(@) dy.
®
The operators K and K* are related through the identity
(11-5) (K*w, u>(}1 = (w, Ku)(g ’

which holds for functions u, w in .
We now consider a set of integral operators K, with the kernels k.(y, %)
depending on a parameter ¢ > 0. We assume that they enjoy the following

properties:
P 1. There is a number &, > 0 such that the relation
(11.6) K| <k

holds for all e.

In other words, the norms of the operators K. , defined by (11.2), should
be uniformly bounded.

P II. Thereis a number « and for every 7 > 0 a number ¢(+) > 0 such that

(11.7) [ kw05 = «
if y lies in the domain &, , defined through (1.1), , and ¢ < (7).
P II1I. The relation

should hold outside of the cube |y — 7" | <3 ¢r =1, -+, m.
From these three properties we shall deduce that the relation

(11.9) | Ku — xul|leg—0 as e—0

holds for all functions » in 9.
Suppose first that the function uisin €. For yin ®, and ¢ < () we then
may deduce from (11.7, 11.6) the relation

(11.10) | Ka(y) — «uly) | = ‘ /mke(y, D@ — uwy] df | < k.
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where M, is the maximum of |u(y) — u(7) | in the cube [y" — 77| < 3 ¢
r=1, .-, m. Owing to the uniform continuity of u(y) in ®. , the last member of
relation (11.10) tends to zero with . Hence we have

[ 1Katy) ~ ) Fdy—0 a5 e—0.
®R
On applying inequality (11.3) to the domain & — ®, instead of & we find

[ IKa Fay <k [ u .

T

Hence we obtain
HKJL-—uH”Sf IKeu—xulzdy-}-Z(ko-l-lxl)f lu |’ dy.
Ry R-R,

The right member can be made arbitrarily small by chosing first = and then e.
Thus relation (11.9) is proved for functions u in €.
A function » in § can be approximated by functions # in § such that

w—u"{|—0.
Using relation (11.3) we may derive the inequality

Ku— xulla < || Ku— Ka'lla+ |« | flu—u'lla + || Ko’ = w' |[a

S+ [eh)llu—ulla+ || Ko =« [la.

The last member can be made arbitrarily small by choosing first u and then e.
Thus relation (11.9) is proved to hold for the function « in $.

12. Mollifiers

We now introduce a special set of integral operators, the “mollifiers.”
Their effect is to smooth out the functions on which they are applied; at the
same time they approximate the identity.

Let j(2) be a function of the number z which possesses derivatives of every
order and which satisfies the conditions

(12.1) i 20,
(12.2) j& =0 for lz| 21,
(12.3) _1 &) dz = 1.

For any ¢ > 0 we then set
(12.4) iy =9 =K — 7 +29) - f " — " + 2¢)
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and define the mollifier J, as the integral operator with the kernel j {(y — #).
This operator transforms a function u in & into the function

Tu) = [ ity - 9u@) dg,

which possesses continuous derivatives,

The terms 2¢ were added in the arguments of the functions j in expression
(12.4) in order to make sure that j.(y — #) = 0 when the point 7 is near the
surface 8. In the addition of these terms the present definition of the mollifiers
differs from that given earlier [12B].

The operators K, = J, and k, = J* evidently enjoy property P I with

(126  k=11J 1= [liv-9ld=[i—pd=1

Relation (11.3) takes the form

HJalle < llwlla, (1% le < [lulle.

In order to establish further properties of the operator J, we make the
following observations which involve the domains ® and ®, defined by (1.1)
and (1.1), .

When the point y is on the surface 8§, the set of points y with " < ¢,
r =1, .-, m, lies outside of ®. Hence we have

(12.7 jly—9H =20 for 7 on 8, y In ®;

of course, at the same time the derivatives of j, vanish; i.e.,

(12.7)’ a_rj,(y ~gp =0 for § on 8§, y In @®.
o7
When y is on 3, the set of points 7 with §° > y", r = 1, - -+, m lies outside

®. Hence we have

(12.8) jly—9 =0 for y on J, 7 in Q.

When 7ison 3, theset of pointsy with " — 3e <y <% —er=1,.--,m
is outside ®;, . Hence we have

(12.9 Jjly—3 =0 for j on 3, y in &, .
When y is in ®,. , the set of points § with " + ¢ < §° < 7 + 3¢,

r=1 ---,m,isin ® Hence we have

(12.10) f i—@dg=1 for g in Gu..
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The statements (12.7) and (12.8) insure that the functions J.u(y) vanish
on the surface 3 and that the functions J*u(y) vanish on §;

(12.11) TJ. =0,
(12.12) 8J% = 0.

In addition, it is clear that the functions J.u(y) and J*u(y) vanish also
in the neighborhoods of 3 and § respectively.
Statement (12.8) implies the relation

(12.13) TJ*w =0

for any function w in € which vanishes in ® — ®;, ; the function TJ* w then
vanishes even in a neighborhood of the surface 3.

The fourth statement, (12.9) establishes property P II with 7(e) = 4,
k = 1.

Property P III follows from the definition of 7. .

We note that relation (11.9) takes the form
(12.14) HJu—ullsg—0 as e—0

for all functions u in .

13. Commutator Identity

An important property of the operator J, is that it approximately commutes
with the operator E. We shall show that under certain conditions the com-
mutator EJ, — J.E is equal to an integral operator to which the statements of
Section 11 can be applied.

Evidently, the operator EJ, is an integral operator with the kernel

[A*W)D, + BW))ily — 9.
Using the abbreviation D, = 8/3§" and using the relation
(D, + D)jly — 9) =0,
we can write this kernel in the form
[D,A°@) + By — 9
We express this fact symbolieally by writing
(13.1) EJ. = [D,A"* + BlJ.- .
Similarly, the operator E*J* is an integral operator with the kernel
[-D,A” + B*j (7 — v)-
The adjoint (E*J*)* of this integral operator has the kernel
[-D,A"w) + B@ily — 9);
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therefore we write symbolically

(13.2) (E*J%)* = [—D,A" + B]J .-
Combining (13.2) with (13.1) we obtain the identity
(13.3) EJ. — (E*J%* = [D,(4* — 4°) — (B — B)}J.- .

