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Symmetric Positive Linear 
J 

Differential Equations * 

K. 0. FRTEDRICHS 

Introduction 

Since the solutions of elliptic and hyperbolic differential equations have 
very many differing properties, and since quite different types of data must 
be imposed to determine such solutions it would seem unnatural to attempt 
a unified treatment of these equations. Still such a unified treatment-up 
to a certain point -will be given in this paper. 

M i l e  most of the treatments of these equations naturally employ 
completely different tools, some of them employ variants of the same: 
positive definite quadratic forms, the so-called “energy integrals”. We shall 
show that this tool can be adapted to a large class of differential equations 
which include the classical elliptic and hyperbolic equations of the second 
order. 

The main motivation for this approach was not the desire for a unified 
treatment of elliptic and hyperbolic equations, but the desire to handle 
equations which are partly elliptic, partly hyperbolic, such as the Tricomi 
equation’ 

with -a2/ay2 in place of +a2/aya. 
As Tricomi has shown, an appropriate way of giving data for the solu- 

tion of this equation consists in prescribing the function 4 on an arc which 
connects two points S, and 9- on the line y = 0 through a curve d in the 
half-plane y < 0, where the equation is elliptic, and in addition on a charac- 
teristic arc $?- issuing from the point 9- and ending in the half-plane y > 0 
at its intersection with the characteristic arc %+ issuing from P+. No 

*This paper represents results obtained under the sponsorship of the Office of Naval 
Research, Contract N6ori-20I, T.O. 1. 

’Tricomi’s equation and related equations play a basic role in the theory of transonic flow. 
I n  fact, the present work originated from an attempt at a numerical approach to a transonic 
flow problem. For an exposition of mathematical problems of transonic flow theory and 
an extensive bibliography, see L. Bers [16]. 
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boundary condition is to be imposed on %‘+ . Frank1 has suggested to modify 
this problem by replacing the arc Q- by an arc on which y dy2 < dx2. A 
further modification consists in letting the boundary A? of the region consist 
of two parts, go and a+ on which y dya < dx2 and > ax2, respectively. The 
value of C$ is to be given on the segment go , while nothing is to be prescribed 
on B+ . It is conjectured that this problem is well posed. We shall prove 
that this is the case for a somewhat special region of this type, see Section 18. 

Ip / +  

X 

It is remarkable that for the solution of the Tricomi equation fewer 
boundary data are prescribed than for the solution of a second order elliptic 
equation. A similar discrepancy in the number of boundary data is found if 
one compares the Tricomi equation with a hyperbolic equation. Suppose the 
boundary of the domain contains an “initial surface” and an “end surface.” 
On the end surface, the analogue of the segment L@+ , nothing should be pre- 
scribed but two data must be given on the initial surface. 

One may perhaps say that the condition that the solution of the Tricomi 
equation should cross the line y = 0 smoothly takes the place of the addi- 
tional boundary condition which must be imposed for solutions of elliptic 
and hyperbolic equations. 

This remark may be illustrated by discussing the analogous situation 
arising in connection with the ordinary differential equation 

au 
ax 

2a‘x - + yu = f ( x )  

in which a’ # 0 and y > u‘ are constants and u = u(x) is a single function 
of the single variable x. We ask which boundary conditions must be imposed 
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at x- < 0 and x+ > 0 in order that this equation have a unique solution. 
Because of the singularity of the equation at the point x = 0, one must 
permit the solution to have a singularity at this point; but we require that 
this singularity be so weak that &u2(z)dx is finite. 

If the equation did not have a singularity, the value of u could be pre- 
scribed either at  one end point, x- , or at  the other, x+ . In the present case, 
we maintain that a unique solution exists if values at both end points, x = xj, , 
are prescribed in case a’ < 0 and if no boundary values are prescribed in case 
u’ > 0. For, as one reads off from the explicit expression of the solutions 

u (3) = 24, (2) + c+ Zt+ (x) + c- 26- (x), 

with x, = x* for fx, > 0 when u’ < 0, while x,, = 0 when u‘ > 0,  

at least one square-integrable solution of the non-homogeneous equation 
exists, and no square-integrable solution of the homogeneous solution in 
case u‘ < 0. In this case, therefore, no additional condition may be imposed. 
In case a‘ > 0,  on the other hand, there are two square-integrable solutions 
of the homogeneous solution, vanishing identically for x $ 0,  respectively. 
To determine the solution uniquely, two conditions must be imposed, one 
for x > 0,  one for x < 0. 

The loss or gain of a boundary condition for the simple equation just 
considered, which was read off from the explicit representation of the solu- 
tion, can also be deduced from the general criteria to be formulated in this 
paper. From the same criteria, and in a closely analogous manner, we shall 
be able to derive a loss (or gain) of a boundary condition for the Tricomi 
equation and other partly elliptic, partly hyperbolic equations. 

The elliptic or hyperbolic character of an equation is defined by alge- 
braic conditions on its coefficients. The equations we shall study will be 
characterized by different algebraic conditions. We shall show that to each 
equation of this type a class of proper boundary conditions can be assigned. 
These conditions-and in particular the number of data involved in these 
conditions-depend only on the algebraic nature of the coefficients at the 
boundary. We shall also show that the standard boundary problems for 
elliptic, hyperbolic, or parabolic equations, and also the indicated boundary 
problems of the Tricomi equations-after some adjustments-are special 
cases of the general boundary problem investigated in this paper. 
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Instead of working with one equation of higher than first order we 
prefer to work with a system of equations of the first order. We denote the 
independent variable by x = {xl, * - * , x”]. The “value” of a function 
z.4 = u(x) at a point x will be a set of numbers u = {ul , * a ,  uk]. The 
differential operator acting on such a function will produce a set of functions 
K% = ( (KN) ,  , - . , (K%)k), where 

and where the coefficients ufv and y v  are functions of {XI, * * , P]. Intro- 
ducing the matrices 

up = (.L] P Y = { m v ]  

we may write the operator K as 
a 

a x p  
K = 2aP- + y 

where summation with respect to p from p = 1 to m is implied. We impose 
two requirements on the matrices up and y .  The first is 

The second requirement involves the matrix 
I. The matrices u p  are symmetric. 

a 
axp 

K = y - - aP 

and reads 
11. The symmetric part ~ ( K + K ‘ )  of the matrix K is  positive definite. 

Operators satisfying these conditions will be called “symmetric positive”. 
The function u (x) should be defined in a region 9 of the m-dimensional 

space whose boundary a has a piecewise smooth normal n = (nl , - - * , n,]. 
The boundary conditions which we shall admit depend only on the nature 
of the matrix 

p = npap 
on the boundary. 

the sum 
To formulate the boundary condition we assume that the matrix p is 

B = B++B- 
of two matrices /?* having the following two properties: 

111,. The matrix 
P = /?+-B- 

has a non-negative symmetric part Q(,u+p‘). 
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111,. Every u. c m  be wittm LZS u = u++u- with 

The condition 
p+u- = p-u+ = 0. 

#Lu = 0 
will then be called an “admissible” boundary condition. (This admissibility 
requirement is equivalent with the requirement of “maximality” proposed 
by P. D. Lax, see Section 5.) 

Our boundary problem is the problem of finding the solution of the 
differential equation 

where f = (fi , - * ,  fk> is a given function of x, under the boundary condition 
B-lc = 0,  which for convenience is assumed to be homogeneous. 

The requirements I, 11,111, are designed in such a way that the unique- 
ness of the solution of this problem follows immediately, see Section 3. In 
fact, the uniqueness proof given in Section 3 is nothing but the natural 
generalization of the classical uniqueness proofs for solutions of elliptic or 
hyperbolic equations of the second order with the aid of energy integrals. 

I t  is to be observed that requirement I does not restrict the type of the 
equation since it does not involve any inequality, while condition I1 which 
does imply inequalities does not involve the terms of highest order of the 
equation. 

It should be mentioned that operators satisfying conditions I and I1 
have also been studied by Ralph Phillips [6] in his theory of “dissipative” 
hyperbolic systems’ 

KU = f ,  

as 
at 
- + + u = O .  

He determines the most general boundary conditions to be imposed on the 
function zd such that this equation has a strong solution assuming given 
values for t! = 0. This problem is reduced to that of the equation K u + h  = f 
with 9elZ  > 0, which is essentially of the class here considered. 

Using our results, it could be shown that the conditions of the 
form P-ZG = 0 satisfymg are special cases of the conditions formulated 
by Phillips. Whether or not this can be shown without using our results is 
an open question.* 

We proceed to show that the Cauchy problem of the simplest hyperbolic 
equation is a special case of the problem Ku = f in W, p-21 = 0 on 9 formu- 

ZPhillips calls the operator --K (with boundary condition B-u = 0) “dissipative”; 
accordingly the operator K (with B-u = 0) might be called “accretive” instead of “symmetric 
positive”. 

*Added in pvoof: See, however, footnote on page 22. 
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lated here. We consider the equation a2+/at2-a2+/ax2 = h(x,  t )  and im- 
pose the conditions + = a+/at = 0 on the initial segment 99- , x- x 5 x+ , 
t = 0, prescribing nothing on the end segment a+ , t = t ( x ) ;  the function 
t (x )  is such that t ( x )  > 0 for x- < x < x+ , t ( x )  = 0 for x = x*, It,l < 1 for 
x- 5 x 5 x+ . Setting ul = e-Att+/at, uz = e+a+/ax, we write the equation 
in the form 

and the initial condition as ul = u2 = 0. Evidently, the equation is symme- 
tric positive for iz > 0. The matrix j3 reduces to 

Setting 
j 3 - = j 3  on W-, j3-=0 on &?+, 

we see that conditions I11 are satisfied and that the conditions u1 = u2 = 0 
on B-, nothing on a+, are evidently admissible in our sense. 

If the domain consists of the rectangle x- 5 x 5 x+ , 0 5 t 5 t+ , the 
conditions on the initial and end segment a+ and a- are the same as before. 
On the sides x = xA , we have j3 = F (p i). We maintain that the condition 
u1 = 0, corresponding to + = 0,  is admissible there. To see this, we set 
j3- = F (p 8). Since the symmetric part of p = (-! i) vanishes, condition 
111, is satisfied and clearly 111, holds. 

For the parabolic equation &$/at-a2+/i3x2 = h(x,  t )  we set u1 = e-%$, 
u2 = e-%3+/ax and write the equation as the system 

0 - 1  a 1 0  e-at h [(: 3 : + ( -1  0 )  ax + (0 JL: = (0 1’ 
which is evidently symmetric positive. As domain we consider again 
x- 5 x 5 x+ , 0 5 t 5 t+ , We maintain that the conditions ul = 0 on &?- 
and nothing on a+, are admissible. 

We note that j3 = & (i 8) on 9Y* and set j3- = /I on a-, j3- = 0 on a+ 
so that p = (i 8) on 9Y+ and 9Y-. Hence conditions I11 are satisfied. 
Clearly 111, holds. On the sides x = x f  the situation is the same as in the 
previous example. 

To handle the non-homogeneous Laplace equation 

a24 a 2 4  
~ + ~ = h(x, Y)  
ax2 a y 2  
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in a region W of the x, y-plane, we set uo = 4, u1 = a+/ax, u, = &#lay. 
Employing a pair of functions p1 = EP;, fi, = qb; with the property that 

we write the equation in the form 

Evidently, the matrix 
1 aP1 1 a?% + -- Pl $2 2 ax, 2 ax, -- 

0 1 0  
K =  

0 0 1  

is positive definite provided the constant E is taken sufficiently small. 
The matrix /3 at the boundary a is 

”’) . & = (  -n, 0 

B - = -  ( ;; ; ;) 

P = (  12, 0 

- (W51tnffP2) -% 

-n, 0 0  

To show that the condition u, = 0 is admissible, we choose two positive 
functions q* on 9J such that 

there; then we set 
--nsP1fn*P2 = 4+--4- 

q- 0 0 

so that condition p-u = 0 is the same as uo = 0. The matrix 

q++q- -a, 

n, 0 0 

evidently satisfies condition 111,. 
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What has been discussed here for the simplest differential equations for 
functions of two independent variables can easily be extended to equations 
for functions of any number of variables, so as to cover general elliptic, para- 
bolic, and hyperbolic equations of the second order and those equations of 
higher order which can be associated with a variational principle. Also, sym- 
metric hyperbolic systems of the first order are covered (see Section 4). 

It would seem possible to bring all those problems of linear differential 
equations into the framework here explained which can be handled by locally 
positive definite quadratic forms, i.e. by forms expressed as integrals with a 
positive definite integrand. 

On the other hand, it seems that those problems, in which forms are 
used which are positive definite but not locally so, cannot be subsumed 
under our theory. Thus Gsrding’s theory of general elliptic equations, 
Leray’s theory of general hyperbolic equations, and the various related 
theories which have been developed during recent years can apparently not 
be tackled by our method. 

Still there is a vast number of equations-of which only a few have 
been treated so far-which are made accessible by our approach. This 
applies in particular to the Tricomi equation and related, partially elliptic, 
partially hyperbolic, equations, at least for a certain class of boundaries and 
a certain class of boundary condition. 

Introducing the functions 

we write the non-homogeneous Tricomi equation in the form 
Lzc = [(” ”) (” + a) - ( 0 1  ) -1 a (;;) = ( “ f h ) .  

0 1  ax 1 o ay 

This equation is symmetric, but not positive, because of the change of sign of 
y. We multiply the operator L by the matrix 

obtaining 

(y 1) a. 
1 1 ay 

Evidently, the matrix 

is positive definite for sufficiently small A. 
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We maintain that the bouodary condition uln,---u,n,=O on go is 
admissible provided that n,+n, < 0 and y < 1 on the arc B0 . We have 

on g o .  Setting 

we find that the matrix ,u = /?+-/?- is non-negative since nx+n, < 0, 
ni-yn: > 0, y < 1, by assumption. Hence 111, holds. One easily verifies 
111, . Evidently,' the boundary condition is B-zc = 0, as desired. 

We choose the arc L@+ in such a way that on it yng-ni > 0. Assuming 
also y < 1 there, we have nz,n,,, > 0 and hence is positive definite on g+ . 
Therefore, we must take /I- = 0, i.e., impose no boundary condition on &?+ . 

In the simple example of a single ordinary differential equation describ- 
ed earlier we found that a boundary condition is lost or gained according to 
the sign of the derivative a' of the critical coefficient C X ( X )  at the place where 
this coefficient changes sign. An analogous situation obtains for the Tricomi 
equation. If we employ the factor eAZ instead of e-Ax and the multiplier 
2 = (-: -7) instead of (z !), we again obtain a symmetric positive equation, 
This time, however, the matrix f l  is negative definite on the arc g+ . There- 
fore, two boundary conditions, 4 = 0 and a+/ax = 0 must be imposed there. 
On the arc go , on the other hand, the condition I# = 0 is no longer admissible 
but the condition a+/ax = 0 is. In the present problem the arc B+ plays the 
role of an initial segment for a hyperbolic equation, while in the previous 
problem it played the role of an end segment. 

In Sections 2 and 5 we shall assign to each properly posed boundary 
problem a properly posed adjoint problem with-in general-different 
boundary conditions, in such a way that if no condition is imposed on an 
arc in one problem, everything is prescribed there in the other problem. 

In the two problems for the Tricomi equation described we have re- 
stricted the domain by the requirements n,+n, < 0 on go and y < 1, 
which were adopted just for convenience. It is possible to relax these re- 
quirements, but not completely. Although it is true that for a large class of 
domains it is possible to determine an appropriate multiplier matrix 2, 
(see Protter [lo], Morawetz [13]) this is not possible. This remarkable fact 
was proved by C .  Morawetz [14 1, unless the domain satisfies certain stringent 
conditions. For more general domains one must supplement the equations 

a4, a 4 v  84, a4, - o, y - - -=  - _ - -  
ax ay I ay ax 
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from which the equation Lu = f was built up, by the equations 
a+/ax-& = 0, a+Ji3y-q5g = 0, and then select three appropriate linear 
combinations of these four equations, see Ou and Ding [12] and Protter, 
unpublished. 

This remark illuminates the role of our approach to the theory of linear 
differential equations: it offers a framework into which some classes of dif- 
ferential equation problems can be fitted. This fitting, or “adaptation”, is 
primarily an algebraic proposition; the main difficulty in the treatment of 
problems in the manner here proposed consists in finding such an “adapta- 
tion”. Once it is found, the analytical questions of existence, uniqueness and 
differentiability are once and for all answered ’by the general theory. 

It is naturally hoped that, in addition to the Tricomi equation, other 
non-standard differential equation problems can be fitted into our frame- 
work. That this is not always possible is evident from the fact, discovered by 
H. Lewy [7], that differential equations exist which have no solution unless 
the data are analytic. Lewy’s equation Lu = f with 

a a 
i - + 2i(x, + iz,) - a 

axl ax, aY1 
L = -- - 

applies to a complex-valued function zt = u,+iu, of three real variables 
x1 , x, , yl ; the right member f = f(yl) is assumed real. Lewy proves that 
the equation Lu = f has no solution in & unless f is analytic. A slight ex- 
tension of his argument yields that this equation does not even have a square 
integrable solution which admits the operator L in the strong sense. 

On the other hand, it is possible to enclose the equation Lu = F in a 
set of equations, differing from it arbitrarily little only in the term of lowest 
order, which do possess such solutions. One need only take 

L ’ U i K W = f  
with K a positive real constant, since the operators & ~ + K u  are symmetric 
positive with respect to the inner product .!%e 5 u = vlul+v,u, ; hence our 
theory is applicable. 

A similar imbedding is possible for the ultrahyeerbolic equation 

Introducing the function u = (up} = {a+/ax,} we may write this equation 
as a symmetric system Lu = 0 with 

+-,  -- 
au, au, au, au a%, au, au, au, 
--f ---- 2 _- -  _ _  axl ax, ax, ax, ax, ax,’ ax, axl 



SYMMETRIC POSITIVE SYSTEMS 343 

We imbed this equation in the set of equations 
LZl 2 K ( 0 ,  u2, 0,  0)  == 0 

with a positive constant K .  For these equations boundary conditions may be 
imposed so that the problem is properly set. For, the equations 

obtained from the previous equation by setting u = efKX1v, are symmetric 
positive. 

Which boundary conditions are admissible for these equations depends 
on whether the + or - sign is taken in front of L ;  specifically, these con- 
ditions are complementary to each other, This fact alone, however, should 
not be taken as a suggestion that for K = 0 no boundary conditions produce 
a properly posed problem. After all, also the Cauchy-Riemann equations 
(a/axl+ia/ax,)u = 0 can be imbedded in a set of symmetric positive equa- 
tions, 

& L V  f KV = 0 

such that the boundary conditions associated with these equations change 
when x passes through zero. Still, solutions of the Cauchy-Riemann equa- 
tions can be derived from solutions of a symmetric positive equation (see 
Section 19). 

I t  was said above that the notion of a “symmetric positive” operator 
was so designed that the uniqueness of the solution of the equation Ku = f 
under an admissible boundary condition &u = 0 is immediately evident. 
The same applies to an appropriately defined adjoint equation K* v = g 
under the “adjoint” condition &v = 0. From the uniqueness of this 
adjoint problem one may derive the existence of a weak solution of the 
original problem, i.e. of a square integrable function w for which 

J2 (K* v )  * u dR = jg * f dR 

for all functions v in (XI with &v = 0. Here 2 is the region where u and v 
are defined, and dR = dx* - * * axn. For the Tricomi problem the existence 
of such a weak solution was first proved by C. Morawetz [la]. 