Now, under certain circumstances the operator (£*J*)* equals the operator
J.E. Specifically we formulate

Lemsma 13:  The relation
(13.4) JEu = (B*J%)*u

holds
(1) in ® for all functions u in the space & ; with Tu = 0,
(2) in R, for all functions u in &, .

The qualifications “in ®&” and “in ®;,” refer to the argument y of the func-
tions which result on both sides of (13.4).

In order to prove the lemma we first note that with arbitrary functions w
in § relation

(13.5) (w, J Euws = (J*w, Bw)q ,

holds, as seen from (11.5). We next assume w to be in €, with Sw = 0. Then
we make use of the adjointness formula (3.6), which holds for u in €, since
Sw = 0; it gives

(w, J Euwe = (E*J*w, w)e + (J*w, A" 1,Eu); .
If Tu = 0, the last term on the right hand side vanishes. Otherwise, the last

term vanishes because of relation (12.13). We restrict w to vanish in ® — @®;, ;
again using (11.5), we then obtain the formula

(w, J Euys = (B*J*w, wg = (w, (E*JH*u)q .

If w is arbitrary in €, with Sw = 0 we may apply Lemma 4 and conclude that
relation (13.4) holds. If the function w is arbitrary and lies in the domain
®Rs. , we may only conclude that this relation holds in ®;. . In any case, Lemma
13 is proved.

Combining it with identity (13.3) we have

TueoreMm 13: The relation
(13.6) (EJ, — JEwu = [D,(4* — A*) — (B — B)lJ.-

holds
(1) in ® for all functions u i O with Tu = 0,
(2) in Rs, for all functions in ;.
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14. Conclusion

One observes that relation (13.6) would reduce to relation J .E — EJ, = 0
if the matrices A” and B were constant. In any case, though, the right member
of this relation becomes small if ¢ is small.

The precise formulation of this statement will result from

LemMa 14: For a function u in & ; relation

(14.1) | [(D(A* — 4 — B — B)JJ.ulla—0 as e—0
holds.

To prove this statement we first derive the relation
(14.2) HB~BJ.ulla—0 as e—0,

which, in obvious notation, involves the second part of the right member of
formula (13.6).
Relation (14.2) follows from the estimate

(14.3) (B =B ulla <8Ol Julla < B 1% lla,
in which
B(G)ZmaxlB(y)_B(g)‘ for |yr_g7($357 r=0,---,m

has been used. Clearly B(e) — 0 as e — 0 by virtue of the uniform continuity
of B(y) and (12.6).
Secondly, we shall prove that for any function u in & ; the relation

(14.4) | D,(4° — A, ulla—0 as e—0
holds.

To this end we observe that the kernel
(14.5) Edy, §) = DJA ) — A@lily — §)

of the operator D,[A® — A®}J, - enjoys properties P I, P II, P III of Section 11
with x = 0 and e(r) = /4.

It is obvious that k, has property P III.

In order to establish property P I1 with x = 0, e(r) = 7/4, we write k. (y, §)
in the form

ke(y) g) = Bp¢P(y: ?])

¥y, p =40 - 4@l - 9,

with

and observe

[kwnds= [ 2w pdn - [ o0 0.
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Both terms on the right side vanish. For, ®(y, ) = 0 for 7 on 8 by (12.7)
and, by (12.9), also for 7 on 3 if y lies in ®, with 7 > 3e.

In order to prove that the kernel k.(y, ) possesses property P I we split
it up:
(14.6) k(y, ) = —D,A’@) iy — 9 + (A°W) — A’ @)Dy — B).
Using (12.6) we then obtain the estimate.
(14.7) [ 1D.4°@ v — 9 1dg < | DA 1a .
Introducing the quantities
ald = max ' | A'y) — A*@ | for |y —F | <38, rk=1-,m

and

(e =maxefm]5,,je(y—g)|dg7 for y in @®, k=1, ---,m
we obtain the estimate
(148 [ 118%6) ~ 4GBty — 9 | dg < ma(dn(®.

The quantity a(e) is bounded because of the continuous differentiability of

Aly),
ol < 3max | D, A" | .
k,r

The quantity »(e) is bounded because of

w<|[ | =

Inserting these estimates in (14.10) and combining them with (14.9) we obtain

< jto

f | kdy, @) | dj < mll + 3no] max | D, A% |;

thus it is seen that the kernel k.(y, #) defined by (14.5) possesses property P I.
Having established the three properties of the operator D,[A° — A°]J.- with

the kernel k.(y, 7), we know that relation (11.9) holds. Thus relation (14.4)

follows. Combining it with relation (14.2), the statement of Lemma 14 results.
Combining the statement of Lemma 14 with that of Theorem 13 we obtain

TaEOREM 14: For a function u in & ; the relation

(14.9) HEJu — JBu ||lg—0 as e—0
holds if Tu = 0. Otherwise, the relation
(14.9), HEJu — JEullg, —0 as e—0

holds for any > 0.
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The statement of the Main Lemma 10, which refers to a function u in ®;
with Eu = 0 and Tu = 0, resuits from the first part of this theorem combined
with relation (12.14) by setting

(14.10) u, = Ju.

For, if u, is so chosen, we have Tu, = T'J.u = 0 by (12.11) and relation (14.9)
goes over into (10.2).
Thus the theorems and lemmas formulated in Sections 6, 8, 9 are established.
The second part of Theorem 14, involving relation (14.9),, will be used in
Part I1.