A weak solution as such is not necessarily unique. Uniqueness is in- 
sured, however, if the weak solution is a strong one, i.e. if the pair [u, f ]  lies 
in the closure of the graph [zi, Kd] for 12 in with b-zi = 0. For the standard 
elliptic and hyperbolic problems this can be shown to be the case in a direct 
way, e.g. with the aid of smoothing operators. But it is not obvious whether 
or not this tool can be adapted to the general problem here treated.* There- 

*Added in pvoof: See, however, footnote on page 22. 
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fore we were compelled to employ a detour via a differentiability theorem. 
The differentiability theorem states that the solution-of the non- 

homogeneous problem with homogeneous boundary conditions-admits dif- 
ferentiation (in the strong sense) if the right member does. For elliptic 
equations, differentiability is a local property; it can be established in many 
different ways. For Cauchy’s problem of hyperbolic equations the Cauchy- 
Kowalewski solution of the problem with analytic data can be employed. 
For the general problem considered here, a different method is needed which 
does not depend on the type of the equation. Such a method is available: the 
procedure introduced by P. D. Lax for elliptic and hyperbolic equations, 
see [5]. This procedure does not depend essentially on the type, and after 
some adaptations, can be used for our problem. 

To explain Lax’s method one must introduce the norm /lulll of order 1 
of a function 21 as 

and the norm ~ I V I I - ~  of order -1 of a function v as 

For a solution u of Lu = f with I [ u [  l1 < co and behaving appropriately at the 
boundary, an u priori inequality 

I IuI I1 5 Cll I W  I1 = CI I f  I I1 
holds. It is remarkable that a “dual” inequality 

Il4l-1 5 c-1IIL”~II-1 
also holds. Leray, in the theory of hyperbolic equations, see [3] , derives such a 
dual inequality from the existence of a solution u of Lu = f with Il.ulll < 00. 

Lax proceeds in the opposite direction; he derives the dual inequality 
directly and then proves the existence of a solution with IIulll < a. 

In carrying this approach over to our problem certain difficulties arise 
at the boundary of the domain. To overcome these difficulties we modify the 
definition of the norm I lul l1 by using, in place of a/ax, , differential operators 
of the first order which at the boundary involve differentiation only in a 
tangential direction. The major tool in deriving the dual inequality is then 
the solution of the differential equation 

where A’ is a differential operator of the second order which is elliptic in the 
interior of the domain, but does not involve normal derivatives at the bound- 
ary. We like to call A‘ a “clipped” Laplacian. The main technical work 

(l--d‘)W = v 
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done in this paper consists in deriving properties of the solution w of this 
equation; this is done in Part 111. 

We shall not prove the differentiability theorem for the solutions of all 
symmetric positive equations. An additional condition will be imposed. 

The need for such an additional property can be exemplified in connec- 
tion with the simple equation 

for a single function ~d of one variable x. The derivative u' of a solution satis- 
fies the equation 

with y1 = y f 2 a ' .  In case a' > 0 the relation K = y-a' > 0 entails the 
relation K~ = ~ + 2 a '  > 0 ;  hence an a priori inequality for u' can be set up. 
In case a' < 0, however, K >  0 does not necessarilyentail K ~ >  0, and the 
condition K~ > 0 must be added as an additional requirement. Of course, 
if K~ < 0, one can verify from the explicit solution that there are solutions 
u satisfying an admissible boundary condition but having derivatives which 
are not quadratically integrable. 

It should be mentioned that we can eliminate the additional requirement 
K~ > 0 by a continuation argument if we are satisfied with establishing the 
existence of a strong solution without establishing its differentiability; (this 
is the "detour" referred to above). 

If one wishes to  establish the existence of strict solutions, i.e. of contin- 
uous solutions with continuous derivatives, one may proceed in a standard 
manner and reduce this question to the question whether or not the solution 
possesses strong derivatives of a sufficiently high order, depending on the 
dimension m. We shall not elaborate on this point. 

In conclusion a few words may be said about the method of finite d i f -  
ferences. The aim of this method is to replace the differential equation 
together with the boundary condition by a finite difference equation whose 
solution approaches that of the differential equation as the mesh width tends 
to zero. We shall explain how to set up such a difference equation in the 
case of the equation 

a% am@ 
ax ax KW = a - -+ - +- KU = f 

for a function zc = (zc, , - - - , uk> = ~(z) of one variable z in the interval 
x- 5 z 5 z+ and the boundary conditions (p7a)a = 0 at x = x&. Note 
that in this case j3 = fu so that p F a  = -2g-. The coefficient matrix 
a = R(X) is continuously differentiable, K ( X )  and f(x) are continuous. 
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We introduce net points 
X, = x,+oh, a- 5 a S u + ,  

where h, xo  and the even integers u+ are so chosen that xu* = x& . We re- 
place the unknown function U ( X )  and the given functions f ( ~ )  and .(.) by a 
function {u,> defined for even o. Also we replace K ( Z )  and f ( x )  by functions 
K, and f, for even (r such that the linear interpolations of K, and f, tend to 
~ ( x )  and f ( x )  uniformly and in the mean, respectively; (the K, should be 
chosen positive definite). The functions X ( X )  will be replaced by functions 
a, defined for odd values of a for (r-- 1 5 a 5 a++ 1 such that their linear 
interpolations together with first derivatives tend uniformly to ct (x) and 
ctz(x), respectively. 

We then replace the differential equation Ku = f by the equation 

( f ( ‘h’U) ,  = (2h)-1Ca,+l.u,+,--u-l~,21 tK,U, = f ,  

(K(h)& = JZ-1[p~uuI~,~FI~,~F11 +K,% = f ,  9 

for a-f2 2 u 5 a+-2, while for u = a& we take 

where p, 
Clearly, when ~ ( x )  is in 0, and u, = %(xu), the function Wh)u tends to 

Ku uniformly. Also hKE’ tends to (,uFac)u at x = z& ; if (,u+x)zt(x*) = 0 
one readily finds that (K(%),& tends to Ku(x*). 

The uniqueness of the solution of the finite difference equation is 
evident from the identity 

may be taken as the value of p(x) at x = x&. 
f 

212 2;%(K(h) u), = 2h 2;%J K,~U,+%+P,+ u,++uu- Pu- uu-. 9 

in which the prime is to  indicate that the terms for o = a+ are to be supplied 
with a factor 4. Evidently, the form on the right hand side is positive 
definite. Therefore the finite difference equations possess a solution uih) , 
Clearly, for the linear interpolation u(IL)(x), the integral d h ) ( x )  * ~ ( ~ ) ( x ) d x  
remains bounded. A weakly convergent solution can be selected and the 
linear function U ( Z )  can be shown to satisfy the equation 

K * v ( x )  - u(.)dx = f”’v(x) , f ( x ) d x  L: a?- 

for all functions v ( x )  in 6, satisfying the “adjoint” condition (p’+ct)v = 0 
at x = x*. In other words, the limit function is a “weak solution” (see 
Section 4). 

The set up of finite difference equations as described here can be carried 
over to the case of functions of several variables without any modification 
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provided the domain is a rectangles. In fact, the attempt at finding such a 
set up for the Tricomi equation was the starting point for the investigations 
presented in this paper. 

Part I of this paper is concerned with the formulation of the problem, 
the uniqueness and the weak existence of a solution. 

In  Part I1 the problem is formulated for a compact manifold with 
boundary. Then the differentiability theorem is reduced to theorems on the 
clipped Laplacian, and finally the existence of the strong solution is derived 
from the differentiability theorem. 

Part 111, involving the major technical work, supplies the needed theo- 
rems on the clipped Laplacian. 

Part IV contains three items: 1) modifications needed to include 
Cauchy’s problem and the mixed problem for hyperbolic and parabolic 
equations and other problems in which the boundary condition is different on 
different parts of the boundary, 2) the proof of the differentiability of the 
solution of a special boundary value problem for the Tricomi equation, 
3) an adaptation of a problem for the Cauchy-Riemann equation and of 
Dirichlet’s problem for Laplace’s equation. 

The work presented in this paper was strongly influenced by discussions 
with L. Bers, P. D. Lax, and L. Nirenberg. Various suggestions made by 
P. D. Lax were incorporated in the text, or indicated in footnotes. I am 
greatly indebted to R. S. Phillips for his painstaking scrutiny of. the 
manuscript. 

PART I 

UNIQUENESS. WEAK SOLUTIONS 

1. Differential Operator 

The differential operators to be investigated will act on a set of k 
functions u = {ul, . - * , uk) defined in an m-dimensional differentiable 
manifold with a smooth or piecewise smooth boundary. To explain the 
basic notions we shall at first assume the manifold to consist of a region 2 
in the m-dimensional space of points x with the coordinates xl, ,xm. 
Specifically, we shall assume that the region 92 can be described with the aid 
of a function y(x) as consisting of the points x with y < 0,  so that the bound- 
ary or 92 is given by y = 0. The function y(x) should have piecewise con- 

ST’arious modifications of this finite difference set-up including finite difference equa- 
tions for non-rectangular domains wiil be treated in a forth-ng paper by C. I(. Chu. 
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tinuous derivatives4 in 9+G? and the gradient Vy should not vanish at 93’. 
To describe the differential operator we assume that m + l  matrices 
. . , am, y are given at each point of a+&?. These matrices are supposed 

to depend continuously on x and the matrices a p  are supposed to possess 
continuous derivatives. With the aid of these matrices we form the differen- 
tial operator 

which transforms functions ~ ( x )  with continuous first derivatives in 9+27 
-class $-into functions 

which are continuous in 92+L@-class B. 

at each point x of g+G?. The first is: 
We impose two “fundamental” requirements on the matrices tc and y- 

I. The matrices ul, - - - , urn are symmetric. 
The second requirement involves the matrix 

a 
axh , 

K = y -  

it reads: 
11. The symmetric part of the matrix K is positive definite. 
The symmetric part of K is given as $ ( K + K ’ )  in terms of the transpose K’ 

of K .  We also express condition I1 simply by the formula 
K+K’ > 0. 

A differential operator K formed with the aid of the matrices a,  y will be 
called “symmetric” if the u satisfy condition I; if the a and y satisfy condi- 
tions I and I1 the operator will be called “symmetric positive”. 

The role of the matrix K becomes apparent if the operator K is written 
in the form 

The formally adjoint operator can then be written as 

4By this we mean that y(z) is given as y = max {yl(z), yJa(s), - - -} where yl(z), y,(z), - * 

stand for a finite number of functions with continuous derivatives in W+I. Actually, we shall 
specify the type of domain further; see Section 7. 
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which makes it evident that the formal adjoint of a symmetric positive 
operator is also symmetric positive. 

Let f(x) = {fi(x), - - , fk(z)} be a function in &. Then we may ask for a 
solution U(X) of the differential equation 

KU = f ;  
such an equation-or system of equations-will be said to be symmetric 
positive if the operator K is symmetric positive. 

We proceed to show that the standard hyperbolic and elliptic equation of 
the second order can be written as a symmetric positive system of equations. 

A symmetric operator K for which-at a point xo-a linear combina- 
tion cAaA of the matrices ah is positive definite was called hyperbolic sym- 
metric at this point. Such an operator is equivalent to a symmetric 
positive one in as much as the operator 

p % a x a  KeAbaza = K+ 2A5, ah 

is symmetric positive provided the number A is chosen sufficiently large; 
see [4] and [ B ] .  A hyperbolic equation of the second order can be reduced 
to a symmetric hyperbolic equation, as is easily verified [4]. 

An elliptic equation 

given with the aid of a positive definite matrix gAv, can be reduced to a sym- 
metric system by setting 

with u'J = 4, 
and 

where (&) stands for the inverse of the matrix (gAv). The equation is then 
equivalent to the system 

KU = ( p ,  0, * , O } .  

The matrix K ,  given by KA" = gAy for rZ # 0, Y # 0, K~~ = 0 for A = 0 or 
v = 0, is not positive definite. To remedy this defect one may introduce a 
vector fA(z )  with the property 

and then set 
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Now we have 

evidently, K+K‘ can be made positive definite by taking p sufficiently small. 
The Tricomi equation, which we shall write in the form 

a24 a24 

ax2 ay2 
y- - -=O,  

is equivalent with the symmetric system 

for the derivatives 4, = a$/&, $, = a$/ay. The equation can be made sym- 
metric positive by applying-on the left-a matrix (t v). The equation 
then assumes the form 

= 0; 

thus the symmetry is not destroyed. The matrix K becomes 

evidently it can be made positive definite by proper choice of b and c. 

2. Semi-Admissible Boundary Condition 

To a symmetric positive operator K we shall assign a class of “ad- 
missible” boundary conditions and we shall show that the problem of finding 
a solution u of the equationKu = f which satisfies these boundary conditions 
is properly posed. To formulate such boundary conditions we must first 
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introduce an exterior normal vector n = {n,  , * * - , n,> at each boundary 
point; we choose the vector with the components 

where y(x) is the function introduced in Section 1; we may do so, having 
assumed n # 0. Next we form the matrix 

p = nAaA 
at  each boundary point. Finally, we select at each boundary point a matrix 
p depending continuously on this point and satisfying the requirement : 

1110. p+p’ is nownegative or, simply, 

p+$ h 0. 

pu = pu, 

M = 1.-B, 

The boundary condition to be imposed is then given as 

Introducing the matrix 

we may write this condition in the form 
Mzl = 0. 

The matrix M and the boundary condition Mu = 0 will be called “semi- 
admissible” for the operator K if property I110 obtains. 

We shall show that the solution zl of the equation Ku = f under the 
condition Mu = 0 is unique if M is semi-admissible. 

We recall that the formally adjoint operator K* may be obtained from 
the operator K by substituting -a and K‘ for a and K .  Hence -/I plays for 
K* the role that /l plays for K and we may assign the matrix p’ to K* in 
place of p. Accordingly, we set 

M* = p‘+b, 

and impose on the solution v of the adjoint equation K*v  = g the boundary 
condition 

M*v = 0. 

Evidently, the matrix M* is semi-admissible for the operator K* if M 
is semi-admissible for K.  

To be able to prove the existence of the solution of the equation Ku = f 
under the boundary condition M u  = 0 we must impose an additional re- 
quirement on this condition. We shall formulate and discuss this additional 
requirement in Section 5. Before doing so we prove the uniqueness of the 
solutions. 
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3. Basic Inequality. Uniqueness 
The uniqueness of the solution of Ka = f under the semi-admissible 

We introduce the inner products 
boundary condition formulated in Section 2 is nearly obvious. 

with v - u = vlul + - * - + vkaK and, in obvious notation, 

where y (x) is the function discussed in Section 1. Also we introduce the norm 
1 1 ~ 1 1  = (u, .u)fl”. 

The relationship between the operators K ,  K* and the associated bound- 
ary matrices M ,  M* can then be expressed through the “first identity” 

(zI> Ku) f ( v l  Mu)a = (K* ’> .) f (M* ‘ J  %)a 
which follows immediately from the identity 

We now make use of the relations 
K+K* = K+K’, M + M *  = p+p‘ 

which are obvious from the definitions given in Sections 1 and 2. Setting 
v = u we obtain the “second identity” 

(a, Ku) + (a, Mu)g  = (u, K u )  + (a, P 4 g .  

The right hand side here is non-negative by I1 and 111. In fact, there is a 
constant c > 0 such that (u, KU) 2 c(a,  a). Hence we may conclude 

llull I c l l ~ u l l  
provided M a  = 0. This is the “basic inequality”. It implies the 

UNIQUENESS THEOREM 3.1. A solution u E & of the diffHential equation 
K u  = f under the-semi-admissible--oundary condition M u  = 0 i s  unique. 

Of course, the proof of this uniqueness theorem, as given, is nothing but 
the natural generalization of the classical uniqueness proofs for elliptic and 
hyperbolic equations with the aid of energy integrals. 

4. Hilbert Space, Weak Solution 
With reference to the inner product (v, u) and the norm ]\u)) = (u, u)% 

we may introduce the Hilbert space $j of all square integrable functions 
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u(z). Suppose a function f E $j is given. Then we call u E $j a “weak” solution 
of the equation Ku = f with the boundary condition Mu = 0 if the relation 

holds for all ZI E satisfying M* v = 0 at @. As is clear from the second 
identity, a strict solution-i.e. one in &,-is also a weak one. 

Consider the subspace w of all functions w E 6 of the form w = K* v with 
z’ E 6, satisfying M* v = 0. To every such w the function v is uniquely assigned 
-by the Uniqueness Theorem applied to K* and M * ;  therefore the inner 
product (0, f )  is uniquely assigned to w and linear in w. Moreover, this linear 
form is bounded, 

121, fl 5 IlflI llvll 2 c l l f l l  1141, 
by virtue of the basic inequality. Hence, as is well known, there exists 
an element u c $j such that (er, f )  = (w, u). Thus we have proved 

THEoRm 4.1. To any  f E fj there exists u weak solution u of Ku = f 
under the-semi-admissible-boundary condition M u  = 0. 

For Tricomi’s boundary value problem the existence of a weak solution 
was first proved in this manner by C. Morawetz [14]. 

Naturally, one wonders whether or not a weak solution is a strict 
solution. In this connection one may at first find out which conclusions can 
be drawn if the weak solution is known to be in &, i.e. if it is known to 
possess continuous first derivatives. 

To do this, let u be such a solution. From the formula (v ,  f )  = (K*v, u) 
for all v in 6, with M * v  = 0 we then may derive the relation 

(v ,  Ku--f)+ (0,  MU)^ = 0. 

From the arbitrariness of v we first deduce that u satisfies the differential 
equation Ku = f and hence the relation (0,  MU)^ = 0 for all v satisfying 
M * v  = 0. From this we conclude that at every point of the boundary 

2v - pu = 2pv u = (8-p’)v * 2L = -v * (p-P)u = 0. 

In order to draw further conclusions we shall invoke the additional 
“admissibility” requirement on the boundary condition Mu = 0 to be 
formulated in the next section. From this requirement we shall deduce that 
the boundary condition Mu = 0 has the property of being the “strict 
adjoint” of the condition M * v  = 0. By this we mean that M u  = 0 if u is 
such that v - pu = 0 holds for all v with M * v  = 0. Using this property we 
may conclude: a weak solution u E (& satisfies the differential equation K u  = f 
and the boundary condition Mu = 0. 

The hypothesis u c$ made in this last argument is rather strong and can 
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be proved to hold only under additional conditions on the coefficients and 
the right member of the equation. 

Without making severe additional assumptions one certainly can 
establish stronger properties which a weak solution possesses automatically. 

One of the stronger properties one should like to prove is the validity of 
the basic inequality IIulI 5 cIIflI; if it were valid for weak solutions such 
solutions would be unique. 

Moreover, one should like to prove that the weak solution is a “strong” 
one. 

A function u E fj will be called a strong solution of the equation Ku = f 
with f E @, if a sequence of functions u” c (& exists such that 

I I u y - u l I  O ,  / ~ K u ” - f ~ ~  OJ 
as v --+ co. The function u will also be said to admit the operator K strongly. 
If the function uuy can be so chosen that in addition 

Mu” = 0, 
we say that u satisfies the boundary condition M u  = 0. Evidently, for 
functions ~, v admitting K and K* strongly and satisfying Mzt = 0 and 
M*v = 0,  the two basic identities hold as well as the basic inequality. 

In order to prove that a weak solution is strong it is necessary to con- 
struct an appropriate sequence of functions u”. 

For elliptic equations and for Cauchy’s probIem of hyperbolic equations 
it is possible to construct such approximating functions by employing molli- 
fiers as smoothing operators. For the general problem considered here this 
tool does not seem to be strong enough. It is still possible to construct func- 
tions uy such that [ juy-uI 1 --+ 0 and I IKu” - f I I‘ -+ 0, as v -+ 00, where the 
prime is to indicate that the integral which enters the definition of the norm 
is to extended over a proper subregion W’ of 92. The difficulty in proving 
lIKuy-fli --f 0 with reference to 92, instead of 9, arises from the fact that 
different companents of the function u = {ul , - - * , uk} would seem to 
require different smoothing operators according to whether they should, 
or should not, vanish at the boundary. 