PART 1. DIFFERENTIABILITY

15. Differentiability Problem

In this part we shall prove that the solutions u of the equation Eu = f
have derivatives if the right member f and the initial values have derivatives.
To have derivatives here means to admit the operators D, , - -+, D, in the strong
senge introduced in Part I. The derivatives will further be proved to satisfy the
differential equation which results by formal differentiation from Eu = f. That
the resulting differential equation possesses a solution follows from the existence
theorem proved in Part I. We shall show that this solution consists of precisely
the derivatives of the function u.

1f we were to follow the procedure which is customary for ordinary differ-
ential equations, we would start with setting up a differential equation for the
difference quotients of ». We do not find it feasible to proceed in this manner.
Instead, we shall first approximate the solution u of Eu = f by solutions «’ of a
finite difference equation E'u’ = f'. It is easy to set up an appropriate differ-
ence equation, pass to the limit, and prove that the limit function u, satisfies
the equation Fu, = f in the weak sense. The identity of the solutions u, and
% then follows from the theorem of the identity of the strong and weak extensions
proved in Part 1.

The finite difference equations are not easily adjusted to the initial surface
8. Awkward special constructions would seem to be necessary unless the initial
values of the functions v’ and f’ on § were zero. With the aid of the solutions
of the difference equations with initial values zero one can easily prove a re-
stricted differentiability theorem which concerns solutions « of Fu = 0 with
Su = 0. Fortunately, it is possible to reduce the general to the restricted
differentiability theorem.

We mention incidentally that the method of finite differences used here to
prove the differentiability theorem could also be used to design an existence
proof independently of the method used in Part L.

To this end one would approximate the data which satisfy the conditions
imposed in Part I by data which satisfy the conditions imposed in Part II. The
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solution constructed by the method of finite differences can be seen to have
strong derivatives. Using the basic energy inequality of Part I one can con-
struct a solution corresponding to the data imposed in Part 1.

Since the identity of the strong and the weak extension can be derived from
the existence theorem, the differentiability theorem could then be proved in the
same way as is done below.

It may be said that approximation by solutions of difference equations
would take the place of approximation by mollifiers in this different approach.

16. The Space §(D)

The space § of functions which admit the operator AD will from now on
be denoted by F(AD). We recall that every operator E = AD + B is defined
in §(AD) whatever the continuous matrix B may be. This remark applies in
particular to the operator — E* = AD + D,A*. — B*,

We recall that for I = 1, --- | m every operator D, is of the type (E). The
corresponding matrix A" issimply A" = 1ifr = [, A" = 0if r > [, while B = 0;
the conditions imposed on A" and B in Section 2 are of course satisfied. For the
operator D, the adjointness identity (3.6) of Section 3 becomes

(16.1) (w, Dw)g + (Dw, wWa + (W, cu)s — (w, 7w, = 0.

Here ¢, and r; are the numbers introduced in Section 3.
The space § with reference to the operator D; is denoted by F(D;); the

intersection of the spaces (D), --- , F(D,) will be denoted by F(D). By
§(ADD) we denote the space of functions u in F(D) for which each D,u is in
T(4AD).

By definition, every function u in §(D) can be approximated with respect
to the norm || || by functions in €, together with each derivative D,u. We
shall show that for functions » in F(ADD) such an approximation can be per-
formed simultaneously for I = 1, --- | m, at least in subregions ®, .

As in Section 1, we denote by ®. the domain which consists of all points
y that satisfy the m conditions below:

(16.2) SWH <Y <G =71, r=1-,m

By ®, we denote the closure of &7 .
We now proceed to derive

Lemma 165 1 Let u be a function in F(A'DD) so that for 1l = 1, --- , m the
Junction Dyu is in a space §F(A'D), where A’ refers to any set of matrices of the
type (A). Then there exists a sequence of functions u. in €, with Dy in G, for
{ =1, --,m, such that for + > 0

(16-3)2 || Dlue - Dlu [|(R1 - 0’

(R‘r-—)O,
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(16.3)3 H ED,ug - ED;u l Ry g 0,
(16.3)4 H u. — U $r d O,
(16.3)5 H Dlue - D;u Hs, —0 as € —> O.

If Tu = 0, TD,u = 0, the functions u, vanish in a neighborhood of 3 and
the relations (16.3) hold for r = 0, i.e. for & instead of @&, .

To prove Lemma 16, we use the mollifiers J, (see Section 12) and state
that the functions u, = J.u possess the desired properties. Indeed, J.u vanishes
in a neighborhood of 3, as stated in the remark following formula (12.12). Re-
lation (14.6), follows immediately from (12.14). In case Tu = 0, relation
(13.6), applied to D, instead of E, reduces to

(164)1 Dthu = J;Dlu.

Without assuming Tu = 0, this relation was only proved to hold in a subdomain
®Rs. -
Relation (14.9),. , applied to D,u instead of u, yields the relation

|EJ. Dy — JEDu {|g.. >0 ase—0
and hence, by (16.4), ,
(16.4), NWEDJu — JEDw {|la,. >0 as  e—0;

if Tu = TDu = 0, relation (16.4), holds for ® in place of &;, .

From (16.4); , (16.4), and (12.14) the relations (16.3), and (16.3); follow.
Relations (16.3), and (16.3); for > 0 can be derived from the latter two re-
lations with the aid of inequality (7.1)5if Tu = TD,u = 0. Otherwise we use
the inequality

(16.5) Hull, <yl Bulld+ @ [lwlla,

which follows from inequality (7.8) when w is chosen asw = 1in §, . Inequality
(16.5) applied to ®,. with 0 < 7/ < 7, instead of ®, to v and D,u or D,u and
EDu instead of v and Eu, yields (16.3), and (16.3), . Thus Lemma 16 is proved.

It must be remarked that the initial value Su of a function w in F(D)
depends on {, since Su is assigned to ¥ with reference to each operator Dyu in
place of E. For the continuously differentiable function u, , however, Su, is
independent of I; hence relation (16.3), in Lemma 16; implies that Su is in-
dependent of I. The same is true for SD,u in view of (16.3); .

Note also that the space F(D) is contained in F(AD); therefore AD = A°D,
and hence Eu = A’D,u + Bu for u in §(D). Indeed, the quantity f = A’D,u
with § = Su evidently satisfies relation (9.1); for every w in €, with Tw = 0;
hence u is in ®; and, according to Theorem 95 , u is in F(AD).
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17. Differentiability Theorem

The main theorem of Part II to be formulated in this section states under
what circumstances the solution u of the initial problem Eu = f, Su = Sg,
formulated in Section 6, possesses strong derivatives, i.e. lies in the space F(D).
We shall make four assumptions: The right member f is itself in (D). The
initial value of u is at the same time the initial value of a function g which itself
is in (D) and whose derivatives have initial values in §; . The matrix B
possesses continuous derivatives. The initial surface § is sufficiently smooth.
Specifically:

I fisin §(D).
II There is a function ¢ in §(D) whose derivatives D,g are in a space F(A4'D)
such that Su = Sg. Here A’ refers to any set of matrices of the type (4).

This form of condition II was chosen in order to make sure that the deriva-
tives D,u possess initial values SD,g. We shall express the initial values SD,u
of D,u in terms of the initial values SD,g.

It may appear unnatural to characterize the behavior of the function u on
$ by means of a function defined in ® instead of characterizing this behavior
directly by differentiability conditions on 8. The latter possibility may, how-
ever, be subsumed under our definition. A function defined on § need only be
continued as a function ¢ in ® so as to be independent of y, ; then D,g = 0. Our
requirement that ¢ be in §(D) is then equivalent to eertain differentiability
conditions on § and the additional requirement that D,g be in F(D,) is no re-
striction in view of D,D;g = 0.

III The matrices B(y) are in G, .
IV There exists a function ¢(y) in €; which vanishes on 8,

(17.1) o(y) =0 on 8§,

and whose derivatives

(17.2) a.(y) = D.a(y)

are positive on §,

(17.3) o.(y) >0 on 8, r=1, ---, m.

Evidently, the numbers ¢, introduced by (17.2) may be taken as the numbers
o, introduced in Section 3.

The condition that the function o(y) be in §; is made for convenience; it
is stronger than necessary. It could be shown—but we shall not do so—that it
would be sufficient to assume that ¢(y) isin €, .

The main theorem of Part II will now be formulated as

DiFFERENTIABILITY THEOREM 175 :  Assume that the initial surface $ of the
lens-shaped region ® satisfies condition IV and that the operator E = AD + B
of type (E) satisfies condition I1I., Suppose that u is a function in F(AD) for which



HYPERBOLIC EQUATIONS 377

the function Eu is in F(D) and whose initial values Su satisfy condition II. Then
the function u belongs to the space F(D) and satisfies the equations

(174) EDlu = DlEu - D,AP-D,u - D[B'u
and
(17.5) SDw = S{Dig + (%) 'os[Eu — Egl}.

Here the quantities ¢, are the numbers introduced by (17.2).

Relation (17.4) certainly holds for functions « in €, , as is immediately
verified by formal differentiation. Relation (17.5) enables one to express the
initial values of the derivatives D,u in terms of Eu and the initial values ¢ of w.
Note that the expression S {D,g — (A%,) '¢Eg} actually involves the deriva-
tives of g only in directions within the surface 8. We have

(17.6) A’e,D\g — 6Eg = A’le,D;, — ¢:D,lg — ¢.Byg

and the expression ¢,D, — o,D, represents differentiation in a direction in the
surface 8; cf. (3.7).

We have already indicated in Section 15 that, instead of proving Theorem
17 directly, we shall reduce this theorem to a weakened form in which the initial
values of 4 and Eu are zero. We formulate this weakened theorem separately:

SpeciaL DIFFERENTIABILITY THEOREM 17; : Assume that the operator
E = AD + B of type (E) satisfies condition III. Let u be a function in F(AD)
such that Eu is in F(D) and

(17.7) u=0 on 8§,

(17.8) Eu=0 on 8.

Then the function u belongs to the space §(D); further Dyu belongs to F(AD) and
satisfies the equation (17.4) and moreover

17.9 Du=0 on 8.

Note that in this special theorem condition IV is not imposed.
We shall first put the relations stated in these two theorems into a somewhat
different form, then prove Theorem 17°, and finally reduce Theorem 17 to 17°,

A A
18. Operators E and D
It is convenient to introduee functions which are systems
(181) 1= [u9 ul] = [uﬂ Uy o 7uM]

of m + 1 functions in any of the spaces considered. We also characterize the
corresponding spaces of systems 4 by a “caret.” E.g. ifwandu, ,l=1, ---,m,
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arein § we say @ isin ©. For systems @ we introduce the matrices

(A7 0 - 0]

X 0 47 - 0

i = ,
Lo 0 A’

(18.2) \
B 0 0
DB DA +B DA™
B =

The operator & = AD + B acting on functions u can then be formed. Specific-
ally, we have

(18.3) Bt = [Euo , Bu, + D, A*u, + DB-uy.

The space of functions 4 for which the operator E is defined strongly will be
called §(AD). R
For functions u in F(D) we introduce the operator D by means of

(18.4) Du = [u, D] = [u, Dy, --+ , Dl
For functions u in F(DD) the identity
(18.5) EDu = DEu

holds. In fact, as seen from (18.3), equation (17.4) together with Eu = Euis
equivalent with this identity.
We introduce the vector

(18.6) ¢ =10,0,, ", 0n)

8o that we may write

(18.7) 6, 6ws = @, , o u)s .

Using this vector we can express the initial conditions Su = Sg and (17.5) as
(18.8) SDu = S{Dg + (A%, '¢(Eu — Eg)}.

Let u be the function with which Theorem 17 is concerned, and let g be
the function entering the formulation of this theorem, which agrees with u on
the surface 8.