Nevertheless, under the assumption of a smooth boundary (having a 
continuous normal n) and of an admissible boundary condition we shall 
prove the “identity of the strong and the weak solution”; but in doing so, 
we are forced to employ a detour: we shall first prove a differentiability 
theorem.* 

*Added in proof: Recently, P. D. Lax has succeeded in proving directly that a weak 
solution is strong, by employing a modified version of mollifiers, provided that the boundary 
has no corners and that ,9 does not change type. Subsequently, R. S. Phillips has removed 
these two restrictions. These results will be published in subsequent issues of this journal. 
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5. Admissible Boundary Condition 

In Section 3 we have described boundary conditions which we called 
“semi-admissible” and which were sufficient to insure uniqueness. To insure 
existence we must impose additional requirements which we shall describe 
in the present section. 

We adopt a variant of a proposal made by P. D. Lax in connection with 
the mixed problem of a hyperbolic system. This proposal was to require that, 
a t  each point of the boundary 9, the condition Mu = 0 be “maximal” with 
respect to the relation u * /?u 2 0. Let U be the K-dimensional space of 
columns u = (ul , - * * , uk}-at some point of g-and let % ( M )  be the 
nullspace of M ,  consisting of all u satisfying Mu = 0. Then the condition 
Mu = 0 is called “maximal’’ with respect to u 6 @zd 2 0 if there exists no 
subspace of U containing % ( M )  properly in which u *,4u 2 0. 

Instead of adopting this proposal we prefer to use an equivalent but 
more concrete definition of the “admissibility” of a boundary condition. 
We assume that the matrix @ can be split into two components /?, , 

B = B++B-, 
in such a way that the following three requirements are met: 
1)  the matrix 

satisfies the condition 
P = B+-B- 

111, P+P’ 2 0, 
2) the nullspaces of ,4* span the whole space U, 
111, ‘(/?-I-) @ ‘(B-) = ‘ J  

3) the ranges of ,4* have only the column u = 0 in common, 
111, W8,m WE-) = D 

Such a pair of matrices @* will be called “admissible”, and so will be the 
boundary condition /?-u = 0 formed with such a pair. Evidently, we have 

M = /L-@ = -28- , 
so that condition Mu = 0 is equivalent with ,d-u = 0. 

Requirements 111, , 111, , 111, will be combined as requirement 111. 
While conditions 111-in general-will be easily verified in concrete 

problems, a different form of these conditions will be more handy to work 
with later on. 

A pair of matrices P ,  will be called a pair of projectors if they satisfy 
conditions 

P,+P- = 1, P,P- = P-P, = 0. 
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It is clear that condition 111, is equivalent with the condition that 
a pair of +rejectors Pi exists such that 

P* = P, ’ 
Similarly condition 111, is equivalent with the condition that 

a pair of projectors Q* exists s w h  that 
P,  = efb. 

The matrices P ,  , Q ,  are not unique in case the nullspace of ,!I is not empty. 
The requirements I11 are designed to make it evident that the adjoint 

boundary condition M* v = (p’+P)v = 2&v = 0 i s  also admissible. In fact, 
the matrices -/3, p‘, Q; , P; play the roles of the matrices j3, p, P+ , Q, 
and requirements 111;, 111; are equivalent with 111, , 111, . 

I t  is also evident-as a consequence of 111,-that the condition j3;v = 0 
i s  the strict adioint of the condition @-u = 0 in the sense explained in Section 3; 
for, if v *Pu = 0 for all u with ,$P-.u =j3-u= 0, we have v . B P + u  for allu 
and hence j3;v = P$v = 0. Similarly, the condition 1-u = 0 i s  the strict 
adjoint of /3> v = 0,  as a consequence of condition 111,. 

We shall derive a few properties of admissible pairs of matrices /?+ 
although we shall not use them explicitly. 

First we note that property 111, leads to 
LEMMA 5.1. pu = 0 implies p’u = 0, and vice versa. 
Clearly, by 111, we have, with appropriate c > 0, 

(p+p’)u (put-p’). 5 c(.u (p+p’)u) = 24.u * p) = 0, 
hence p’u = (p+p’)u = 0. From property 111, we derive 

LEMMA 5.2. /lu = 0 implies @ l u  = ,5Lsl_zl= 0 and hence p’sl_zl = 0. 
We need only observe that 111, allows us to write ,8; in the form P i p .  

Next we shall prove: 
Properties 111, and 111, imply  property 111,. Let w be in the intersection 

9@+) n 9(j3-), i.e. w = ,!I+ u+ = j3-u- . By virtue of 111, we may choose uf 
such that P-u+ = j3+u- = 0. Hence p(u++u-) = /3+u+-j3- u- = 0 whence 
p’(u++u-) = 0 by Lemma 5.1. Furthermore, /3(u+-u-) = j3+u+-P-u- = 0 
whence p‘(u+-u-) = 0 by Lemma 5.2. Therefore p’u* = 0. By Lemma 1 
again, pu* = 0 and thus w = 0. 

Moreover, we state that a n  admissible condition M u  = 0 i s  maximal 
with respect to a * Bu 2 0. For, let uo be in an extension of %((B-), so that 
uo puo 1 0. Since P-u, = uo-P+uo is also in the extension, we may, by 
111, , choose uo in %(j3+) so that u, = P-u, and hence u, - Puo 5 0. Conse- 
quently, uo j3uo = 0. Since .u,+cru+ with u+ = P+u is in the extension we 
have 

0 5 (uo+cru+) - /9(uo+cru+) = 2au, * Pu++a2u+ * pu+, 
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and therefore ztO * pzd, = 0; hence /3;uo * u = zc, - /3P+zc = 0 for all u, whence 
pLuo = 0, or u0 in %(&). Since in this space the form -v pv is non-negative, 
we know that u, * pu0 = 0 implies ,9u0 = 0, hence b-u0 = 0 since u, is in 
%(,!I+) and hence ,9+.uo = 0; thus zc, lies in %(,!I-) and not in a proper 
extension of this space. 

The converse can also be shown: a maximal  boundary condition is admis- 
sible; i.e. to a maximal condition one may assign admissible matrices p+ such 
that the condition is equivalent with ,9-u = 0. It should be noted that the 
matrices & are not unique, in general. To prove the statement we consider 
the spaces % and %* of those zl that satisfy the boundary condition and its 
strict adjoint. Then we let P and Q be any projectors projecting into these 
spaces, but so chosen that PQ = QP projects into their intersection. We 
note that i) Q'pP = 0, ii) Q'Bu = 0 implies u = Pu, iii) P'pv = 0 implies 
v = Qv. Then we set 

,U = (1 -Q')p(P+Q- PQ) - (P'+Q'- P' Q')p( 1 - P) .  
Using i), one easily verifies p+p' = 2P',9P-2Q',9Q1 so that 111, holds. 
Furthermore, using i) again, one verifies Q'(p+P) = (p--p)P = 0. From 
these relations together with ii) one concludes that condition u = Pzc, or, 
what is the same, p~d" = 0, is equivalent with condition (p-/3)u = 0. 

In  order to show that the nullspaces of rc+/? and p-p span the whole 
space U, see 111, , we need only construct a u1 to a given u, such that 
(p+P) (uo- Pu,) = 0. From iii) one infers that the range of ,5P consists just 
of %*I, i.e. of all w with Q'w = 0. In view of Q'(p+,!I) = 0 we see that 
(p+p)uo is in that range, so that ul exists as desired. 

Property 111, , thus established, togetherwith III,, implies 111, , asshown 
above. Also, it follows that condition M * v  = 0 is admissible and hence 
maximal, 

We have elaborated on these matters, primarily because considerations 
concerning maximality play a major role in the theory of R. Phillips, the 
difference being that we assume local maximality while he considers global 
maximality. That local maximality implies global maximality could be 
derived from our result about the existence of a strong solution.* 

The question arises whether or not an admissible boundary condition 
can be assigned to a given symmetric-positive differential operator. 

We should like to emphasize that the answer to this question is affirma- 
tive : with each symmetric positive differential operator admissible boundary 
condifions can be associated. 

It  is inherent in the concept of maximality that at each point of 9 a 
maximal condition exists. But the statement can also be verified in a more 

*.4dded in proot: I n  fact, without  our "detour", see footnote on page 22. 
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concrete manner. One need only choose the projectors P* which project into 
the eigenspaces with positive and non-negative eigenvalues of the symmetric 
matrix 8. Then P i  = P* and the matrices ,6* = P*,!?P* obviously satisfy 
#I++,% = 

While it is thus clear that with each symmetric positive operator ad- 
missible boundary conditions can be associated, it is not at all obvious that 
any given boundary condition to be associated with a differential equation 
can be identified with one which is admissible in the sense here introduced. 

For such a condition M u  = 0, one must first verify whether or not 
zc - /?u 2 0 in the null space of M .  Next one may verify whether or not it is 
maximal. Instead of doing this it is, in general, easier to construct the 
matrices #I* or the projectors P* and to verify conditions IIIo,l. 

As an example, let u = {ul , u2} and ,8u = (uZ , ul}. Then the condition 
zc2 = 0 is admissible. We have P+u = {u, , 0}, P-u = (0, u2} and the asso- 
ciated matrix p is given by pu = { -zd2 , ul> and thus unsymmetric. Further- 
more Q; = Qi = P& = Ps:, so that the adjoint condition is again zc2 = 0. 
We have mentioned this case mainly to point out that it can happen that 
M* = M and also that p may be unsymmetric. 

In the following section we shall show that the standard conditions 
imposed on the solutions of elliptic and hyperbolic equations are admissible, 
Under certain restrictions on the domain the same will be shown for the 
condition customarily imposed on the solutions of the Tricomi equation. 

and conditions 111, , 111,. 

6. Elliptic, Hyperbolic, Mixed Equations 
Let us first consider a symmetric hyperbolic system, or what is equiv- 

alent, an equation of the form Ku = f in which the matrices u* are such 
that a linear combination 6, u* of them is positive-definite. As was mentioned 
in Section 1, such an equation can be so modified that it is symmetric posi- 
tive. We ask for the solution u in a lens-shaped region 9 described by 
y-(x) 5 y 5 y+(x), where the two functions y*(x) are space-like, i.e., such 
that for the normal vector Vy* = ay*/ax* the matrix u, V, y* is positive 
definite. The values of u on the initial surface 37-: y-(x) = 0, y+(x) 2 0 are 
prescribed; no values are prescribed on the end surface 37% y-(x) 2 0, 
y+(x) = 0. With n = Vy+ on B+ and n = -Vy- on &?- we find 
8 = & (V, y*)a* to be positive definite on a+, negative definite on B-. We 
therefore may take p = /? on B+, p = -p  on a-. The boundary condition 
becomes 2pu = (,u-p)u = 0, i.e. G = 0 on B-, while no condition is im- 
posed on B+ since there p-p = 0. Evidently, property I11 obtains with 
P* = 1 on a*. Thus we are led to Cauchy's problem. 

Next consider an elliptic equation 
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and write it, as in Section I, in the form Ku = f .  On the boundary B of the 
region B? we then have 

Boo = - p ,  B o p  - - B vo = - f l y  9 Bvn = 0, v # 0, 2 # 0, 

where, as an abbreviation, we have set p = fiPnP. As in the introduction we 
set fi = q--q+ with q* > 0. The projectors Pk, Q+ are then given by 

The matrix p given by poo = p ,  pov = -pvo = -n, , pvh = 0, v # 0, 
R # 0, satisfies condition 111, provided f i  2 0. This last requirement is 
consistent with the requirement afiA/axA > 0 imposed in Section 1. Equation 
(p--B)u = 0 reduces to N~ = 0, i.e. to the "first" boundary condition d, = 0. 
The equation (p+P)u = 0 reduces to n,uv = 0,  v # 0. Hence requirement 
111, is satisfied. Also note that the matrix p is not symmetric. 

Suppose we want to impose the boundary condition +,+q4 = 0, where 
+n = nAghv ad,jaxv and q is a given positive function on L8, To recognize this 
condition as being admissible we write 

u * flu = -pd,a-2d,4bn 
= E2q-~I-'((d,n+ ( ~ - 4 1 4 ) ~ -  (4n+qd,)2)j 

- YU = [24-P1-1((~,+(P--4)d,)2+ (c+4+)2)* 

assuming 9 < 2q, and define the matrix p by 

Evidently requirements I11 are fulfilled. 

end of Section 1. The matrix B then becomes 
bynx- cyn, cyn, - bn, 

Suppose the boundary condition 4 = 0 or, in terms of the derivatives +x, 
4, , the condition $znv-+,ax = 0, is to be imposed on a section L8,, of the 
boundary a. In order to find out whether or not this condition is admissible, 
we write the quadratic form u flu as the difference 

Next consider the Tricomi equation, written in the form given at the 

1. ( cynx- bn, bnx-cn, 

24 ' Bu = (bYn,--Yn,)+~+2(cYlz,--bn,)+,d,,+ (bn,-Cn,)+: 
= (bit,+cn,)-l[ (b2--c2 Y) (n, +x-nx 4J2- (nZ-yn2,) (b+,+~+,)~l, 
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assuming bn,+cny # 0 on a, . Specifically we assume bnx+cn, < 0 on a, . 
We now see that the condition nv+x-nx4v = 0 is admissible on go if 

ba-c2y > 0, nz-ynt > 0 on go. 
We may then take as the matrix p the matrix defined by 

Requirements 111 are met, as is immediately verified. 
Consider specifically a region in the x, y-plane as indicated in the figure 

on page 334. We assume go and a,. to be such that n:-yn: > 0 on go, 
n: - yn: < 0 on a+ ; furthermore, we require b and c to be such that 

bnx+cn, < 0 on go, > 0 on a+. 
Throughout we assume b2-c2 y > 0. The boundary condition n, $x-nx & = 0 
is then admissible on 23, . Since B is positive definite on AY+ , we may take 
p = @ there, so that no condition is to be imposed on AY+ . 

For domains of the indicated type, under certain restrictions, the func- 
tions b = b, , c = c,(l+&y) with constant b, > 0, co < 0, E > 0, satisfy all 
conditions imposed. The peculiar character of the Tricomi equation, de- 
scribed in the introduction, is thus exhibited for such domains. 

Similar arguments can be given for the domain originally considered by 
Tricomi and variants of it, as follows from the work of Protter and Mora- 
wetz. 

An interesting question arises with regard to the uniqueness proofs using 
the functions b and c. Consider any region for which the uniqueness of the 
solution of Tricomi's equation can be proved under the condition 4 = 0 on 
a part go of its boundary. The question is whether or not this uniqueness 
can always be proved with the aid of two functions b and c. The answer is 
that this is not so, as was mentioned in the introduction [14]. 

In some of the cases where this is not possible, one may reduce the 
Tricomi equation with 4 = 0 on 9, in a different manner to a symmetric- 
positive system with an admissible boundary condition, namely by properly 
selecting three linear combinations of the four equations 

Then six functions will enter in place of the two functions b,  c. The method 
employed by Ou and Ding and by Protter may be so interpreted. 

We have mentioned these facts, since we wanted to emphasize that the 
theory here presented is essentially only a framework. This theory reduces 
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the aiaalytic question of uniq.ue existence of a solzction of a boundary value 
problem to an essentially algebraic q.uestion, namely to the question whether 
or not the problem can be transformed into that of a symmetric positive 
equation with admissible boundary condition. 

PART I1 

EXISTENCE. STRONG SOLUTIONS 

7. Differential Operator on a Manifold 

Before proving the existence of the solution of our boundary value 
problem, and its differentiability, we shall extend the notions involved in 
this problem to manifolds with a boundary. There is no loss of simplicity in 
this generality since in our existence proof, even for a domain of the type 
considered so far, the domain will be regarded as built up of patches just as 
a manifold. 

Specifically, we assume that the manifold W is covered by a finite 
number of patches Bof two kinds: “full”, or “interior”, patches-one-to-one 
images of the full sphere x: + * - * + .”, < R2-and “half”, or “boundary”, 
patches-one-to-one images of the hemisphere xf + + xi = R2, 
x, 5 0. The points in a half-patch 8 for which x: + * * + xk = R2, 
x, < 0, form the “inner” boundary of 8, those for which x, = 0 form its 
outer boundary. All outer boundary points form the boundary 9?l of 9. 

The closure of a patch 9 will be called a “closed patch” 9; the closure 

In the intersection of two (full or half) closed patches an identification 
transformation is assumed to be defined which possesses continuous second 
derivatives and a Jacobian bounded away from zero. Outer boundary 
points of one half-patch in such an intersection are to correspond to outer 
boundary points in the other half-patch. 

The characterization of the manifold here given implies that the normal 
vector on its boundary is continuous, while only piecewise continuity of the 
normal was required of the regions introduced in Section 1. The continuity 
of the normal seems to be essential for our method; our method does not 
extend itself automatically to manifolds with corners or edges. Still, by 
modifying our approach we can handle a certain class of problems involving 
edges such as Cauchy’s problem and the mixed problem of (symmetric) 
hyperbolic systems and certain problems for the Tricomi equation. This will 
be explained in Part IV. 

= g+&? of the manifold M will be called the “closed manifold”. 
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A remark concerning notation should be made here. In principle, 
of course, we should distinguish between the points x of the manifold 
and its representers {XI, - * - , z"} with reference to a patch. We also 
should distinguish between the function u(x) and its representer 
(ul(xl, - - - , xm), , uR(xl, - - , x")]; but we shall not do so. With ref- 
erence to a patch 9' under consideration we shall set x = {xl, * * * , xm} 
and u = (21, , - - * , uk}. The representers associated with a neighboring 
patch 8' will be denoted by f and G. 

The identification transformation in the intersection of two closed 
patches is to be given by functions ZA = Za{xl, * - , x"} in Q2. 

The connection between u and G is to be given in the form 

- 

with the aid of a matrix V = 
closed patches and possessing 
transformation 

where V' is the transpose of 

l;l 

21 = V 6  
V ( x )  E GI defined in the overlap of the two 
there an inverse in 6,. We introduce the 

V and 

is the absolute value of the Jacobian. We then require that P be the inverse 
of v, 

so that Y is orthogonal except for the factor dx/dZ. As a consequence of this 
requirement the expression u - udx l -  - dx" is invariant: 

Pv = 1, 

.u" . . . . dfm = % . dxl . . . ax", 
We now assume that, in each patch, matrices u p  and y are given which 

satisfy requirements I and I1 of Section 1 and possess continuous derivatives. 
In each half-patch we set y = xm and, accordingly, 

p = u"; 

we then assume that at  the outer boundary of the half-patch a matrix 
p = p(x l ,  - - * , xm-l) with continuous derivatives is given which satisfies 
condition I11 of Section 5, so that the boundary condition Mu = (p-p). = 0 
is admissible. The projectors P* and Q* defined for x" = 0, are required to 
possess continuous derivatives with respect to x1 , - - , zm-l. 

The transformation of the matrices u and y will be so chosen that Ktv = f 
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goes over into RZi. = f. For this reason, the set of matrices (a1, * - . , am> 
will be transformed essentially as a contravariant vector density: 

and the transform of y will be given by 

One verifies that then 

and that the transform of K is given by 
RZi. = VKG 

Note that symmetry of the matrices a (I) and positive definiteness of 
K+K’ (11) is preserved; in fact6, we have 

( K + K ’ )  = V ( K + K ’ ) V .  
The requirement that an outer boundary point y = xm = 0 of a half- 

patch corresponds to an outer boundary point in an overlapping patch 
implies the relation ai3m/ax. = 0 for ,u # m at A?. Therefore we have at g, 

Conespondingly, we stipulate that the matrix p at is transformed by 

and that P-+, Q* are transformed by 

Evidently, we have 
P A  = BP*V, & = PQ*V. 