Using these functions we may formulate the problem of finding a function
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% in §(AD) which satisfies the differential equation

(18.9) it = DEu
and the initial conditions
(18.10) St = S{Dg + (A%s,)'6(Bu ~ Eg)}.

This problem is of the type for which in Part I the unique existence of a solution
was proved, ¢f. Theorem 6% . Let the function 4 in l‘?(/fD) be this solution.
Then, evidently, the statement of Theorem 17 is simply equivalent with the
statement that the function v lies in the space F(D) and that

(18.11) Du = 4.

A similar formulation could be given for Theorem 17; , but we shall not
need it.

19. Difference Operators

In order to prove Theorem 177 we replace differential operators by difference
operators in such a way that

(i) the existence of the solution to the corresponding initial value problem
is obvious,

(ii) the properties corresponding to those stated in Theorem 173 are obvious
for these solutions,

(1ii) when the mesh width approaches zero, a subsequence of such solutions
converges weakly to a limit function in ®(4 D) possessing the desired properties.
By virtue of the coincidence of the operators F in the weak and strong sense,
Theorem 17; will follow.

We introduce the translation [r] defined by

(19.1) Py =9y — N\ and My =9 if I#r,

(19.2) Py -y = Al - )

Here the ““mesh width” X is any positive number at our disposal. The trans-
lation [r]™* is defined, similarly, by substituting — X for A.

From the assumptions about the nature of the region &, made in Section 1,
one easily deduces the

REmArk: If the points y and [I] [r]y lie in ®, then [r]y and {lJy also lie in &;
if the points y and [I]* [] 'y lie in ®, then [r] 'y and [I] 'y also lie in ®.
To prove this we need only observe: Suppose for two points y and § on 8§

y =4 for psErl and Y <§';
then
o' (y%) > o' (y%).
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The symbol [7] is also used to denote the operation which transforms a func-
tion u(y) in € into the function

(19.3) @) = u([rly),
provided the point [r]y lies in ®&. We define
(19.4) [rlu@) = wlrly) = 0
if [r]y lies outside ®. Similarly, for functions » in € we define the operator [r]™* by
(19.3)* ["17v() = o(Ir]™y),
provided [r]™"y lies in ®, and by
(19.9* 7o) = o([r]7y) = 0
if [r]”'y lies outside @®.
We easily verify the identity
(19.5) (17, Wa = @, [Wa

for any functions u, v, in §; it expresses the fact that the operator [r]™ is the
adjoint of [r]. For any function in € we further have

(19.6) (frle, e < (4, wa
and, more generally,
(19.6)’ (s, MEKwa < (@, Ku)q ,

whenever K = K(y) is a continuous bounded non-negative symmetric matrix,
By virtue of inequality (19.6) we can extend the operator [r] as a bounded

operator to the whole Hilbert space §; the same is, of course, true of the operator

[r17'. Relations (19.5), (19.6), (19.6") evidently carry over to w and v in $.
With the aid of the translations [r], [r]"* we define the difference operators

(19.7) A, =21 - [,
(19.7)* AY =271 - [17Y;

they serve as substitutes for the differential operators D, and — D, .

Let f be a function in €, which vanishes on 3. Since f is continuous across
3 when we set f([r]ly) = 0 in agreement with (19.4), it is clear that A,f(y) can
be written as

8@ =3 [ Dfwt, v - o d,

for every point y in ®. As a consequence, the inequality
(19.9) Il A lle < 1l Do lla
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and the relation

hold. By virtue of the definition of the strong extension of the operator D,
inequality (19.10), and hence also relation (19.9), carry over to functions f in
§(D,) with Tf = 0.

Let A" = A"(y),r = 1, --- , m, be non-negative symmetric matrices with
continuous derivatives defined in ® such that with an appropriate positive
constant a the matrix 3, A® — a is non-negative, cf. (2.3).

Furthermore, let By = Bj(y) be a set of continuous matrices defined in ®.
We assume that there is a constant b such that

(19.10) |Bi®) | £b, r=1,---,m, for y in Q.
Then we introduce the difference operator E, as the expression
(19.11) E, = A’A, + Bilp),

in which summation with respect to p is implied in both terms. This operator
transforms the function 4(y) into the function

(19.12)  Ewuly) = N A"ghuy) — N AGu(lely) + Biw)ulloly).

Let f,(y) be a function in €. Then we ask for a function u(y) = u,(y) in ®
which satisfies the equation
(19.13) Eu = f.

Note that the stipulation (19.4) takes the place of an instial condition on §.

The expression E,u(y) involves the values of u at the points y, [1ly, --- ,
[m)y. The coefficient of u(y) is the matrix \™ 3., A”(y); because of (2.3) it
possesses an inverse. Therefore, since the value of Eyu = f, is given at each
point y, the value of u at the point y can be expressed through the values of u
at the m point [rly. Successive application of this reduction ends in a finite
number of steps because of condition (19.4). Thus one can express the value
of u at any point of ® in terms of the values of f, in ®. In this way the solution
of the initial value problem described by (19.15), (19.14), is constructed. It is
evident that this solution is continuous.

In the following we shall use the operator

(19.14) E% = A%A* + [o]7'BY;
it is the adjoint of the operator E, , as seen from the identity
(19.15) (B, wa = @0, BxWa

which follows from identity (19.5).

We proceed to derive an inequality by which the norm || « {|a of a function
u is estimated by the norm || E\u ||g of Eyu; it is analogous to inequality (7.1)
for functions u in § with Su = 0.
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In doing this we shall employ the function
(19.16) g(y) = exp {~6 2"},

keeping the positive number 8 at our disposal. We note that this function
satisfies the relation

(19.17) [rla(y) = exp {—6OMlq(y).
We now write the relation A° A,u + Bf [plu = E\u, cf. (19.12), in the form

DA% = Y A™plu — N 2, Bilplu + MEyu,

multiply it by ¢°u, and integrate over ®. The resulting relation may be written
in the form

> (qu, A’qa = (qu, A%qlplw)a — Mau, Biglplw)a + Mqu, ¢Exu)q
or, using formula (19.17), in the form

2 (qu, A’qu)a = exp {— O\ (qu, A’[plqu)a
(19.18) .