- ag p+p’ = v - (p+p‘)V. 
aY 

Condition I11 is preserved, 

6As was observed by C. K. Chu, the same remains true even if the matrix P = V‘ dx /d j .  
does not satisfy the relation PV = 1. 

If one wants to work with an invariant form (u, u) even in such a case, one may set 

(zc, u) = X p  

where the positive definite matrices Y E Q are to be transformed according to 
? = PYV. 



364 K. 0. FRIEDRICHS 

The boundary value problem now consists in finding in each patch a 
function u = u(x )  satisfying the equation Ku = f there, and the boundary 
condition M u  = 0 on xm = 0 if the patch is a half-patch. On the intersection 
of two patches the functions u, f, G, f” should be related as described. 

We assume the existence of a partition of the identity, i.e. a set of 
functions q p ( x )  E E2 with support in the patch gP such that 

C v p ( x )  = 1. 
P 

We require a little more of the functions qp(x), namely that they are sup- 
ported by a sub-patch 2?p of the patch 8, characterized by the restriction 
x: + - - - + xk < R! with R, < R. 

With the aid of the functions q p ( x )  we define the inner products 
r r  

Evidently the first of these inner products does not depend on the coordinate 
sys tem. 

From the transformation formulas, one verifies the relations 
6. KGdz1 . . . d p  = v . K u d x l  . . . dxm, 

5 .  j@CdZl. .  . dgm-1 = v .  M u d x l .  . . dxm-1, 

where z) transforms like u; furthermore, 

G . ;C dzl . . . &m = 

. ps d z l  . . . d p - 1  = u. ruu dxl . . . dxm-l. 
. Kudxl . . . d p ,  

One then sees that the two basic identities hold just as they were formulated 
in Section 3. The same therefore is true of the basic inequality. Consequent- 
ly, the uniqueness theorem holds for manifolds. 

With the aid of the inner product (z), u )  we define a norm I lulj = (u, u)” 
and denote the associated Hilbert space by $j. 

The notion of weak and strong applicability of the operator K with the 
boundary condition M u  = 0 is then the same as in Section 4. 

6..L\ccording to  a remark made by  LI. Gaffney, we might have made the expression 
(u, ~ 6 ) ~  independent of the coordinates bydefining?! independently, e.g. such that  y = qp  z: 
near B: here the summation runs over all half-patches d and xm refers to a particular 
coordinate system in 9 

P P 
P ‘  
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8. Differentiability. A Priori Inequalities 

Suppose the solution of the equation Ku = f is in 6*, with f in GI , 
Then the derivatives V , a =  au/axA of u satisfy the differential equations 

which, together with Ku = f ,  form again a symmetric system of equations 
for the (m+ l)k functions (u, Vlu, - * , V,u}. Accordingly, one might try to 
derive an analogue of the basic inequality for the system {u, V ,  u, * * - , V, %}. 

There are two difficulties however. First, the matrix K associated with the 
new system does not necessarily have a positive definite symmetric part and 
we are, therefore, forced to impose an additional condition. Secondly, the 
system of derivatives V, u does not necessarily satisfy a homogeneous bound- 
ary condition of the form M u  = 0. 

The tangential derivatives, however, do satisfy a condition of this form. 
Using this fact, we can overcome the second difficulty by not employing all 
derivatives V,u, * a ,  Vmu, but by restricting ourselves to a set of differential 
operators which at the boundary 9 involve only differentiation in tangential 
directions. To this end we shall introduce a set of differential operators of the 
first order D, , c = 0, * * , nz, which in each patch 9 are of the form 

a 
ax* D , = d : - + d , ;  

here the numbers d i  and the matrices d, are functions in C& of the variables 
XI, 

In the overlap of two patches the relation u = VG should of course 
imply D,u = VD,S, in obvious notation, For convenience we include the 
identity among the operators D, ; specifically, we set Do = 1. 

The main property of the operators D, ,  i.e. the property that they 
involve differentiation only in tangential direction at the boundary, is 
expressed by the relation 

9 , xm defined in the patch 9. 

(1) d,“ = 0 at g. 

An operator D, having this property will simply be said to be “tangential”. 
Next we require that 
(2) the operators D, form a complete system of “tangential” operators 

at the boundary; i.e., that every operator of the form d7a/ax‘+d with d7 and 
d in 6 and for which d” = 0 at with reference to a boundary patch, is a 
linear combination of operators D, with coefficients in 6. 

Furthermore, we require that 
(3) the commutator of any one of the operators D, with the operator K ,  
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defined as [D, , K]  = D,K-KD, , should be a linear combination of the 
operators (0,) and of the operator K ;  i.e., there should’ be matrices fi: in Q 
and t, in GI such that 

[KI [D,, KI = p:o, + t,K. 
Finally, we require that 

(4) the commutator of any one of the operators D, with the operator 
M = p-i3 at the boundary 93 should be a linear combination of the opera- 
tors D, and M in such a way that there exists a matrix q: so that 

[MI 
where the matrix tf is connectedwith the matrix t, which enters requirement 
(3) by the formula 

where 

[DUB MI = q p p  + t:M 

tf = t, + a, 

The reason for introducing this matrix will be made clear in Section 9. 
Note that for zc E (& the operator D, can be applied on the function Mzc, 

defined only on the boundary 93, since there D, involves differentiation only 
in a tangential direction. 

The identities postulated here represent actually only relations between 
the coefficients of the operators involved and their derivatives; but they 
may be regarded as operator identities when applied to functions u in Q 2 .  

The commutator relations [K] and [MI can be written in a different way. 
To this end we introduce “compound” systems u = {a,} of functions 

zc, , , - - in the same number as there are operators D ,  . Then we intro- 
duce an operator K acting on such systems by 

1 

1 

K U  = {K%, ++:a,). 
1 1  

To this operator we assign the boundary operator M by 
1 

M u = ( M u ,  + q:.,). 
1 1  

Furthermore we introduce the operators D and D-t by 

Du = {D,u}, (D--t)% = { D , u - t p } ;  
they transform simple systems zc into compound systems. The commutator 
identities [K] and [MI can then be written in the form 

’Since the final inequalities do not depend on the derivatives of t, it is perhaps possible 
to eliminate the requirement that t in L l  be in g1. We shall not attempt to  do so. 
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(D-t)K = K D ,  
1 

(K) 

(D- tg )M = MD. (M) 1 

The operator K corresponds evidently to a symmetric system with U P  and B 
1 1 1 given by 

apu = ( x ~ u , ) ,  Bu = {@,}. 
1 1  1 1  

Clearly, M is an associated boundary matrix. The corresponding matrices 
1 

K and p are given by 
1 1 

Kt.6 = (w, + g U 7 ) ,  
1 1  

y y  = {P, + 
We now impose the additional conditions that 

K+K’ should be positive definite, 
1 1  

(5) 
and that 

p +p’ should be non-negative 
1 1  

(6) 

so that the conditions I1 and 111, are satisfied for K and M .  We shallrefer 
to these conditions as I1 and 111,. 

A set of differential o$erators D ,  associated with a differential operator K 
and its boundary operator M w‘ll be called “satisfactory” if it satisfies the 
conditions (1)  to (6). We do not require admissibility of the boundary 
matrix M .  

At the end of this section we shall show under which condition a satis- 
factory set of operators D, exists. At present we shall derive a basic inequal- 
ity for the derivatives D,.u of a function u which admits K and M .  

To this end we apply the “second identity” of Section 3 with K, M ,  K ,  p 

to the compound system u = Du = {D,u)  derived from a function ~ ( z )  in 
6, which satisfies the boundary condition M u  = 0. We find 

1 1 

1 1 

1 

1 1  1 1  

1 

(Du, K Du) $- (Du, p D u ) ~  = ( D u ,  K D u )  + (Du, M D u ) ~  
1 1 1 1 

= ( D U ,  (D-tt)Ku) + (Dzl, p - t q M z t ) g  
= (Du, (D- t )K%)  5 IIDuI~ ~ ~ ( D - ~ ) K u ~ ~ .  

With a constant c so chosen that \lu112 = (u, u)  5 c(u, K U )  we then have 
1 1 1 1  1 1  1 1  
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Since Do = 1 is contained among the (D,} we can find a constant c l ,  viz. 
c1 = [l+max It]]c,  such that 

1 

llDf4l 5 ClIIDK4I. 

This is the basic inequality for the system {D,.u}, to which we shall also 
refer as the “direct a priori inequality”. 

Note that we have not used requirement ( 2 )  in deriving it; this require- 
ment will be used only in Section 9. 

We proceed to investigate the circumstances snder which a set of “tangew 
tial” operators D ,  exists, which satisfy requirements ( 2 )  to (6). 

First we shall show that one can always find a system of operators D, 
which possesses the completeness property ( 2 ) .  In each interior patch one 
may take the operators 

where q(x) is the function assigned to the patch in a partition of unity. In 
each half-patch one may take the operators 

The operators thus assigned to all patches forming the manifold %’ may 
then be taken as the operators D,  for u # 0, in addition to Do = 1. 

In the overlap of any two (full or half) patches the operators 
a/axl, - - , a/axm-l and a/axm or xm a/axm, respectively, associated with the 
two patches, can be expressed linearly in terms of each other. Using the 
identity 1 = & q p  we, therefore, can express any of these operators as linear 
combinations of the D,. From this fact one immediately infers that require- 
ment ( 2 )  is met. 

The existence of a complete set of tangential operators D, which has the 
commutator $ro$erty (3) will be shown only under the condition 
(3J In every boundary patch, matrices o, , * * * , om-, tl , * - - , zmW1 in Q 
exist such that the relations 

hold for I = 1, * - * , m-1. 
As before we take the operators defined in interior patches by (3) into 
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the set of operators D, ; but we modify the definition (49) of the operators 
assigned to the half-patches and take them as 

Setting t A  = ~ ( t A f o A ) ,  we observe that 

whence relation [D,, K ]  = 9; D+t,K for D, = q(a/axA+aA) follows by (A) 
with t, in place of t ,  . For the operator qxma/axm the same relation follows 
from 

with -q in place of t,. 
To verify the commutator property (4) we need only make use of the 

fact that the operators D, involve differentiation in a tangential direction at 
the boundary. Therefore, D, is applicable on M u  = (p-p)u ,  although p is 
defined only at g. Since the operator [D, , M]-i!fM does not involve any 
differentiation, it is a matrix and can be written in the form q$D, = with 
q: = 0 for p # 0. 

Thus we have shown that operators having properties ( 1 )  to (4) exist 
if matrices oI , tA exist for which (A) holds. 

Such matrices a,,, t,, do always exist in a half-patch if the matrix urn 
has an inverse in the closed half-patch; in fact in this case we may take 
uA = 0. However, the existence of this inverse is not necessary. Matrices 
uA , tA always exist if the matrices urn, at different points of the half-patch, 
are equivalent, i.e. if there exists a matrix W = W ( x )  in GI with an inverse 
W-l(x) ,  in the closed patch, such that 
(W) am(x) = W(x)am W'(x)  
where am is independent of x. Here W' is the transpose of W.  Then we may" 
simply take 

aw 
ax 

tA = 7 W-I and = t:. 

8In this case we map even assume constant to begin with, and set ra = ui = 0. This 
corresponds to an  approach suggested by P. D. Lax. 



370 K. 0. FRIEDRICHS 

Condition (W) implies that the matrix am-and hence the operator 
on represented by urn in 8-does not change its “inertial” type along the 
boundary. This is a severe restriction, which-or at least condition (A) 
-seems to be required by our method. 

In the construction of the operators D, with the properties (1) to (4) we 
have essentially made use of the assumption that the boundary of the mani- 
fold has a continuous normal, implied by the assumption that the neighbor- 
hood of the boundary can be covered by half-patches. It is only for this 
construction that this severe assumption was made. If operators D, satis- 
fying (1)  to (4) could be found for a manifold whose boundary has rims or 
corners, our theory would apply. 

On occasion we shall modify the set of operators D, by multiplying all 
of them except Do by a constant factor chosen small enough so as to attain a 
particular aim. We then shall say that we make the operators D, , cr # 0, 
“sufficiently small”. In this way, for example, we can achieve that the 
coefficients p z ,  and t ,  entering the two commutator relations in (3) and 
(4) are as small as we wish. 

Our next question concerns the conditions (5) and (6) requiring that the 
new matrices K and ,u be positive definite and non-negative. 

In the introduction we have described a case in which one can verify 
explicitly that the differentiability statement does not hold unless a con- 
dition similar to K+K‘ > 0 is added to the condition K+K’  > 0. Accordingly, 
we take the attitude that the condition ( 5 ) ,  K + K ‘  > 0, i s  imposed as a n  addi- 
tional requirement. It should be mentioned, however, that it is sufficient 
that the quadratic form U’KU’ with u‘ = (0, ul , * * .> be positive definite. 
For then, one can make sure that condition ( 5 )  holds by making the operators 
D, “sufficiently small”, i.e. by replacing D, by ED, for 0 # 0. Evidently, 
the factor E can be chosen so small that a ~ a  becomes positive definite. 

As to the boundary matrix ,u, let us first assume that the matrix ,U is 
positive definite. Then again one may replace D, by  ED^ for 0 # 0 and 
choose the factor 8 sufficiently small. 

If the matrix ,LL is not positive definite, the argument just given applies 
provided an inequality u f a  < c(u,uu) obtains. Otherwise, the condition (6)) 

l7 ,1,= 1 1  
that be non-negative mus t  be imposed as a n  additional reqidirernent. 

1 1 

1 1  

1 1  

1 11 1 

111 

1 

1 

9. Dual Inequality 
Having established the a p r i o ~ i  inequality for the differential operators 

D,z.c, one may be inclined to believe that a solution u exists possessing 
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derivatives, for which this inequality holds-at least if the notion of solution 
and derivative is understood in a sufficiently general sense. Such a belief is 
supported by the experience in analysis -in particular since Schauder’s 
work. 

For elliptic equations one has constructed such solutions in different 
ways making specific use of the elliptic character of the equation. For 
Cauchy’s problem for hyperbolic equations three methods have been used. 
In the first method one approximates the coefficients of the equation and the 
initial data by analytic functions, and proves that the solution of the so 
modified problem, obtained from Cauchy-Kowalewski’s theorem leads in the 
limit to a solution of the original problem. In this proof one employs the 
a priori inequality. It seems impossible to extend this approach to the 
problem of general symmetric-positive equations. In the second approach 
one approximates the differential equation by finite difference equations in 
such a way that the basic inequality and the a priori inequality carry over, 
and proves that the solutions of the finite difference equation problem con- 
verges to a solution of the differential equation problem. Such an approach 
can probably be developed for our problem. The third approach due to 
P. D. Lax, involves nearly exclusively tools of Hilbert space theory; it was 
used by Lax for symmetric hyperbolic systems and elliptic equations and, in 
a modified way, by GBrding for general hyperbolic equations. This third 
approach can be adapted to the present problem. 

In his method Lax employs a new a prior; inequality, called “dual” 
inequality by GBrding, which involves the concept of norm of negative order, 
suggested by notions introduced by L. Schwartz, We shall discuss the 
modifications needed to adapt these tools to our problem. 

To explain the concept of negative norm let us introduce as norm of 
order 1 of the function tx the norm of its derivatives 

defined for all zt in 6,. In a standard manner we extend the space 6, to a 
space Sj, in which the strong extensions of all operators D, are applicable 
and which is closed with respect to the norm I /  11, . 

The norm of order - 1  of a function v c 5 j  can be defined in two ways. 
The “abstract” definition is 

where the functions 21 are restricted to &.  The inequality 
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implied by this definition will be referred to  as the “generalized” Schwarz 
inequality. 

introduced here differ from those employed by Lax 
inasmuch as we restrict the operators D ,  to tangential operators, while he 
uses all differentiations a/axl, - * , a/axm. 

The closure of the space fj with respect to the norm I I I [ -l was first intro- 
duced by L. Schwartz, [ 2 ] .  The norms 1 1  Ilrts-in obvious notation-were 
also employed byg Leray [3]. 

is more suitable for our 
purposes. 

The notions 1 1  

The “concrete” definition of the norm 11 
To explain it we must introduce the operator 

which involves the adjoints 

of the operator D ,  . 
If one writes the operator D* - D in the form 

D * . D = l + Z D ~ D ,  

one recognizes that it is a natural generalization of the operator 1 -cA where 
A is the Laplacian. By virtue of the completeness property (2) of the set of 
operators D, , the operator D* - D is elliptic in the interior of W but not at 
the boundary B1 since no normal derivatives at the boundary enter its 
definition. This defect is advantageous since it makes it unnecessary to 
associate a boundary condition with the operator D* * D. 

We shall make essential use of the fact that the operator D* 9 D possesses 
an inverse. Specifically, we state 

THEOREM 9.1. To every function v in fj there exists a function V“ in Q1 

such that the relation 

,it0 

D” - DV” = v 
holds in the weak sense. I.e., for every u in Ql the relation 

(D5, Du) = ( Y ,  U )  

holds. 

@The analogue of the “dual inequality” for Cauchy’s problem of a hyperbolic equation 
is contained among a number of inequalities which Leray formulates, see Lemmas 88.1 and 
88.2. However, Leray deduces these inequalities from an existence theorem, derived with the 
aid of the Cauchy-Kovalevsky Theorem. Lax proceeds in the opposite direction and derives 
an existence theorem from a dual inequality. 



SYMMETRIC POSITIVE SYSTEMS 373 

This theorem, called Theorem 12.1 in Section 12, and various other 

Using the inverse of D* ’ D we may introduce the norm I (  (I-, simply 
statements about the solution v“ , will be proved there. 

by the formula 
l l~ l l -1 = I l ~ l l l  = IIP* * D)-1411 * 

This is the “concrete” definition of the norm of order - 1. Using this defini- 
tion we find for u in $j1 the inequality 

(8, .) d 11Dq1 IlDUll, 

(7A 4 I Il~ll-lll4ll ; 
which is nothing but the generalized Schwarz inequality 

this shows that /lvl/-l is an upper bound for (v, zd)/ljuII1. Since the bound 
is assumed for u = ij, it is seen that the abstract definition of 1 1  agrees 
with the concrete one. 

The notions introduced here again differ somewhat from those em- 
ployed by P. D. Lax. Where he takes the Laplacian operator, we take the 
operator - zu+O D,* D ,  , which may be regarded as a “clipped” Laplacian in 
as much as the normal derivatives along the edge have been eliminated. 

In terms of the notion of norm of order 1 one may evidently write the 
direct a firiori inequality of Section 8 in the form 

11u11, 5 clllKu(l, if Mu = 0. 

The dual inequality of P. D. Lax, adapted to our problem, may now simply 
be written as 

11v11-, 5 c-,lIK*vj/-, if M*v = 0, 

in terms of the norm 1 I 1 I-, of order - 1. Specifically, we state that a number 
c-, exists such that this inequality holds for all functions ZI in C$ . We have 
written the inequality in terms of K* and M* since we need i t  in this form; 
of course, it holds just as well for K and M .  

The proof of this dual inequality is the major piece of the present work. 
In this proof we employ the operator 

which is similar to the clipped operator D* - D,  but involves the operators 
D,-t, introduced in Section 8. The operator (D-t)* - D is not self-adjoint 
as is D* * D,  but its leading part is. As we shall show in Section 12 an ana- 
logue of Theorem 9.1 (12.1) holds (Theorem 12.2) which we shall formulate 
here as 
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THEOREM 9.2. To every function v in .@ there exists a function 6 in a1 such 
that the relation 

holds in the weak sense; i.e., for every u in Ql the relation 

holds. 
Here it is assumed that the operators D,, 0 rf 0 are chosen “sufficiently 

small”, in the sense explained in Section 8. 
We need stronger statements however, which we formulate in Theorems 

9.3 to 9.6. These theorems refer to an arbitrary function v in Gl and the 
solution B of the equation (D-t)* * DO = v, which exists according to 
Theorem 9.2. 