— Nexp {— Mgy, Bilplgwe + Mqu, ¢gEx)s .

At this place we make essential use of the assumption that the matrices A"(y)
are non-negative definite: we infer from it that the estimates

2(qu, A'lrlqu)a < exp ONqu, A"qu)a + exp {— M ([rlgu, A'[rlqwq
hold for » = 1, --- , m. Insertion of this inequality in (19.18) leads to the
relation
2 (qu, Aqua < exp {—2600) 3 ([olqu, A%[plqw)a
14 [

(19.19)

— 2x exp {"9)\}((1% BQ[P]W)G + 2)\(QU, quu)m .
We now use the relation

A'lr] = [r]A7 — NA AT 7],
which follows from (19.7) and write accordingly
(19.20)  (Irlqu, A'[rlgw)a = (Irlqu, [rlA"qwe — Mrlqu, A, A" [Flgwa .

The value of the difference quotient A,A”- at points y for which [r]y lies outside
of ® is not defined; but the expression ([rlqu, A,A"- [rlqu)s is independent of
these values since [r]ou vanishes at such points.

Clearly, since D,A"- is assumed to be bounded, there is an upper bound
for the modulus | A,A"- | of the matrix A,4"- at all points y in ® with [r]y in ®
independently of the mesh width A; we denote it by ¢. Accordingly,

|AA™- | £¢ for y in & if [rly in @®.
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Using this bound, thee last trm of (19.20) ean be estimated in the form
| (Irlqu, A.A"-Irlgwa | < (IFlgw, Ilqw)s -

Using this estimate and the bound (19.10) we obtain from relations
(19.19) and (19.20) in an obvious manner the estimate

Zp (qu, A’qu)a < exp {—26M) 2 ([plqu, [p)A qu)q
(19.21) + e+ b 2 ([elau, lolgwa

+ Mmb + 1)(qu, qu)a + AMgExu, ¢Exu)q .

We now employ inequality (19.6) with £ = ¢A" and k& = ¢; we then obtain
from (19.21)

1 — exp {—260\}] 2 (qu, A’qu)a

< Am(me + 2mb + 1)(qu, qu)a + NgEvu, ¢Ew)q -
whence, using (2.2), we find
(19.22) {[1 — exp {—26\}]a — Mme + 2mb + D} qu, qwa < NgExwu, ¢B\u)q -

We now choose

(19.23) 6 = 2(mec 4 2mb + 1)
and then require A to be so small that

(19.24) exp {220} < 2

so that

1 — exp {—260} > 6A.
From (19.22) we then have
0(qu, qu)s < 2(gE\u, ¢E\u)g -
Setting
(19.25) v = 267" max q/n;in q,

we finally obtain the inequality
(19.26) (u, Wa < Y(Ew, BExw)a

for any function % in $.
For the solution v = wu, of equation (19.13) we thus have

(19.27) e < vl A s
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This solution was constructed under the assumption that the right member f,
belongs to €. Since every function f, in § can be approximated in the sense of
the || ||e-norm by functions in €, we may state

TrEoREM 19: To every function f) in O a solution u = wu, of the difference
equation (19.23), Exu = f\ , exists which saiisfies conditton (19.4). For this solution
inequality (19.26) holds.

A general remark may be added concerning the derivation of inequality
(19.26). In an earlier work on hyperbolic difference equations [5C] the differ-
ence operator was set up in such a way that in the analogue of identity (19.18)
the first term on its right member involved a positive definite form. Such a
set-up would also be possible in the present, more general, problem. To this
end one need only replace the operator A, in expression (19.11) by the
average of the 2" operators of the form A, , A,[w), --+ , AJw] [w), -+, in
which [u], [#2], [usl, + - represent distinct translations different from [p]. The
resulting difference operator connects the value of w at the point y with the
values of u at all points of the cube spanned by the points y, [1]y, --- [1] +--
[m]y. The form of the operator (19.11) which we have chosen is certainly
simpler and, although it does not lead to an identity of the type (7.2) involving
positive definite forms associated with the surfaces 8§ and 3, it is still sufficient
to derive inequality (19.26).

20. Limit Process

We now investigate what happens when the mesh width \ approaches zero.
We say that functions ¢,(y) converge mod § and 3 to a continuous limit function
¢o(y) if they converge uniformly to ¢,(y) in ®& outside every neighborhood of
8 and 3 respectively while | ¢,(y) | remains bounded in such neighborhoods.

In this sense the matrices A, A™- converge mod J to the matrices D, A"-
since it was assumed that the A" possess continuous derivatives. As regards

the matrices By we stipulate that they approach mod J continuous matrices
B’ for which

(20.1) >. B =B.

We further assume that the common bound b of | By | is independent of A; cf.
(19.10). The independence of the constant ¢ of A has already been established,
of. (19.21).

Further we assume that the norm || f, ||s of the right member f, of equation
(19.13) remains bounded,

(20.2) A e < k.

By virtue of inequality (19.27) the norm of the solution w = wu, of the initial
value problem (19.13), (19.4) is then also bounded,

(20.3) Hu e = M.
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A well-known consequence of inequalities (20.3) and (20.2) is that a sequence
A — O exists such that u, and Eyu, converge weakly; i.e. functions u, and f,
in $ exist such that

(20.4) (W, w)a = (Wo , U

(20.5) (wy , B — (Wo , fod)a, as A—0,
whenever w, and w, are functions in § for which

(20.6) wy, —wo [la—0 as A—0.