THEOREM 9.3. The functions 6 and DG admit the operators K and K in 
the strong sense. 

THEOREM 9.4. The function KO admits the operator D (strongly) and the 
identity (D--t)K6 = KDG holds. 

The next statement will refer to the boundary values of the functions 
$ and DB. We first introduce the space Qg of functions auI defined on .92 which 
is complete with respect to the norm given by 

(D-t)* * DO = v 

(DO, (D- t )u)  = (v ,  U )  

1 

1 

We then say that a function u admitting the operator K strongly has bound- 
ary values ug (in Qa)  if a sequence uv in Gl exists such that 

j l ~ ” - ~ / j  + 0,  IlKu”-Ku/l -+ 0,  IIUy-aglIg + 0. 

In the following we shall suppress the subscript 97. We then formulate 
THEOREM 9.5. 
As an evident consequence of this fact, the second basic identity of 

The functions B and DB have boundary values. 

Section 3 holds for 6 and for DG. Thus in particular 

According to identity (K) ,  which holds by Theorem 9.4, we have 
( 0 6 ,  KD6)  = (DG, (D-t)KG). 

1 

In view of identity (M) it is tempting to assume that similarly the relation 
(Dd, MD6) ,  = (DB, ( D - @ ) M q g  

1 

holds. 
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Furthermore, since (D--t)* - D6 = v ,  we have 
(DB, (D-t)KB) = ( v , K ~ ) .  

It  is also tempting to assume that a similar operation can be performed 
on (Dv", (D-tB)M$),  since the operator D is purely tangential on L% and 
therefore might be regarded as a differential operator acting on functions in 
Sjg, The adjoint of the operator (D-t,), when so regarded, is however not 
the operator (D-tg)* since the definition of the operator D* involves con- 
tributions from the terms dm ajaxm, which vanish on g. A little consideration 
will show that the adjoint of (D--tg) with respect to A9 is just the operator 
(D-t)*. As a matter of fact, the definition tg = t+d of tg given in Section 8 
was chosen so as to achieve this result. Accordingly, one is led to assume the 
identity 

(D4, (D--t")Mi), = (v ,  M i ) a .  
The results of the two operations performed on A9 are formulated as 
THEOREM 9.6. The identity 

(06, M D i ) ,  = (v, MO), 
1 

holds. 

section. Assuming their validity we can state the identity 
We shall give the proof of Theorems 9.3 to 9.6 somewhat later in this 

if M* v = 0. In the last step we have made use of the first basic identity of 
Section 3, which certainly holds for v in El since 6 has boundary values in the 
sense described above. 

It is now easy to derive the dual inequality from the last identity. 
From the positive definiteness requirement imposed on K and ,D in 

1 1 Section 8 we may infer that there is a constant c such that 
I 

/lD6]12 I c ( K * v ,  6). 
1 

From the generalized Schwarz inequality we have 

(K* v ,  q 5 IIK" vll-11I~111 ' 
Thus, we obtain the inequality 

IlD$Il r ;IIK*V//-l * 

This is not yet the desired dual inequality which involves = I(DGl( 
in place of I1Dd11. We estimate I ID51 I in terms of I ID611 as follows. First we 
have 
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11~111 * - - (D5, Di7) = (u, 5) = (DB, (D--t)i7) 
5 llD4 I [ I  ID51 I + ~ l l v " l l l  
5 P+~)ll~lllll~lll , 

llvll-1 = Ildll l  5 (l+~)ll4ll 
where t is a bound of It[. Hence 

and thus we obtain, with c- - c.(l+z), the desired dual inequa1ity:lO 

condition M*v = 0, the inequality 

holds. 
We proceed to supply the proofs of Theorems 9.3 to 9.6 by reducing 

them to various theorems which will be proved in Part 111. Before we can 
formulate these theorems we must introduce a class of differential operators 
E = {E,} given by 

l - 1  
THEOREM 9.7. For any function v in GI which satisfies the boundary 

Ilvll-1 < = c -1 lIfr'"v1l-1 

- 
d 

E ,  = e: __ -l- e, 
axA 

with reference to  a patch in terms of numbers e$(x)  and matrices eT (x )  in El. 
The system (E,} is required to be complete in the sense that every operator 
of first order with coefficients in 6 or El is a linear combination of the E ,  
with coefficients in E or Q1 , respectively; also it is assumed that E, = 1. We 
then formulate the following 

SUMMARY OF THEOREMS 12.4, 13.2, 16.1, AND 16.2. 
Suppose the function v admits the opeyator E (strongly) and let 6 be the 

1) The functions 6 and DB admit the operator E and E6 admits D. 
2) Let the matrices $ be such that for all Q, t the identity 

solution of the equation (D-t)* - DV" = v. Then:  

(DU E T - E ,  D U ) w  = P $ T  E p  

holds for all w in E2, then it holds for w = B. 
3) The functions 6 and DV" possess boundary values. 
4) There exists a function a" in 6, for every z, > 0 such that 

(w, a"w)  + (w, 4 s  , 
(w, (hau)w)g -+ - (w, dw), , 

as v -+ 0 for all w in Q ( E ) .  Here d = (a,} stands for the set of numbers 
du = ad7/axm as described in Section 8 and D: = e;ajaxn in a patch. 

10 A somewhat shorter reasoning. involving constant matrices am in boundary patches, 
was suggested by P. D. Lax, cf. footnote 8, page 369. 
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I t  is easy to derive Theorems 9.3 to 9.6 from these statements. 
Since the operators E ,  are complete, the operators K and K are linear 

combinations of them. Since the functions DV" and d admit E strongly, 
it follows that they admit K and K strongly. Thus Theorem 9.3 follows. 

Since Ed admits D strongly the same is true of el. Evidently, the 
expression -4, = (D,--t,)K-KD, is a linear combination of the expressions 

1 

1 

1 

B,, = D, E,-E, D,-P~, E ,  . 

Hence B,, G = 0 implies A ,d = 0. Thus Theorem 9.4 follows. 
Theorem 9.5 is the third statement of the Summary. 
To prove Theorem 9.6 we first extend the matrix M ,  defined on into 

the interior. We can do this by first extending M for each patch as a function 
u p  in its interior which vanishes outside of a neighborhood of -99 and then 
setting M = zpqpup .  Next we define the matrix M in 92 by 

1 

MW = Mw+-[(DM)-Md-tgM]wo, 
1 1  1 

where d = (d") is the matrix entering the definition 

This matrix agrees with the matrix M introduced through (M) in Section 8. 

Evidently, we have M D  = (D--ta)M and hence the identity 
1 

1 

(DG, o"MD6) = (DG, ou(D--t9)Mi) = (v, a"hft?)-((D$, [d+(f i@)]MG).  
1 

From the two statements of item 4 we then deduce the relation 

(DB, MD6) ,  = (v ,  M d ) ,  
1 

which is the statement of Theorem 9.6. 

10. Existence of Differentiable Solutions 

Having established the dual a priori inequality we can prove that a 
weak solution exists which admits the operators D, . We need only follow 
the reasoning used by P. D. Lax for symmetric hyperbolic systems. 

To every function v E 6, satisfying the boundary condition M*v = 0 
we assign the function w = (D* - D)-1K* v which exists by Theorem 1 of 
Section 9 and belongs to the space ; i.e., w admits the operators D, strong- 
ly. I t  is to be observed that w = 0 implies K* v = 0 and hence v = 0, in view 
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of M* v = 0 and the uniqueness theorem which holds for v in C& when employed 
for K* and M*. Consequently, the function v is assigned uniquely and 
linearly to the function w. The inner product (0, f )  of v with a function 
f E Sj may therefore be regarded as a linear form in w, 

We now assume f E Sjl . Then we may apply the generalized Schwarz 
inequality and the dual inequality (see Section 9 for both) obtaining 

with c, = c-l]lflll . By definition of w and of the norm 1 1  

Hence we have 

In  other words, the form I ,  is bounded with respect to the norm [ I  I l l  ; it 
therefore could be extended to a bounded linear form defined in all of Sjl . 
In any case it follows from this boundedness that a function u E Ql exists 
such that the relation 

holds for all functions w. 

we have 

[IK*vll-, = li(D* * D ) - l K * ~ I [ l  = llw[ll. 

IIl,(w)lI 2 C , I l ~ l l l  * 

( v ,  f )  = I,@) = (Dw, Du) 

(v ,  f) = (K*vv, u), 
Since D* * Dw = K*v, this relation becomes 

valid for all v in B, with M* ZI = 0. In the terminology introduced in Section 4, 
this means that the function u is a solution of the equation Ku = f with 
Mu = 0 in the weak sense. Thus we have proved 

To every function f in Sj, the equation Ku = f with the 
boundary condition M u  = 0 possesses a weak solution u which also belongs 

LEMMA 10.1. 

to @,. 
Since the relation 

(Ow, Du) = I f  (w) 5 C t l  1wl I1 = c-11 If1 Ill Iwl I1 
holds for all w in $jl, we may set w = u obtaining the 

COROLLARY TO LEMMA 10.1. The solution u obeys the inequality 

ll4ll 5 c-lllflll * 

Our next aim is to show that the weak solution of Lemma 10.1 is also a 
That means we want to construct to this solution u a strong solution. 

sequence of functions u’(x) in Sjl such that the relations 

l I ~ ” - - u I l  -+ 0, 
IlKu”-flI -+ 0, MU” = 0 (S 1 

hold as v --f co. 
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We maintain that it is sufficient to construct for each patch gp a 
sequence of functions $(x) in 6, such that the relations 

hold as v + co, where 5, stands for any function in 6 with support in the 
subpatch 2, of 9,. We recall that the functions qp(z), which form a parti- 
tion of unity as described in Section 7, were assumed to have their supports 
in this subpatch 2p .  

To show that it is sufficient to construct such functions u;(x) we set 

a’ = x p  7pu; 

ZPjGP = 0 

Kfb”-f = 2, ( K v p $ + ? p f )  = z p  r p ; - - f 1  + 2, (hp)(~;-4> 

and then prove that relations (S) hold. From the relation &,, = 1 we have 

where K is the operator which, with respect to a patch, is represented by 
K = zA aA a/axA. Consequently, we have 

MZL” = ‘& Mqp$  = 2, vpMul;, . 
Applying relations (S,) with 5, = qp and rP  = Kq, we may conclude that 
relations (S) hold. 

For an interior patch Bp the existence of an appropriate sequence u; is 
implied by the theorem that any weak operator of first order is strong [l]. 

I t  is therefore sufficient to prove a corresponding statement for each 
boundary patch. To this end we make use of the completeness assumption 
(2) made in Section 8. Since in every boundary patch B each differentiation 
a/axA, 3, = 1, - * , m-1, is tangential, it is a linear combination of the tan- 
gential operators D, by virtue of this assumption. In particular, therefore, 
the operator 

represented in the patch by 

is such a linear combination: 
R = = = 6 , D i .  

Since the weak solution ZI of Theorem 10.1 is in &,  it admits the operator 
D, strongly and therefore admits the operator I? strongly. Consequently, the 
relation 



380 K. 0. FRIEDRICHS 

holds for every function u E &, which satisfies the boundary condition 
M* v = 0 and vanishes at the inner boundary of the half-patch 8, From the 
fact that z t  is a weak solution we therefore may deduce the relations 

withf = f - l ? ~ ,  for all functions ZJ in g1 with M* ZI = 0. Thus, the statement 
to be proved has been reduced to the identity of the weak and the strong- 
essentially one-dimensional-differential operator p a/ay with the boundary 
condition (p--p)u = 0. 

We may prove this identity in different ways. We find it convenient to 
employ reflection at the boundary, y = 0. We introduce the reflected half- 
patch @* consisting of all points (xl, - - . ,  zm-l, y) for which the point 
(XI, - - , xm--l, -y) is in 9'. We then continue the functions u and f into the 
half-patch 8* by continuing P-u and Q+f as odd functions, P,u and Q-f 
as even functions of y. Here P* and Q* are the projectors introduced and 
discussed in Section 5, extended into the half-patches 9 and 8* independent- 

Let w be an arbitrary function in defined in the full patch, 8+8*, 
assumed to vanish at the interior boundary of the half-patch and its image. 
We maintain that then the relation 

ly of y. 

holds. Note that w need not satisfy a boundary condition on y = 0. 

original patch y by setting 
To prove this relation we transfer the functions defined for y > 0 to the 

w*(y) = w(-y) for y 5 0 
and, similarly, 

.*(Y> = 4-Y) = (P+-P-)U(Y), 
S*(Y) = f ( - ~ )  = (Q--Q+)f (Y) .  

The contribution from 9'" to the left member of relations (B) then becomes 

- (" BzP)*, (P+-P-) ) + ( ~ * 1  (Q--Q+)f )  9 

aY 
where the integration is to be performed over the original half-patch 8. We 
now make use of the fact that the operators Pk are independent of y. 
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Furthermore, we use the relation Pip = pQ; , mentioned in Section 5. The 
contribution from B* then reduces to 

In terms of the function 

v = W+ (QL-Q;)w*, 
we may write the left member of (B) in the form 

and thus identify it with the left member of relation (Bo). Since w is con- 
tinuous in B+9*, we have w* = w on the boundary y = 0 and hence 
v = 2Q’- w there. Because of Q- Q+ = 0 (see Section 5) v therefore satisfies 
the boundary condition 

M*v = 2flQkv = ~ / I Q ; Q I w  = 0. 

Consequently, relation (B) follows from relation (B,). 
Now we are prepared to construct functions G: for which relations (S,) 

hold. 
Relation (B) implies that the function zd in B+B* admits the operator 

palay in the weak sense with the result 16 aulay = f. Since the weak operator 
is strong, one knows that there exists a sequence zc’ in LTl such that 

In order to attain Mu” = 0 we shall choose the functions uv in a special 
manner. 

!A7e introduce mollifiers J’ with kernels j’(x-x’).  We may choose the 
kernel j”(x-z’) such that as a function of z’ it has its support in B provided 
z lies in 1. Also i”((x-x’) should be even in y-y’. Then we set 

u”(z) = J’P-u(s)+P+J”(x) 
for z in 3’. Since P- u is odd in y and j v ( x - x ‘ )  is even in y-y‘, the function 
J” P-zd is also odd in y and hence vanishes on y = 0. Therefore, since 
P- P+ = 0, we have P-zd” = 0 and hence Mu” = 0 on a. From the proper- 
ties of J v  we conclude Ij~(J’P_u-PP_u)II-tOand ll~(P+Jyu-P+u)II+-O, 
whence ~ / ~ ( G ~ - - U ) ~ ~  + 0. 

Next we observe that Bau/ay = f in the weak sense implies 
Q+B aulay = Q+fin the weak sense since Q+ was assumed in 6,. Hence, from 
the known properties of Jv, 
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or, since Q+p = pP, and P, is independent of y ,  

Furthermore we observe that P-u admits the operator Bajay  in the weak 
sense with the result B a P - u l a y  = Q-f, since We have 

= (- a pv, P-u)  
a Y  

for v in GI with support in 9. As a consequence, 

Thus we obtain the desired relation 

Since the function p admits the operators D ,  strongly, the relations 
1 1 5 ‘ P , ~ y - ~ o ~ ) l I  + 0 

IIi.(Ru.-Ru)II -+ 0. 

IIc(KUY-f)II -+ 0. 

hold and, consequently, also 

Because of K = /I a/ay+l? and f = f+au we finally have 

At  the same time we have 
~ ~ ~ ( u y - u ) ~ ~  + 0 and Mu” = 0. 

Thus, with B = PP and uv = u i ,  we have established the relations (S,) 
as desired. 

Using the terminology introduced in Section 8, we summarize the result 
in 

THEOREM 10.1. Suppose the operator pair  (K ,  M )  possesses a satisfactory 
set of operators D ,  . T h e n  for every f in the space Ql there exists, in Q1, u strong 
solution u of the equation Ku = f with the boundary condition Mu = 0. T h e  
solutioit u obeys the inequality 

This theorem combines an existence statement with a differentiability state- 
ment. 

l l 4 l l  5 c- l l l f l l l .  
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11. Existence of Strong Solutions 
In establishing the existence of a strong solution u of the boundary value 

problem it was also shown that this solution possesses strong first derivatives 
D,u. This result was paid for primarily by requiring that the matrix K 

associated with the operator K be positive definite. 
In this section we shall show that the existence of a strong solution is 

independent of this assumption. 
We require of our operator K that the matrices up and p involved have 

those properties that are implied by the conditions (1) to (6) imposed in 
Section 8, except condition (5). A simple way of formulating this require- 
ment is this: 

The symmetric positive operator K and the associated boundary operator 
M should be such that with the operator K+b together with M a satisfactory 
set of operators D, can be associated provided the positive constant b i s  chosen 
large enough. Then we shall prove 

THEOREM 11.1. Under the assumption just stated, the equation Ku = f 
with the boundary condition Mw = 0 possesses a strong solution for each f E $. 

We prove this theorem by the contimation method. We connect the 
operator K = KO with the operator K+b = Kl by the set of operators 

for which the matrix 

1 

1 

K ,  = K+Ab, O l A l l ,  

K~ = K+lb 

evidently satisfies requirement 11. 
We shall use the following two lemmas. 
LEbihIA 11.1. Let K and K+(  be two symmetric positive operators differing 

only in the matrix 5 E (5. Then a strong solution u of (K+S)u = f with M u  = 0 
for f E $ i s  a strong solution of Ku = f-cu with M u  = 0. 

This follows from the fact that the sequence in O1 which approximates u 
as required for a strong solution of the one problem, see Section 4, evidently 
may serve as approximating sequence for the other problem. 

LEMMA 11.2. Let u” be a sequence of strong solutions of Kzi = f” ,  M u  = 0, 
where K i s  symmetric positive and f ’  E @ cowverges to a function f E $, i.e. 
I l f ” - f l l  + 0 as v -+ co. Then  there exists a strong solution of the problem 

This follows from the fact that out of the approximating sequence in 0, 
associated with each uv a sequence can be extracted, converging to a limit 
function ti, which evidently is a strong solution of Ku = f ,  M u  = 0. 

K e  now consider the set 9’ of values A in 0 5 1 5 1 for which the 

KU = 1, MU = 0. 
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problem K,u = f ,  M u  = 0,  has a strong solution for every f E @. We then 
prove 1) 1 = 1 is in this set, 2) the set is open, 3) the set is closed. 

1) Since the operator Kl satisfies the requirements of Section 8 by as- 
sumption, a strong solution u of Klu = f ,  Mu = 0, exists provided f E Q1 , 
The last requirement can be eliminated. To this end one may approximate 
any f E 8 by a sequence f’ E Q1 such that I l f” - f l I  + 0 as v -+ 00 and let u” 
be the corresponding solution. Then Lemma 11.2 yields the desired result, 
namely that iz = 1 is in 9. 

The equation 
Khu = f ,  M u  = 0, may be re-written as 

2) Let A,, be in 9’ and set iz = izo+dA, K~ = K ~ + ~ K .  

KA0% = f -dKUu,  MU = 0, 

and solved by iterations provided 8~ = bd1 is taken sufficiently small. This 
follows immediately from the basic inequality for KAo and Lemmas 11.2 and 
11.1. Hence the set Y is open. 

3) Let the sequence A,, be in Y and converge to do. Let u” be the cor- 
responding solution of K,u = f ,  M u  = 0. Lemma 11.1 then implies that 
u’ is a strong solution of K,,U = f-dK,U’.  Clearly lIuuy1j is bounded inde- 
pendently of v so that f - d K , u Y  tends to f .  Hence Lemma 11.3 yields a strong 
solution of KA,u = f ,  Mu = 0. I.e., the set Y is closed. 

Since, as a consequence, I = 0 is in the set 9, Theorem 11.1 is proved. 

PART I11 

THE CLIPPED LAPLACIAN 

12. Basic Theorems 
We like to refer to the operator - Z,+,,D:D, as the “clipped” (general- 

ized) Laplacian in as much as it differs from a generalized Laplacian zA, ,, a/axA gAu a/ax’ by the absence of normal derivatives along the edge. The 
operator -D* - D = -1- z5,0D,UD, should then be called “augmented” 
clipped Laplacian. 

Our aim in this section is to establish various properties of this clipped 
Laplacian used in the preceding sections. The first of these was formulated 
in Section 9 as Theorem 9.1: 

THEOREM 12.1. To every function v in @ there exists a function 5 in 8, 
such that the relation 

D*DG = v 
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holds in the weak sense. I.e. ,  for every u in $jl the relation 

holds. 
To prove this theoremll it is sufficient to note that the form (v,  u) ]  

generated by any v in Q, is bounded with respect to the norm jlzdl( and 
hence with respect to the norm \lulll 2 1 1 ~ 1 )  for u in Q1. Therefore, since 
Q1 is closed with respect to 1 1  I l l  , a function v" E Q1 exists such that 
(v, u) = (DV", Du), so that V" is a weak solution of D* * DV" = v. This is the 
statement of Theorem 12.1. 

(DC, Du) = (v, U )  

Theorem 12.2 (Theorem 9.2) refers to the operator 

(D-t)* - D = Ca(Du-tLr)* Du 
which is not self-adjoint, but whose leading part involves the clipped 
Laplacian. 

THEOREM 12.2. To every function IJ in $j there exists a function 6 in Q1 
such that the relation 

holds in the weak sense. I.e., for every u in Q1 the relation 

holds. 
Here it is assumed that the operators D, , u # 0, are chosen "sufficiently 

small", in the sense explained in Section 8. 
This statement can be reduced to that of Theorem 12.1 by a continua- 

tion argument.l2 One connects the operator (D-t)* * D with the operator 
D* . D through the operators (D-At)* D for 0 5 1 5 1 and proves that 
the set of values 1 for which the statement of Theorem 12.2 holds is open and 
closed. 

We recall that in the formulation of Theorem 12.2, we reserved the right 
to take the operators D, , cr # 0, sufficiently small, in the sense explained in 
Section 8. We now do this in such a way that a number 8 < 1 exists so that 
(v - tu)2 5 8 ( v  - v )  (u * u) for all u, 'o at each point of the manifold 9. For 
the solution v, of the equation (D--ilt)* - Dv, = v we then have 

(D-t)* D4 = v 

(D4, (D--t)u) = (v,zd) 

"Equation D* . Du = v could be regarded as a symmetric positive system 
1 0: . . .  

[-D, 1 ...) [D:v 

without boundary condition. It seems, however, that  doing so would not lead to a simplification 
of the arguments given in Part 111. 

'*It could also be deduced from the Lax-Milgram theorem. 
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I l Vhl I: 5 161 I'uAl I I I'uAI I1 + I l % I  I I Iv I I 5 I I %I Il(~lI'uh1 I1 + I l'ul I> 

ll'uhlll 5 (l-e)-lll'ull. 
and hence 3 

Clearly, since this a +riori inequality is valid, the continuation process can 
be carried out. Thus we obtain the statement of Theorem 12.2. 

The main effort to be made here (in Part 111) consists in establishing 
Theorems 9.3-9.6. The first two major steps in doing this consist in proving 
Theorems 12.3 and 12.4. 

THEOREM 12.3. Let 6 be the (weak) solution of the equation 
(D--t)* * D8 = 'u 

for v in @ according to Theorem 12.2; then each function D,B i s  in $ j l .  
Furthermore, with an a#pro+riate constant c, the inequality 

-in obvious notation-holds for a n y  such function v .  

order, denoted by E ,  and given by 

116112 = 11D~111 = llDD6ll 5 cllvll 

The second theorem involves a complete set of operators of the first 

with respect to each patch, where the numbers e: and the matrices e, are 
in El when considered as functions on the manifold 92. Completeness means 
that every operator of the first order with coefficients in Q or Q, is a linear 
combination of the operators E,  with coefficients in 4 or C& , respectively. If 
the manifold consists of a region in the m-dimensional space we may simply 
take E ,  = apx, , E,  = 1. We set 

IIEvI12 = 2, IIErvI12i 
and denote by & ( E )  the space of those functions 'u E $j for which the operator 
E = {E,} is applicable in the strong sense. We then may formulate the 
second statement: 

THEOREM 12.4. Let v be in & ( E )  and let 8 be the (weak) sol&'on of the 
equation (D-t)* - D6 = v. T h e n  each function D,.G i s  in &(E)  and, with an 
appropriate constant c1 , the inequality 

holds-in obvious notation. 

the inequality 

holds with an  appropriate constant c2 . 

IIEWI 5 c1llEvlI 

Furthermore, the function 6 i s  in $jl(E), each function E6 i s  in Q1(D),  and 

IPE~II  5 c2llE4I 
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In  the following sections (13 and 14) we shall develop the tools needed 
for the proofs of Theorems 12.3 and 12.4 which wil l  be given in Sections 14 
and 15. 

13. Commutator Identities and Formal Inequalities 
In addition to the particular tangential operators Du I introduced in 

Section 8, we must consider other systems of differential operators (G,} of 
the first order given, with respect to each patch, as 

with numbers g:(x) and matrices g,(x) in C$ . Since the coefficients d$(x) of 
the operators D ,  are numbers -and not (non-diagonal) matrices- the 
formal commutators of the operators D, and G, are also operators of the 
first order. We use the notation [D,, G,} for these formal commutators; 
i.e., we define 

ID,] G T l z [ d ~ g $ , V + d U g ! :  -g:d:/V-gg,d:la/axA + d ~ g l / A - g : d U / Y + d U g l - g T d U ‘  

Similarly, we define the formal commutator [D,* , G,]. 
We also say that the “formal identities” 

D ,  GT-G, D, = [D,  , G,], 
D,*G,-G,D,X = [Dz , G,] 

hold. By this we mean that the identities 
D,G,w-G,D,w = [D, , G,]w, 
DbGrw--G,D,* w = [D,* G,]w 

hold for functions w in 
We now require of the operators G, that the commutators ED,, G,] 

and [D:, G,] are linear combinations of the operators G. Specifically, there 
should exist matrices [dg]:, and [d*g]& in 6 such that the relations 

[DGI rDU 7 G71 = [&I$, Gf7 2 

ED” G 1 8 G T 1  = Id* g l $ T  G p  

hold. 
We shall take three particular systems of operators as operators G. 
First, we maintain that we may take G = D. To ascertain that we may 

do this we first observe that the commutator of two operators Du is again 
tangential] as is immediately seen by expressing them in terms of a / ad ,  
3. = 1, - - * m-1, and x*alaxm with reference to boundary patches. Then 
we invoke the completeness of the set of operators D ,  , our second require- 
ment imposed in Section 8; in fact, now is the first time that this requirement 
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is invoked. We conclude from this completeness that identities of the form 
[DD] and [D*D] hold with appropriate coefficients [dd] and [d*d] .  

As our next choice of the operators G, we take the operators E ,  described 
at the end of Section 13. The existence of the coefficients [de] and [d* el is 
guaranteed by the assumed completeness of the operators E,  . 

The commutator relations for G = D and G = E do not only hold 
formally, i.e. for functions w in E2 ; they also hold for the solution 6 of the 
equation (D--t)* - D6 = v with v in Q1. Specifically, we formulate as 
corollaries to the Theorems 12.3 and 12.4 

THEOREM 13.1. T h e  identities 
D,D,6-D,D,G = [D,, D,]6, 
D$DT6-D,D$6 = [D,* , D,]$ 

hold. 
THEOREM 13.2. T h e  identity 

D,E,6-ETD,6 2 [D,, E,]G 
holds. 

These theorems will be proved in Sections 14 and 15 together with 
Theorems 12.3 and 12.4. 

From our formal commutator identities we can derive two inequalities, 
which will also be called "formal" in as much as they hold for functions in 
G2. The first inequality is 

(11) l ~ G D W l ~ f ( ( D G W ~ ~  5 clllG(D--t)* D w l l J  

valid for w in C I S  provided the functions tu are in El and provided the coeffi- 
cients of the operators Du , 0 # 0, are made sufficiently small. 

The second inequality refers to the case that the operators G, themselves 
are tangential; we then call them FT . This inequality is 
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Here cr = g$a/axA = G,-g,-with reference to a patch. Hence, in view 
of l/Gwl/ 5 IIGDw/l, IlDwjl 5 IlGDwIl, we have 

where the constant 6 depends on bounds of [dg];, , [d*g]$, , t and dt.  
By making the coefficients of D,, (3 # 0, sufficiently small, we can 
obviously make 6 arbitrarily small. Using 

we are led to the first inequality (Il). 
If the operators G themselves are tangential (at 93), G = F ,  we may 

carry out integration by parts in (Fw, F(D-t)* * Dw); thus the second 
inequality (I,) results for w in (!& . Since it involves only second derivatives 
it carries over to (&. 

In (I,) we may take F = D. Since (ItDmll I BIIDwlI I BIIDDwll, we 
obtain the inequality 

valid for w in G, . This is the inequality, which was stated in the formulation 
of Theorem 12.3 to hold for the solution w = B of the equation 

(1-6)IIGDwll 5 ~(GW, G(D-t)" .Dw)l 

IIDG4l I I I G ~ ~ / l + ~ I I G 4 I  5 (1+4l/GD4l 

I I D D w l l  5 C g l l ( D - t ) *  ' D w l I J  

(D--t)* * Dd = v .  
The two inequalities stated in the formulation of Theorem 12.4 would 

result from (I,) and G = E if we were permitted to set w = G .  
In order to establish the statements of Section 12, we shall approximate 

the function 0 6  involved in these statements by functions in and repeat 
the steps that led to inequalities (I1) and (I,) in this section. For this approxi- 
mation we shall employ mollifiers. 

14. Mollifiers. Proof of Theorem 12.3 
We have already referred to mollifiers in Section 10, without describing 

them in detail. Since for the present purpose we must adjust them in a par- 
ticular way, we must describe them now. 

We introduce the mollifier J P  associated with the patch 9 as an inte- 
gral operator having a kernel 

j e (Z-X ' )  = &-mi - (","') 
defined for x' in the patch gP and x in the sub-patch 2?p, see Section 8. The 
function j ( 4 )  is to be infinitely differentiable, should vanish for 2 3, and 
satisfy J j(E)dl = 1. The special requirement which we want to add is that 
j ( l )  = 0 for lm 5 1, so that jB(x-x') = 0 if x is in a neighborhood of the 
(inner and outer) boundary of Po, provided E is small enough. 
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We finally set 
J e  = Z p  ~p JC 2 

where the functions q p  form a partition of unity as described in Section 8. 
With this operator J ,  we then have the relation 

(Ji) ) I  Jsw-wI\ + 0 as E -+ 0 for w in 8, 
as follows from the general properties of mollifiers. 

In the following we shall on occasion use the abbreviation 
R E  + w3J 

(Ji) J e  --t 1 (8). 
for 1 1  R,w--Rwlj -+ 0 as E -+ 0 for w in *'&. Thus we can express J1 simply as 

Suppose the function w ( x )  in f j  admits the operators D, in the weak 
sense; i.e. , suppose that there are functions in fj, denoted by D,  w (x) , such 
that 

jC(x)D,w(x)dx = 1 ( ~ h W ) w ( x ) d x  
for all functions C(x) which vanish at the boundary of the patch Pp (and 
outside of it). By virtue of the special requirement we have imposed on the 
kernels j e  , we may set +($) = je(x-2) provided x is in the subpatch 2?p. 
Consequently, we have 

J{D,w(x)  = J ( D * j e ( ~ - 2 ) ) w ( l ) d $  
for x in 2!p. We denote the integral operator on the right by (J,"D,) and, 
using this notation, we introduce the integral operator 

(JeD)  = { Z p  . ip (J fDo))*  
We then evidently have 
(J2 )  J,Dw=(J,D)w if w in f j  admits D weakly. 

use, somewhat improperly, the notation 
For the difference of the two integral operators D J ,  and (Jel l )  we shall 

DJe-UeD)  = [D, J e l .  
From the main lemma on which the identity of strong and weak ex- 

tensions of first order operators was based [l], we may infer the relation 

(53) P, JE1+ 0 03). 
In  Section 13 we introduced the notation ED, , D7] for the first order 

operator [dd]&D, which equals D,D,-D,D, for w in G2. Clearly, [D, , D,] 
is applicable in and hence we may formulate the statement 

(54) Dr(JeD,)--D,(JeDu) + [Dus 0 7 1  (81)- 
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In fact, the left hand side here may be written as 

([Off , J,lD,)- (P ,  9 J,lD,)+J,[Dff , Or1 
in obvious notation. (J4) then follows from (J3) and (Jl). 

Relations (J1) to (Ja) are sufficient for the proof of Theorem 12.3. Let fi 
be the (weak) solution of (D--t)* D$ = v, which exists according to Theo- 
rem 12.2, proved in Section 12. Then DI? is in @ and admits the operator 
(D-t)* in the weak sense. From relation (JJ we therefore have the identity 

Here, and in the following we set J for Jel- J,, . 
inequality, setting 

JV = (J(D-t)*) * DB = u, D*] * Dd- Jt* * DB+D* * JDd. 

We now follow the steps that led to the proof of the second a firiori 

Hrv = Dr(JDu)-Du(JDT). 
In obvious notation] we then have 

(DrJDgV, DT JDVv) = (HTuf i ,  DrJDuB) + ((JDT)B, [d*dI$TDp JDufi) 
+( ([D: JI+Jtf)D,a+Jvt, (P,* JI+Jt,) * Dffv+Jv) .  

With an appropriate constant 6, which can be made arbitrarily small by 
making the D ,  , u # 0, sufficiently small, we obtain the inequality 

Hence, by virtue of ( JJ, ( J3) , ( J4), we have 

Since J ,  DB is in CS-, it follows that DB admits the operator D strongly; the 
main statement of Theorem 12.3 is thus proved. At the same time the in- 
equality llDzvll 5 cIIvJ1 follows, since we now know that 

D,(J,DT)I? = D, J,DrB -+ DUD,$ and D,(J,D,)B + D,D,d. 

( l - ~ ) I I D J D ~ I I  S IIHBII+II[D*, JI *DBII+IIJt. ~ ~ l l + l l J ~ l l *  

II~(J, ,-J,*)D~ll  -+ 0 E l  9 &!2 -2- 0- 

Furthermore the statement of Theorem 13.1 results from (J4). 

15. Proof of Theorem 12.4 

Theorem 12.4 involved the set of operators E not all of which are tan- 
gential. Nevertheless, we shall prove this theorem with the aid of Theorem 
12.3 which does refer to tangential operators. To this end we replace the 
operators E ,  for t # 0 by operators wYEr formed with the aid of functions 
wv(x)  which vanish at the boundary and are equal to 1 except in a neigh- 
borhood of the boundary. We set E: = my ET for t f 0 and Ef; = 1. Clearly, 
the operators E: are linear combinations of the operators Du . 

The functions w"(x) which we shall introduce will be in 0, and, as Y tends 
to zero, they will tend to 1, nondecreasingly, in the interior of 9. Further- 
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more, these functions will have the following-very essential-property: 
There are functions r:@) in 6, bounded as v -+ 0, 

such that the relation 
(RO) Ir;(x)l 5 f l ,  

(R) w v  = Y; wv 

holds. Here fi, is the main part of the operator D,: 
a 

axA 
fi = d A  - with reference to a patch. 

To exhibit such functions we introduce, for each patch Pp , a function 
w; given by w i  = 1 if Pp is an interior patch and by 

for y 5 -v, 
for -v 5 y 5 0, 

v2 

if 9, is a boundary patch. Then we set 

m y =  zq wv P P  
P 

where the functions q, constitute a partition of unity. 
We first write f i ,wv in the form 

&+O" = I: v p ( & u g  + 2 ( f i , r p ) m ;  
P P 

and then write each term separately in the form (R). 
The function f i rm;  in can be written in the form 

D,w; = r;,, w; 
with 

where u); = 1 
I; ,  = 1 2vf2y &-- Y 2VfY for -v 5 y =( 0 

if Pp is a boundary patch. Since (2-2~)(2--2)-~ 5 1 for 0 5 z S 1 m d  
d,"/xm is bounded-because d," = 0 on L@-we find that IY;,,~ is bounded, 
independently of v; hence there is a constant rl such that 

IY'P.1 2 r1 in 9. 

To handle the expression 2, (h,,qp)w; we consider a point x0 where not 
all hUqp are zero and let 9' be a patch such that ~ is in the subpatch Sa, 
where qA = 1. Only a finite number of patches have points in common with 
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and, since the transformation from one to another patch has a non- 
vanishing Jacobian, there is a constant cpA such that 

0; 5 c , p :  , 

I2 ( f i u v p ) q  5 2 (2 l ~psp IcpA)O:  5 r2wV1 

ra = max I: t f j p ~ p ~ c p L .  

This maximum is finite since the manifold is covered by a finite number of 
patches. Thus we obtain 

and hence (R). 
With the aid of the functions oy we modify the operators ( E 7 }  introduced 

in Section 13 by forming the operators { o V E 7 } ,  which are evidently tangential 
and hence are linear combinations of the operators D, . Therefore the opera- 
tor o v E  is applicable to o in &. We now formulate 

LEMMA 15.1. Let w in be swh that IIE’wll is bozclzded indefiendently 
of v; then w is in S&(E). 

To prove it we first observe that we may introduce a function in @, 
denoted by Ew, such that Ew = E v w  whenever oy = 1. Clearly, 
IIEvwll IIEwll. Next we take the sequence of functions o,=J,w and 
establish the relation 

independently of v. Consequently, we have 

P A P  
with 

P 

l&w7 5 (r,+r,)wv, 

~/Ew,-Ew~l --f 0 as E + 0. 

To this end we again make use of the assumed special property of the 
kernel j e ( x - 2 ) ,  viz. that it vanishes if 2 is in a neighborhood of the boundary 
9Y while x is in 9’. As a consequence of this property we have 

J ,  Ev w = J ,  EW 
if Y is sufficiently small for a given E > 0, and as another consequence we 
observe that there exists an integral operator-we denote it by ( J ,E ) -  
such that 

(J,E)w = J,Ew 
for our function w .  

Next we use the relation 
EJ,w-(J,E)w+O a~ E + O ,  

which holds because of Ilwll < a; it corresponds to relation (J3) and is 
proved in the same way. From it and (JJ we find 
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Ewe = E J s w  -+ Ew as E + 0, 

and thus the statement of Lemma 16.1. 
We now are ready to prove Theorem 12.4. We first consider the opera- 

tors E ,  , in place of G, , introduced in Section 12. As was explained in 
Section 13, coefficients [de]  and [d* el in CS exist such that the commutator 
identities [DE] and [D*E] hold. Next we recognize the operators E: to 
be operators of the type F, . 

In view of the relations fi,, w y  = r: w’ and @ mu = -fi,,my = -6 my we 
realize that the operators F ,  = E; satisfy relations (DEv) and (D*E”) with 

[deY]$, = [del$, + r:d; > 

[d* e’]z, = [d* el$, - . 
By making D, , 0 # 0, sufficiently small we can make the coefficients v:, 
[de];, , [d*e]$, , and hence [de”]:, , [d*e’]$, so small that the first formal in- 
equality (I1) holds with F = E”. This inequality was established for func- 
tions w in LIZ. We now shall establish it for w = 5. 