Let v be a function in €, which vanishes on 8. Note that the operator

* involves difference operators A* , which connect points across § but not points

across 3. Therefore the function E¥y converges uniformly in ® to E*». Hence,
when we set w, = E*v, we obtain from (20.14) the relation

(E*%v, uN) g — (E*v, uo)a as  A—0.
From (19.15) combined with (20.5) for w, = w, we then deduce that relation
(20.7) (E*v, ug) = (0, U
holds. In view of the definition of the space ®; given in Section 9, the latter
statement is equivalent to saying that the function u, lies in &, and satisfies
Eu, = fo, Tuo = 0. Theorem 93, which states that the modified weak and the

strong extension of the operator E coincide, now implies that the function wu,
lies in F(AD). We may formulate the result as

LeEMMa 204 :  Let the matrices B;, approach mod 3 the matrices B” for which
3", B = B; let f) be functions in Cq with SMhy = 0, and let || fx ||a be bounded.
Further let ux be the solution of the difference equation E\u, = fi and satisfy the
initial condition (10.4). Then a function u, in F(AD) with Tu, = 0 exists such
that for an appropriate sequence X — 0 relations

(20.8) (w, e — (w, Uo)a ,
(20.9) (w, Bxin)a — (W, Eug)a

hold with every funetion w in 9.

21. Differentiated Difference Operator

The preceding result will be applied to two particular operators, in place
of E, , namely to A; E\ and to A, .
In doing this we specify B; by

B; = B = m™'B,

B being assumed to have bounded continuous derivatives in ® We assume
that the function & is in (D) and vanishes on §, i.e. Sk = 0; furthermore we set

(21.1) h= !
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We then apply the operation A; to equation (19.13) and obtain
(212) flpApAﬂ,L)\ + AlAp‘ [l]Ap’U;)\ + [”BP‘ {p]Aiu)\ “"‘ AzBp‘ [p]’!,i)\ = Alf.

The coefficients occurring in this expression are defined at points y in ®
for which {{Jyisin ®. If {lly is not in & we define [{]B* = B", A,;B* = 0, A,A* = 0.
If y but not [r]y is in ®, also [I] [r]y is not in ®, as seen from the remark made in
Section 19. Therefore, we have

{21.3) [r] Awu(y) =0 when [r]y is outside @®.

Equation (21.2) can be considered an equation of the type treated in
Section 19. To this end we consider systems of functions & = [u, u,} with the
inner product (8, 4) = (v, u) + (v,, u,). To such systems we assign the matrices

A0 . 0
R 0 AT . 0
AT = ,
LO 0 . AT
as in (18.2); but instead of B we introduce the matrices
[ B 0 - 0
A ABT A AT+ [1]BY - §IAAT
(21.4) B, =
A.B* SIALAY . il A" + [m]B'

Here 6., is the Kronecker symbol. R
Since the matrices 4 and B have bounded derivatives a constant b exists
such that

21.5) |Bi|<b, r=1,-,m;
cf. (19.10). The constants @ and ¢, cf. (2.2) and (19.21), may serve as constants
4 and é.
When we set
(21.6) =[x, A,
21.7) Ho=1[f, afl,
<f. (21.1), equations (21.2) and (19.13) can be combined to
(218) E)‘ﬁ)\ = f; .
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Relations (21.3) and (19.4) take the place of (19.4). Inequality (19.27) therefore
holds in the form

(21.9) 1 fla < v |1 A lla
or, by (21.6), (21.7),
(2110) (u)\ ? u)\)lﬁ + (Apu)\ ) Apu)\)iﬁ S 72(f7 f)(R + 72(Apfy Aﬂf)(ﬁ .

The results of Section 20 are also applicable. For, the matrix B; approaches
mod 3 the matrix

B 0
) DB'  §D,A'+B - 5D, A"
(21.11) B =
\D.B* 5:D.A' . 8.D.A" + B}

We observe that the requirement (20.1), Z" B = ]§, is met when B is the
matrix defined by (18.2). The norms || f | of the right members h, defined
by (21.5) are bounded by virtue of (19.8) since Th = 0.

Lemma 20, now shows that a function @, in F(AD) exists with Tu, = 0
such that, for a sub-sequence A — 0,

(21.12) (@, d)a — (0, do)w

(21.13) (@, Bxin)a — (b, Bdo)s

% being any function in §. Relation (21.10) in particular, implies
(21.14) (w, w)e — (W, U)a ,

(21.15) (w, Aa)a — (W, Un)a

w being any function in 9.

On the other hand, we may apply Lemma 20; to the operator D, , instead
of E, with f, = A; w, since || Au, ||« is bounded by virtue of (21.10). Hence a
function u,, in F(D,) exists with Su;, = 0 such that

(21.16) (w, w)a — (W, wioa
(21.17) (w, Azu)‘)a - (w, Dlum)m as x—0.

Comparison of (21.16) with (21.14) yields u,, = 4, , comparison of (21.17)
with (21.15) yields uy; = Dyu;o = Do . Thus it is proved that u, is in F(D,),
hence in F(D), and that

(21.18) do = Dug .
Further, we note that Du, is in §(AD) with 8Du, = 0.
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Relation (21.13) implies, in particular, the relation (w, Exin)a — (w0, Eug)a
as A — 0, whence, because of Ey\u, = f, the identity (w, f)a = (W, Fu,)q results.

Since w is arbitrary, this means Eu, = f. Using the uniqueness of the
solution » with Tu = 0 of equation Eu = f, with which Theorem 175 is con-
cerned, we obtain the identification

(21.19) Uy = U.

Thus it follows that the function u lies in §(ADD). _
From the definitions (21.7) of f, and (18.4) of Df, combined with relation
(19.9), which holds because of Sf = 0, we deduce the relation

(21.20) |A=Dflla—0 as A—0.

Now, /A = Exii, by (21.8). Hence relation (21.13) yields
(@, Df)a = (@, Bdo)a -

Since  is arbitrary in &, we conclude

(21.21) EDu = E4, = Df = DEu.