We first notice that the operators E’, , being tangential, are linear com- 
binations of the operators D, with coefficients in Q1-by virtue of the com- 
pleteness of the D, . It then follows from Theorem 12.3 that the functions 
DUG admit the operators EY, strongly and, at the same time, that the functions 
E; 6 admit the operators D, strongly. Furthermore, it follows from Theorem 
13.1 that the relations 

DUE’,6--E”,,5 = [D, , E:]8, 
DZE“,--E”,0,*5 = (D:,  Er]8 

hold. 
Next we observe that the special identity 

(D, E: d, E; D, 8 )  = (”Ef E$ 5, 0: D, 5 )  + (E$’ 6 ,  [d* e’]& E; DUG) 
holds, where uE* = (EY)*.  In  fact, for any two functions wl , w2 in Q1 and 
any tangential operator F,  the identity 

(DU wl FT w2) = ( F f  w l  3 ’,* w2) + (wl , Ld* F ,  w2) 
holds. To verify this one need only mollify wl and w, , carry out integration 
by paits, and use relation [D* F]. Then the last identity follows from (Ja). 
The special identity results if we set wl = Ec 6, w, = D, 6, F = E”. Carrying 
out integration by parts in the special identity, we obtain the relation 

(E$D,B, EY,D,8) = (”Ef E$$, v)+(”EjS E$5, t,*D,8) 
+ (E:5, [d* eU]$, E;D,G)- ([de”]:, E;6, E;D,5). 

Since v is assumed to admit the operator E and hence the operator E’ we 
may transfer ”Ef to the other side. From the resulting identity 
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(E<D,B, E’,D,v”) = (El:$, E*,v)+(E$v*, EY,t,*D,!) 
+ (E?v”, [d*ev]$,E’,D,8)-([deP]$, E;B, EY,D,8) 

we may derive the first inequality (I1) as before setting p = Y.  This in- 
equality may now be written in the form 

jIDEv8Jl+IlEvD811 I; 4cllJE”vIJ. 
In  view of I IE”vl I 5 1 lEvl I we conclude that I I E” D$I I is bounded inde- 

pendently of v. According to Lemma 15.1, therefore, the function D8 is in 
@,(E) and thus admits the operator E.  

We now set 
EPv = EP-EV, r l lv  = y P - r v  

use 

and derive in an obvious manner the identity 
[defiv]$T = - [d* epv]z ,  = ~f ?I:, 

(D,E$”fi, D U E T $ )  = ( E y f i ,  ETv)+(EyB ,  ETt,*D,$) 
+ ( E T $ ,  [d*e#];, EYD,,$)-(EYv”, r$”E”,,,8) 
+ ( D U E T $ ,  [ d e P ] $ c E ~ d ) + ( D , E ~ 8 ,  r r E ; $ ) .  

From it we then obtain the estimate 
IIDEPvGII 5 4clllEfiv vll+c211 lrPVl E”D$II. 

Now, [EvD81 5 ]ED$/ at every point of W, since ov 5 1; hence 
I I DE Pv 61 1 5 4c, I I E Pv v1 I + c2 I I IY””~ ED61 I. 

We now use the fact just proved that I I Ed81 I is finite. Since lrPYl is bounded, 
IrPvI 5 2rOJ and vanishes outside of a boundary strip which shrinks to 
nothing as p, v -+ a, it is clear that 1 1  IrP”IED611 -+ 0 as p, v -+ 00. Also, 
IIEPvvII - t o  since llEvll < 00. Hence 

IIDEPv811 --f 0 as p, v + co. 
Since the functions Ev  admit D strongly, they can be approximated by 
functions w in & such that Dw approximates DE’8. From this we see that 
E8 admits the operator D strongly. Obviously, the inequality 

I PEQl  I + I lED4 I 5 4cd lEvl I 
holds. Thus Theorem 12.4 is proved. 

To prove Theorem 13.2 we need only show that 

[ D f f  I Er18 --f [D, J E , ‘ ] B J  

[D,* J ‘“,fi --f [D,* 5 E,]8J 
or, what is equivalent, that 

rZE,d-+O as v+O. 
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Now Irl[ is bounded independently of v and vanishes outside of an arbitrarily 
small neighborhood of the boundary if v is made sufficiently small. Since 
11E,611 < 00, the statement follows. 

16. Boundary Values 

I t  is an important property of the functions in @,(E) that they possess 
boundary values. 

To explain what we mean by this we first recall the definition of the 
space $ja given at the end of Section 7. We say that “the function w in S?,(E) 
possesses boundary values in Qg” if a sequence of functions w v  in Q1 and a 
function wg in $jg exist such that, with v + 00, 

llwY-w11 + 0, I!Ew”-EwlI --f 0, IIw”-wglla --f 0. 

The function wg is then called the boundary value of w; in the following 

THEOREM 16.1. A function w in @,(E) fJossesses boundary valzm. 
This theorem will be derived from the inequality 

we shall omit the subscript 37. We now formulate 

l l ~ l l g  5 cgllE4l 
valid for every function w in 6, with an appropriate constant ca .  

To prove this inequality it is sufficient to restrict oneself to a boundary 
patch 9. Clearly, for x in the intersection of 9l and the subpatch 02 we have 

with any function E(xm) which vanishes outside of 9 and equals 1 on 9ln 9. 
Immediately we then obtain 

Since { E , )  is complete there is a constant cE such that l(i3/a~~)w1~+lwl~ 
5 C’IEWIP. 

Now let w be in @,(E) so that there is a sequence wv in (& such that 
I I E (wy-w) I I + 0. Hence I I E (wvl--wvr) I I --f 0. From the inequality we have 
1/wV1-w”2 1 1  + 0. Theorem 16.1 then follows from the completeness of the 
space Q a .  

The integral (w, w ) ~  involving the boundary values of a function in 
@,(E) can also be described as the limit of certain integrals extended over a 
neighborhood of the boundary. Specifically, we formulate 

Thus the inequality results. 
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THEOREM 16.2. W i t h  a n  afi@ofiriate function a'(x) in defiending on a 
parameter v, the relation 

holds for each fwzction w in &(E). Furthermow 

where 6 = is,} is given by 6, = d$ a/axfi and (% = {a,> by d ,  = d: a/axm 
with reference to a fiatch. 

(w, aYw) -+ (w, w ) g  

(w, ( 6 U Y ) W )  + -(w, dw), 

To prove this theorem we set 
3 

= - (1-w") 
V 

where w y  = & qp w'p is the function introduced in Section 15. Clearly, the 
function ui  = ( 3 / v ) ( l - w ; )  vanishes for y 5 --Y with reference to 2$. 
Furthermore 

0 
J:w U'p(Y)dY = 3J'_1 (z+l)"z = 1 

and, since dm = 0 on g, we have 

Now let re, be a function in C$. By an argument, similar to that em- 
ployed in the prouf of Theorem 16.1, we find 

for y 2 -Y, where we have set 

w = w ( y )  for xm = y. 
Consequently, we have 

and therefore 
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with E,P -+ 0 as v + 0. 

derive the inequalities 
Going over to the whole manifold and using Ilwll 5 callEwll, we may 

I (w, 0”w) - (w, w)gl 5 c fiIIE4l2, 
( 6 u v ) w ) - ( w J  dw).@l 5 EyIIEwl12 

with E , + O  as v +  0. 
These inequalities were derived for functions w in G I .  By virtue of 

Theorem 16.1-and the definition of $j1(E)-they carry over to w in & ( E ) .  
Theorem 16.2 is then an immediate consequence. 

From Theorem 16.1 and Theorem 12.2 we have 
THEOREM 16.3. Let 3 be the solution of (D-t)* - Dd = v for v E (&. 

Then the function DV” possesses boundary values and the inequality 

IlWla 5 c@lIEwl 
holds with appropriate cI . 

PART IV 

MODIFICATIONS 

17. Boundaries With Edges 
In the theory developed in Parts I1 and I11 the boundary of the mani- 

fold was assumed to possess a continuous normal. In this part we shall show 
that under certain circumstances problems can also be handled where the 
boundary possesses edges along which the normal is discontinuous. We as- 
sume that the boundary 9? of the manifold consists of three parts, a,, , a+ , 
9- ; the intersections of go with &Y+ and &?- are then the edges. Specifically 
we assume that some of the boundary patches, called quarter-patches, are 
one-to-one images of a quarter-sphere: 

X; + - - + X: 5 R2, x1 j 0, X, 5 0. 
The image of x, = 0 in this patch then belongs to go that of x1 = 0 to a+ 
or g-. Everything that was said in Section 7 about the manifold and the 
entities defined in it is to be carried over in an obvious way, 

- SA(x) 
for two overlapping half- or quarter-patches adjacent to ah, viz. that 

We add the requirement on the identification transformation 
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adk/axl = 0 on 9 5  for A # 1. This requirement will enable us to carry out a 
reflection procedure in a very simple manner; probably it could be eliminated. 

is non- 
negative on B+ and non-positive on g-. Accordingly, we may choose 
p = +!I on 81 and the boundary condition becomes 

while no condition should be imposed on g+. 
A situation as described here arises for example in the case of the 

mixed probIem of a hyperbolic system when is the initial surface at which 
u = 0 is given while nothing is prescribed at the end surface B+ . The case 
of Cauchy’s problem for a lens-shaped region would result if the mantle go 
of the boundary were absent. Although this case willnot be explicitly covered 
in the following, it could be handled by an obvious modification of our 
treatment; it could also be reduced to the case treated in this section by 
modifying the problem in the neighborhood of the intersection of B+ and 99-. 

The statements about uniqueness and weak existence made in Part I 
carry over immediately. The only essential modification that must be made 
concerns the tangential operators D introduced in Section 8. It is no longer 
possible to define these operators in such a way that the commutators [D, K] 
are linear combinations of the D and K .  For example, the operators 
D = xm a/ax*, x1 a/axl, and a/axh, 3, = 2, . - , m- 1, are tangential in a cor- 
ner patch; but each commutator [ D , K ]  involves a combination of the 
operators a/axm, a / W ,  which, in general, cannot be expressed in terms of K 
and a/&+, 2 = 2, - - , m-1. 

For this reason we shall give up the requirement that the operators D 
be tangential a t  the surfaces 9* but retain this requirement for the surface 
go. Moreover, near go we retain all requirements on the matrices a p  which 
in Section 8 were imposed along the boundary 97. It then follows as in 
Section S that the commutators [D,K]  are indeed linear combinations of 
D and K .  Accordingly we may introduce matrices t and an operator K acting 
on compound systems such that 

Of the parts @+ and a- of B we now assume that the matrix 

Pu=O on B - ,  

1 

(D--t)K = KD. 
1 

Similarly, we may introduce matrices t ,  and M along the boundary go such 
that 1 

(D-t,)M = MD on B,, . 
1 

We first establish an a firiori inequality for the derivatives Dzt of a 
solution of the equation Kzl = f ,  under the boundary condition M u  = 0 on 
go and u = 0 on @- . We denote by L$c2 the subspaces of &,2 consisting of 
those functions zt in CSl,2 which vanish on B- . Then we set 
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llulll = llDull for u in 6; 
and state 

&- and satisfies MM = 0 on a. 
inequality 

holds. 
The requirement that Ka should vanish on 9Y- is not serious since one 

can always subtract from zd an appropriate function so that this requirement 
is satisfied by the difference. 

The requirement that zd should vanish on 9Y- appears to be stronger 
than the boundary condition Du = 0 on 9Y-. Actually, the relation 
u = 0 follows from ,9u = 0 and Ku = 0 on 93- and M u  = 0 on 93,, provided 
x = K + a p & i > Q o n 9 . + ;  for, 

THEOREM 17.1. Suppose the function u is in (5; and such that Ku is  in 
Then with an  a@ropriate constant c the 

I I4 I1 5 CI IK4  I1 

The proof of Theorem 17.1 is given through the following steps: 
First we set ,u= on 3*; hence M =  0 on a+, M =  - 2 p + p  on 3-, 
where the matrix p is such that u = 0 implies p {u, ulr . . .I = 0. Further- 
more, we note that the assumptions u = 0 and Ku = 0 on L%'- imply 
B at& = 0 and Du = dv aulay where dg = d1 if y = XI. Hence we have 

1 1 1 

Consequently, we may derive 
(DU, KDU) 5 ( h , * K D U ) + ( D U ,  FDU) = (D'U,KD%)f(DZ4, y D ' @ )  

1 1 1 1 

= (Du, K Du) + (Du, $f Dzt)g0 

= (Du, (D-t)KU) + (Du, (D-tg)Mzt)go 
= (Du, (D-t)KU) 5 l lD~l l  II(D--t)KulJ 

1 

I (1+e)lIDUll I I ~ W I .  
Using a constant c1 such that ( ( D U J ~ ~  5 c,(Dzt, K D U )  we find 

1 

IID.ull 5 (1+@lllDKUll 
as desired. 

In a similar fashion we may derive a dual inequality. To this end we 
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must introduce a partially clipped Laplacian. Specifically, we introduce the 
operator 

applicable to functions w in 6; which satisfy the condition 
dv - Dw = 0 

For any function w satisfying these conditions and any function z4 in Q; we 
evidently have 

(GJ, (D--t)* * Dw) = ((D--t)Q, OW). 

(D--t)* * D 

on a+. 

We denote by S j ;  the extension of the space CT; with respect to the norm 
( 1  and by @; the space in which the adjoint D* of D in &- is defined. 
Then we formulate 

THEOREM 17.2. To every v in @ there exists a d in S j ;  with DQ in !$jT 
such that 

(D-t)* Dd = V .  

This theorem is proved in the standard manner. In  fact, it can be re- 
duced to Theorem 12.1 by a reflection device, which we shall also use in 
order to establish the needed differentiability properties of the solution d. 
Before discussing these matters we shall derive the dual inequality formally. 

Let v be a function in C& satisfying the conditions M*v = 0 on a. 
Without restriction we may further assume v = 0 on a+. We then define 
6 according to Theorem 17.2 and assume that 6 has the differentiability 
properties needed for the following argument. The first basic identity then 
yields 

(K* V ,  d) = (v, K$)  + (v, M$)a = (v, Kd)+ (v, Md)gQ 
= (Dd, (D-t)KQ) + (Dd, (D-tg)Md)go- (Dd, dvKd),-+,+. 

Here we have omitted terms involving DG * dMd on the intersection of 
go with &’+ and 33’- resulting from integration by parts; for, these terms 
vanish because of 8 = 0 on 8- and D$ = 0 on B+. Now on g- we have 

while d* * Dd = 0 on G?+ . Hence, in view of M = 0 on a+, we have 
1 

(K* v,  6 )  = (DQ, K D Q ) +  (Dd, y e ) ,  
1 

= (DG, K D d )  f (06, ,fDd)$ 
1 

2 cyll ID61 12, 

whence 
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11~111 5 c,lI~*vll-1 * 
As before we may conclude 

satisfies the dual inequality 
THEOREM 17.3. A function v in GI with M * v  = 0 on g, v = 0 on g.+ 

l l 4 I -1  s c - l I I ~ * ~ l I - l  * 

Before justifying the arguments that led to this theorem we draw con- 
clusions from it. The first is 

LEMMA 17.1. To every function f in 8; on 9- there exists a weak solution 
u of the equation Ku = f with the bozGndary condition M u  = 0, which also 
belongs to Q; ; it obeys the inequality 

ll4ll 5 c-ll l f l l l .  

Its proof is literally the same as that of Lemma 10.1. In deriving from 
this lemma the fact that a is a strong solution a slight modification is neces- 
sary. 

Such a modification must be made in the quarter-patches adjacent to 
the edges where go intersects LB+ or g-. Since this modification affords a 
simplification, it might just as well be made in all half-patches adjacent 
to 99&, which is possible because ,u = -J-fl there. 

In Section 10 we introduced the operator I?, with reference to  any patch, 
and stated that it is a linear combination of tangential operators. We define 
again the operator a as in Section 10; it then remains true that is a linear 
combination of the operators D, . This operator I? plays the same role as in 
Section 10 with respect to B,, but not with respect to 99k . The procedure of 
reflection in the boundary used in Section 1 0  should be used now with respect 
to 99,, only. 

I t  is necessary to adjust the definition of the mollifiers J'. The kernels 
T ( x - x ' )  should be so chosen that 

if x' on B+, x in 22, 

if X I  in 22, x on a-. 
j"x-x') = 0 and 

This can be achieved, if necessary, by a small shift of the variable xl. As a 
consequence of this adjustment we can again conclude that uv = 0 on 97- 
and furthermore that the relation 

I / r ( ~ , ~ v - ~ ~ ~ ~ ) l l  -+ 0 
holds, although not all operators D, are tangential at  g+ . 

The same arguments that led to Theorem 10.1 then lead to its analogue 
T H E o R m i  17.4. Suppose the operator pair (K ,  M )  possesses a satisfactory 
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set of operators D, . Then for every f in the space 8, there exists in the space 
& a strong solution u of the equation Ku = f with the boundary condition 
Mu = 0. This  solution satisfies the inequality 

Il4ll r c-lllflll. 
We finally supply the argument needed to justify the derivation of the 

dual inequality, formulated in Theorem 17.3. The properties of the solution v* 
of the equation (D*--t*) * DG = 0 used for this purpose could be established 
essentially by the methods of Part 111. Additional considerations, however, 
are needed in view of the boundary conditions imposed on B alongg', and 9-. 
These considerations may be supplied by the method of reflection. 

We first reflect the manifold in the boundary segment g-, and then 
reflect the resulting double manifold in the two boundary segments a+. 
In doing so, each half- or quarter-patch adjacent to A?* goes over into a full 
or half-patch. We want to make sure that, after this reflection, the identifi- 
cation transformation of two overlapping patches has continuous derivatives. 

To this end we denote by x the variables different from y, writing (z, y) 
in place of x. The identification transformation then takes the form 

= f (z ,  Y), 

f(X2 Y) = f (.7 -Y), 

B = g(x, y). 

g(x, Y) = -d., -Y). 

In the reflected patch we evidently have 

Now, the derivatives f, and g, are evidently continuous at y = 0; 
furthermore, g, is continuous there because g(s, 0) = 0. Continuity of f ,  
is insured by virtue of the relation fy(x, 0) = 0 which expresses the additional 
requirement made at the beginning of this section. 

The operators D may now be extended in an obvious way into the 
quadruple manifold: if in an image patch 8' of 9 the same coordinates are 
assigned to corresponding points, the operator D in the image patch has the 
same coefficients as the operator D in the original patch when expressed in 
terms of differentiation with respect to these coordinates. We also assign 
the same function t to corresponding points. 

The operators D, prescribed in this way to images 8' of boundary half- 
or quarter-patches 8 along g& are not necessarily continuous continuations 
of the operators in 9. We want to achieve that either D, or -D, is such a 
continuous continuation. To this end, we take in each such half- and quarter- 
patch PP operators 7 a/ax and 7 a/ay with prn a,6xrn in place of 7 31axm in a 
quarter-patch. If the image 8' is described by y 2 0, the continued operators 
are 7 8/63 and 7 a/ay while the assigned operators are q and -7 a/ay. 

We also want to make sure that the assigned operator D,-t, , or its 
negative, gives a continuous continuation. If D, = q 8/32, the first is the case, 
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but if D, = 7 a/ay, the assigned operator, D,-t, is -7 a/ay-.t, and hence the 
continued operator is r]a/ay+t,. In this case continuity is achieved if 
t, = 0 on &?* . 