Since this relation implies relation (18.9) and hence (17.4), Theorem 177 is
proved,

22. Reduction of the General to the Special Differentiability Theorem

It is likely that the general Differentiability Theorem 17 can be proved, just
as the special one, by employing solutions of finite difference equations. A
difficulty would arise only in preseribing values of the solution at points of the
form [r]y and [r] {lly, so as to simulate prescribing on the surface $ initial data
together with their derivatives. This difficulty can be avoided by reducing the
general to the special differentiability theorem.

Naturally, one will try such a reduction by subtracting from the function
u a function % so chosen that the special differentiability theorem is applicable
to the difference u — 1. Accordingly, the function % should have the following
properties:
A) 14 agrees with « on §,

(22.1) 8@ = Su = g,

B) 4 isin F(AD).
C) E4 agrees with Ev = fon §,

(22.2) SE4 = SEu = S,

D) Efisin (D).
It is easy to construct such a function % if the matrices A and B and the
functions g and f possess higher differentiability properties than have been
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tequired so far. We first assume these properties and then eliminate them by an
approximation procedure.
These properties are
1) The matrices A"(y) and B(y) belong to €, ,
2} The function g(y) belongs to €, ,
3) The function f(y) belongs to €, .
If these conditions are satisfied we simply set

(22.3) 4 =g — o[d%,]"[Eg - fl.
Here o,(y) are the quantities introduced in Section 17 in connection with con-
dition IV. Clearly, this function 4(y) satisfies conditions 4, B, and, since
22.4) Ei = f — oE[A%q,) ' [Eg — f],
also conditions € and D.

The special Theorem 179 is therefore applicable to the function u — 4. It

yields that this function, and hence the function u itself, belongs to F(D). It
yields further that the relations

{22.5) EDu — & = D,Eu — %) — D,A"-D,(u — @) — DB-(u — %)

and

SDl(u — 'ﬁ/) =0
hold. By virtue of SEu = SE4, the latter relation is equivalent with
(22.6) SDy(u — %) = S(A%,) 'e.(Eu — EX).

We know that relation (17.4) holds for the function %, since this relation
is a formal identity for all functions which possess second derivatives D,D,u =
D.Du. From the remarks made in connection with relation (17.6) we infer
that also relation (17.5) is a formal identity for all functions g and « in §(D)
with Su = Sg; therefore this relation holds for @ in place of . Hence we may
conclude from (22.5), (22.6) that the function w, with which Theorem 17 is
concerned, satisfies relations (17.4) and (17.5). Thus Theorem 17; is reduced
to Theorem 177 , provided conditions 1 to 3 are satisfied.

Before we can eliminate these conditions we must establish an a priori
inequality valid for the solution % which exists under these conditions.

To this end we use the notions introduced in Section 18 and write equations
(17.4), (17.5) in the form

EbDu = Dy,
St = 8{Dg — (4°0,)7s(f - Eg)},
cf. (18.9), (18.10). Then we use inequality (7.1); for E instead of E and find
| Dulla <o* 1| Df lla + 7" || Dg — (&%) "o(f — Eo) |Ii .
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Note that the constant y depends only on the bounds | 4 |s , |(2_,47)7" |a ,
| D,A" |& , | B ]a and on the domain ®; obviously the same constant y can be
taken if ® is replaced by ®, for any + > 0. Using relations (17.6) we may
derive the inequality

(22.7) I Dulle<nl|Dflld+allFf12+ nll Dyl
(Ap‘fa)—l Ir ! O Ir

in which % is a constant which depends on bounds for | A” |,
and | B|onS.
We let « be a positive number such that

A%, > «' on 8.

We then select & number + > 0 and consider the domain ®, introduced in Section
1. We approximate the functions A"(y), B(y) uniformly in ®. by functions:
A(y), B,(y) satisfying the conditions formulated in Section 2 which are in G,
and for which

A%6, > (207" on 8.

Next we approximate the functions f and g by functions f, in F(D®) and g, in
(D% such that

6{1+va_f

}51 - 07
22.8) o
|| Dg, — Dyg

s, =0 as v o,

According to the Existence Theorem 6 a solution u, of the equations £, u, = f,
Su, = 8y, exists. The statement of Theorem 17 ¢ holds for this solution u, and
inequality (22.7) is valid in the form

(22.9) | Du, |, < o || DS, |15 + 0l £ 1+ 01l Dg. 15 .

The constant 5 actually depends on the subseript » and on the domain ®, ; but.
evidently, we may replace it by a common constant, independent of » and .

From the sequence 4, = Du, we now may select a subsequence which
converges weakly to a limit function 4, defined in ®, ,

(’MA), Duv)&f - (12), ao)o\, as y — ©,

Clearly, the function 4, can be defined with reference to the whole domain ®
so as to satisfy the inequality

| 4o [la < ﬂ[lbf lla + 2 [[flls + ﬂHDQHS .
Since also Su, = Sg = Su it is clear that the function u, lies in €(D) and that.
Dug = 12. .

From the identity €5 = & it follows that u, lies in F(D).
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We next use relation
(B%, 0,)a, = (b, Df,)e, — (b, 6E,9)s, + (b, 61.)s, + (w, Dg)s, ,

which holds for any function % in €, which vanishes on 3, . Since || 4, |
bounded we may conclude from it and (22.8) that relation

(E*b, d)a, = (b, Df)s, + (w, Dg)s, — (b, 6Eg)s, + (b, &, s,

holds. Since functions w in €, with 7% = 0 can uniformly be approximated by
functions in €, which vanish on 3, it follows that the latter relation holds for &
in G, with Tw% = 0. Hence 4, lies in €5(4D) and satisfies the relations Ei, =
Df, St = S8(Dg — ¢ Eg + ¢ f). From the uniqueness of the solution of Eu = f,
Su = 8y it is clear that v, is identical with u. Thus Theorem 17; is proved.

It may be mentioned that Theorem 17 s could have been proved in a different
way, by reducing it to Theorem 17 ; for the adjoint £* of the operator E, cf. (18.3).
However, the procedure employed here seems to be simpler.

@, 18
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