In half-patches adjacent to &?* we can set t ,  = 0 since enough deriva- 
tives are available among the D, to express [D, K ]  in terms of them. Special 
considerations are needed at  the quarter-patches at  an edge at which &?+ or 
9- meets go . Here we are not free to choose D, = 7 a/ax1 , nor are we free 
to choose t ,  = 0. The only contribution to , K ]  to be considered in 
this connection is 2(aam/az1) @/axm). From the assumptions made in Sec- 
tion 8 we conclude that this term may be written in the form 

a 
ax, 

2(R'am + am R )  - . 
We now make the additional assumfition that the matrix R vanishes 

along the edge zl = x, = 0. This is not a serious restriction; for, with the 
aid of an appropriate transformation V of the columns u, the matrix xrn 
could be made constant in a quarter-patch, as follows from the assumptions 
made in Section 8. 

Since now the matrix R vanishes along the edge we can write it in the 
form 

The operator x, a/ax, is one of the operators D,  ; hence the crucial contri- 
bution to [a /ay ,K]  can be reduced to 

R = Z ~ R , + X ~ - R ~ .  

and hence to 
X ~ R ; K + K X ~ R , .  

In other words, the expression 

x lR;  K - K  - + x  R (&- 1 (,"zl 1) 

can be expressed in terms of the D,. Accordingly we now take q(a/aq+x, Rl) 
as one of the D and set t, = xI(Rl+R;).  Evidently this operator D,, as 
well as the operator D,-t, , has the property that the negative of the opera- 
tor, assigned to it in the image (with respect to the surface x1 = 0) of the 
patch, affords a continuous continuation of it. 

Thus the derived property is achieved. 
Next we observe that the operators (D,-t,)* have the same behavior 

on reflection as the operators D,-t, . Consequently, in forming the operator 
(D-t)* - D = ~,(D,-t,)* D, it makes no difference whether the operator 
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D, in an image 8’ of 9 is obtained by “continuation” or by “assignment”. 
If the first interpretation is adopted, it is clear that this operator is of the 
form denoted by (D-.t)* * D in the theory of Part 111, with respect to the 
quadruple manifold. The statements made there about the solution v” of the 
equation (D-t)* * 0 6  = 0 can therefore be taken over. 

To explain the consequences of the second interpretation, let w be a 
function defined in the quadruple manifold. We say it has the “proper 
oddity’’ if it has the same value at an image point with respect to W+ and 
the opposite value at  an image point with respect to L?#-. 

It now follows from the “second” interpretation of the operator 
(D-t)* - D that if a function w, admitting this operator, has the proper 
oddity, the function (D-t)* * Dw has the same property. 

Vice versa, if v has the proper oddity, the same is true of the solution 6 
of the equation (D-t)* * DB = o. For, if 6 is such a solution, the functions 
obtained from v by even and odd reflections in @+ and g- are also solutions; 
the statement then follows from the uniqueness of the solution 6. 

By arguments similar to those usedin deriving Theorem 16.1, one shows 
that the functions 6 and DV” have boundary values on a+ and g-. 

From the fact that 6 has the proper oddity it then follows that this solu- 
tion satisfies the boundary condition 6 = 0 on W- , and consequently, the 
relation dYK6 = 2pD6 = -MD§ holds here. It is also clear that on 93+ the 
condition dv * DB = 0 is satisfied. This is easily verified by a simple argument 
in which one uses the specific nature of the operators D, assigned to the half- 
or quarter-patches adjacent to 9+ . In order to justify the derivation of the 
dual inequality one need only justify the contribution due to  the section go 
of the boundary. This is done in the same way as in Part 111. 

By these considerations the validity of the dual inequality (Theo- 
rem 17.3) is established. 

From the arguments of Section 10 we then infer the existence of a solu- 
tion u in @; of the equation Kzc = f with the boundary condition Mu = 0, 
provided f is in @; and if we assume that the matrix K+K’ is positive definite 
and p+p’ is non-negative. Without making the first of these two assump- 
tions we infer from the arguments of Section 11 that a strong solution of 
the problem exists. 

1 

1 1  

1 1  

18. A Boundary Problem for the Tricomi Equation 
The Tricomi equdtion-slightly generalized and modified-is 

G Y Z I E - Y Y V  = 01 
where the function G = G(y) is such that 
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G $ O  for ~ $ 0  
and G' # 0, so that the equation is elliptic for y < 0 and hyperbolic for 
y > 0. For the solution of this equation we shall impose conditions on the 
boundary a of a region 92, which may be described by the inequalities 

q(xJ y) 5 OJ 5 x+ * 
See the figure on page 334. The boundary consists of two parts 

@o : q(%> 9 )  = O> 5 x+ J 

A?+ : q(x, y) 5 0, x = x+.  
Of the function q ( x ,  y)-in &,-we require that it satisfies the conditions 
q ( x + ,  y) > 0 for y 5 0, further q:+qi > 0, qi-qZG > 0 throughout. More- 
over, we require for convenience that 

qx+qy 5 0 on g o .  
We prescribe the values of the function y along go and nothing on a+ . 

In order to be able to reduce this problem to one in which the boundary 
condition is homogeneous, we assume that a function yo in 92 exists which 
has these boundary values on go. We then introduce the function 
4 = y-yo , in place of y. Furthermore, we introduce the pair u = (ul , u,} 
of derivatives ul = & , u2 = . This pair satisfies the differential equation 

~ 0 a . u  o i a u  
= (0  J iG - ( 1  0 )  ay = 

where f = { f i  , f , }  with f l  = -Lye and fi = 0. The boundary condition for 
the function u is then u,dx+u,dy = 0 or 

nyul-nxu, = 0 

We maintain that a strong solution of this problem exists. Furthermore 
we should like to show that this solution has a strong derivative if the function 
f has a strong derivative. We shall do so only for a special region W of the type 
described. 

First we must transform the equation into a positive symmetric one. 
To this end we employ a matrix 

on go . 

and replace the operator L by the operator 

K = Z L = 2 j c G  bG cG ) - - 2 (  a CG b ) a . 
b ax b c a y  
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On the functions b, c we impose the conditions b > 0, c > 0, and 
ba-c2G > 0 in W ;  

the latter relation insures that 2 has an inverse. 
I t  is a consequence of these relations that the matrix (:: gG) is positive 

definite on B+ , so that indeed no boundary conditions should be imposed 
there. 

The quadratic form u . @  on go becomes 
w * 1% = (bGn,--cGn,)u~+2(~Gn,-b,~)~~~~+ (bn,-c,y)2ai, 

where n, = qx , nv = qv except for a positive factor. As was explained in 
Section 4 we may write this expression in the form 

u - @ = [bnx+cn,]-l((b2-c2G) (n,%-%2z+)2- (a:-n;G) (bul+cu2)2). 
In view of b2-c2 G > 0 and ni-n; G > 0 on go it is seen that the boundary 
condition n,ul-nxz,uz = 0 in go is admissible if b and c are such that 

bnx+cny < 0 on go. 
The boundary matrix M = p-p is seen to be 

M = -2[bn,+cn,]-*(ba-caG) 

To satisfy the condition bnx+cnv > 0 on go,  we choose 
b = 1-220.x, c = 1-0(~+9) 

with a positive constant Q at our disposal. By restricting the region W to lie 
in a sufficiently small neighborhoodM of the origin we can achieve that 

b > 0 and c > 0 in 9. 

We assume that the region W is such that n, 0 for y $ x. By virtue 
of condition n,+n, 5 0, this requirement can always be met by a shift of 
the origin along the x-axis. Condition bn,+cn, < 0 on Bo reduces to 
b(n,+fi,)-afi,(y--z) < 0 on g o .  By a shift of the origin along the x-axis 
we may further achieve that 

n,(y-z) 5 0 on go , 
as follows from nx+ny 4 0. Then condition bn,+cn, < 0 on A?,, is satisfied. 

Next we show that the constants x+ , Ixol, R can be so chosen that the 
matrix K+K‘  is positive-definite. Evidently we have 

= K’ = (CG’+QG - G ) .  
-uG Q 

Again requiring the region W to lie in a sufficiently small neighborhood 
of 0 we can insure that G is so small in W that K is positive definite there. 



408 K. 0. FRIEDRICHS 

Thus the positive symmetric character of the operator K with the boundary 
condition M = 0 has been e~tab1ished.l~ 

We now apply the results of Section 11 in the modified form described 
in Section 17. To this end we must first show that one can introduce opera- 
tors D which have the properties required in Section 9. This can be done since 
on 3+ the matrix 6 = sz q+n,  ccz = ccl is positive definite. The only one among 
the conditions formulated in Sections 8 and 17 which perhaps is not satisfied, 
is the condition that the matrix K+K’ be positive definite; but this is exactly 
the one condition which was not required in Section 11. Therefore Theo- 
rem 11.1 is applicable and the existence of a strong solution of the #roblem i s  
established. 

Next we proceed to show the strong differentiability of the solution 
in case f has strong derivatives. 

We shall derive this statement only for a somewhat special region 22, 
namely one for which 

1 1  

q ( x ,  y) = ( x - ~ ) ~ - - R ~  for xo 5 z 5 x+, 
with xo < - R ,  so that y 5 0 on the segment z = xo , q(x ,  y) 5 0. 

are given by 
As tangential operators we may introduce operators which for xo 5 5, 

a a  
ax ay 

D---+--, 1 -  

D, = [112-(x--y)2] - - - 2 

[aax aaJ 
and which are appropriately continued for x 5 s o .  We then could set up 
identities expressing the commutators [Dl , K ]  and [D, , K ]  in terms of 
D, , D, ang K.  One might try to do this in such a way that the associated 
matrix K+K’ is positive definite. 

It is doubtful whether this is possible. In any case we are not able to 
proceed in this manner. In  order to establish our differentiability statement 
we shall make use of the fact that the differential equation is elliptic for y < 0. 

Since the pair (al, as) satisfies the equation azc,/ag-a%,/ax = 0 in the 
weak-in fact even in the strong-sense and satisfies the boundary con- 
dition 9~~y~yu1-n~~~ = 0 on go,  there exists a function14 + which has strong 
derivatives a+/ax = ul , a+/ay = u, , and vanishes on g o .  This function 

1 1  

lSThe adaptation here employed is a variant of that employed by Protter and Morawetz. 
I4Describing I by y-(z) 5 y 5 y+(x),  we may set 

Y) = JC&) %(% Y W Y ’  
and then prove that yn = u l ,  py = ?d2 in the weak and hence in the strong sense. 
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satisfies the elliptic equation G a2+/ax2-a2$/ay2 = f l  for y < 0 in the strong 
sense. From the theory of elliptic equations it then follows that in the 
interior of the region W for y < 0, the function admits strong derivatives of 
any order, assuming G and fi sufficiently differentiable. 

As part of this theory we obtain inequalities for these derivatives. 
Specifically] let [ (z)  2 0 be a function in Q, having the properties: 

0 for z 5 zo, 
[(x) = 1 for xo+8 5 x 5 xo+46, 1 0 for x0+58 5 x, 

where Q < -i(R+xo) so that y < 0 on the segment z = xo+sS, 

By virtue of the fact that (a/ax+a/ay)$ = 0 on go for x 2 5, we then 
Iq-~l 5 R. 

obtain in the standard manner the inequality 

From the fact that 4 satisfies the differential equation we deduce a similar 
inequality for all second derivatives of +. Assuming fl to possess strong higher 
derivatives the same can be concluded of 4, at least in the segment 

We now modify the differential equation Lu = f .  Let 5(z) 2 0 be a 

0 for zo+S 5 x j z0+26, 
1 for z0+36 Z x .  

z,+Q 5 5 5 zo+46. 

function in such that 

t(x) = { 
Then we replace the operator L by 

where the matrix 9 in 6, is such that y = 0 for x0+38 5 x, and kept at our 
disposal for x I; x0+36. 

This operator will be appIied to the function 
tz = 5%. 

We maintain that the differentiability properties of u. for x 5 x0+46, just 
established, imply that the function 

.f = t a  
possesses strong derivatives, For z 2 z0+36 this follows from the fact that 
f" = f there; for zo+Q 5 x 5 x0+4Q this follows from the differentiability 
property of u; for z 5 x0+26 we have f = 0. 
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The operator 5 is so designed that on the sides Iy-xI = R the matrix ,$ 
associated with it is the same as the matrix ,!? associated with L,  so that again 
boundary condition y+a, = 0 is admissible for it. On the segment xo = 0, 
on the other hand, the matrix 8 vanishes; there no boundary condition should 
be imposed. 

x 5 x+ , Ix-yI 5 R, is thus 
one of the equations treated in Section 17. We can choose the matrix 7 such 
that the matrix I;.+,’ becomes positive definite. Therefore the solution 
6 = (N of the equation Xii = f is unique. 

according to the 
theory of Section 17, the operators 

The equation = f in  the region &: xo 

As operators fi to be associated with the operator 

may be chosen since they are tangential on the sides Ix-yI = R. Evidently, 
we may express the commutators [ol , x] and [&-, g ]  in terms of Do , fi, 
and x. Our aim is to show that the matrix G+K’ can be made positive 
definite by the choice of 7, E~ and E, and of the domain 9. 

Note that the matrix K acts on compound systems u = {uo , ul, zcz}. 
We maintain that it is sufficient to make the contribution from y alone 
positive, K~~ > 0, in addition to making K positive. Suppose this is done; 
then one may take jell so small that the matrix 

1 1  

1 

1 

has a positive definite symmetric part, since K~~ is proportional to E~ and 
fp = 0. Finally, we note that K,, = K since the expression of the com- 
mutator [fi, ,&?I does not involve fi, . Hence by making I E , ~  sufficiently 
small we can make the whole matrix K+K’ positive definite, provided 
K ~ ~ + K ; ~  is positive definite. 

Clearly, we can make K~~ positive definite for x < z0+36 by proper 
choice of p once G is chosen. Note that the derivatives of jj do not enter the 
expression of K~~ (they enter K ~ ~ ) .  It is therefore sufficient to make K~ 

positive definite for x 2 zo+ 36. 
To this end we first evaluate the commutator [Dl , K ] .  In the following 

we use the congruence symbol ‘ I = ’ ’  to express the fact that an operator is a 
multiple of L or K :  

1 

I 

1 1  

1 

1 1 1 
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where Q is any matrix. We find 

ED1, K j  = Z[D, ,  L ]  = ZG' 

-= (  a o i a  ) 
Dl=( 1 1  ) - ,  a 

G 1 ax 

i?y G 0 %' 

a 1 -1 
- = (l-G)-l ( --G 

l) D, . ax 

Certainly, we can make 1-G > 0 by contracting the region 9 further, if 
necessary. Finally, we obtain 

[Dl , K ]  = AD, 
where 

Consequently, 

At the origin we have 

K11 = K l l S A .  
1 

and hence 

By choosing c > 2G'(O) we can make this matrix positive definite and by 
again restricting the domain 3-if necessary-we can make K~~ + 
positive definite everywhere in W for x 2 x0+36. As was explained above 
we then can make the whole matrix K+K' positive definite. 

Now the theory of Section 17 is applicable. I t  follows that the function 
.tl: possesses strong first derivatives in the region &. Since in the region 
2 5 q,+36 the function 1c, being the solution of an elliptic equation there, 
has strong derivatives in the part x 9 xo+ 38 of 9, it follows that u has strong 
derivatives in the whole region 9. 

1 1  

1 1  

This is the desired main result. 
One may strengthen this result. One observes that the function D,G 

satisfies in & the equation 
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(R+n)D,a = p‘” 
where the functionf(l) is given in terms of f and u. The boundary conditions 
for Dlu are the same as for u along the straight sides Ix-yl = R. The 
argument to establish differentiability just given could then be carried out 
just as well, the only difference being that the matrix K + ~ A  takes the place 
of K+A. After restricting the region further, if necessary, one may conclude 
again that Dls has strong derivatives. The same then holds for the deriv- 
atives au/aa: and au/ay being linear combinations of D1u, Ku, and u. 
Continuing one finds that the solution u has strong derivatives of any 
order provided the data have sufficient differentiability properties. As was 
explained in the introduction, it is a consequence of this fact that the solution 
of o w  problem is continuous and possesses contiwous derivatives of any desired 
order if the data possess sufficient differentiability firoperties. 

19. Cauchy-Riemann and Laplace Equations 
In this section we shall show that problems of the Cauchy-Riemann 

In treating the Cauchy-Riemann equation we confine ourselves to the 
equation and the Laplace equation can be fitted into our framework. 

non-homogeneous equation 

for a function w = w,+iw, of two variables xl , x, in the rectangle 
x; 5 xl 5 x l  , x i  5 x, 5 x i  , at whose boundary we impose the conditions 

for xl = x: , 
for x1 = x; and x, = x$ . 

w1 = 0 
w2 = 0 

Of the function f we require that f2=0 on x=x: and f l = O  on x = x i .  
To be sure, the problem of the homogeneous equation with values w, and 

w, prescribed at xl = x: and x, = x;: , x, = xf respectively, can be reduced 
to this problem. 

We double the rectangle by reflection in the sides x, = xz , taking w, 
as even, w, as odd in xz-x$ . Then the boundary consists of two disconnect- 
ed parts, the two double segments xl = x: , x; s x2 5 %:. 

We introduce the.operator C which transforms w into Cw = G and take 
the inner product w(l)  - w = 9% GWw = We (Cw(l))w = 9 e  w(1)Cw. We 
then could write the differential equation in the form 

a C - w = C f  
a2 
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noting that the differential operator C a/% is "symmetric". This operator is 
not positive symmetric however. 

To reduce the equation to a positive symmetric one we introduce new 
functions 

and a diagonal matrix 

in which the terms 
{w, x }  we then set up the system of equations 

are to have continuous derivatives. For the system 

which is satisfied for a solution of = f with awl& = x by virtue of 
i?/azl = (a/&)+ (alaz) and (a/&) ( a p z )  = ( a / a z ) ( 8 / 8 ~ ) .  The quantities p1,2 
and x1 are to be reflected as even functions in za-x$ , while x2 is to be an odd 
function. 

This system is symmetric positive since a/az is adjoint to 8/82 provided 
the functions pl,z are so chosen that the matrix K = Capla% is positive 
definite. 

On the boundary q = the matrix becomes 

setting 
1 2$ --c .=-( 2 c  0) 

we verify that the boundary condition (p-f?)(w, x) = 0 is admissible 
provided p is positive on xl = xf . Evidently, this boundary condition re- 
duces to w1 = x2 = 0 on x, = x;' and to w2 = x1 = 0 on x1 = x; , as desired. 

It is then clear that the theory of Sections 9, 10 and 11 is applicable. 
Therefore a strong-and even strongly differentiable-solution exists, 
provided f has square integrable first and second derivatives. 

Thus the function aw/az = x admits 8/82 strongly. Hence awl82 
admits a/& strongly and a2 wlaz 8.2 = a 2  w/az ax. Consequently, the function 
g = 8w/az- f satisfies the equation 
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a 
( P  + c)  c (; - t )  = 0. 

This is a symmetric positive equation for C(aw/aZ-f)  provided $,, > 0 
which we can achieve without restriction. The associated matrix /3 is &C 
on x,  = @. We set p = 1. Then the boundary conditions (aw/aZ-f), = 0 
on xl = x;f , and (aw/&-f)l = 0 on xl = z; are admissible. Now, in view of 
f, = 0, xz = 0, and v1 = 0 on xl = x: we have 

Similarly, we derive (aw/aE-f)l = 0 from f l  = 0, x1 = 0, and w, = 0. 
I t  then follows that w satisfies the relation aw/aZ = f on x1 = x;. 

20. The Dirichlet Problem 
In conclusion we want to show that the Dirichlet problem for an elliptic 

equation of the second order can be handled by our method. We consider 
the equation Lu = f in a manifold 92 with boundary @ and ask for a solution 
which vanishes at  9'. With reference to each patch we write the equation 
in the form 

where ghu is a positive definite contravariant tensor density; then we rewrite 
the equation as a symmetric positive system in the manner explained in the 
introduction and in Section 6. We introduce the functions uo = 4, uh = gav 
and define the matrix ga, by gaLgtv  = G;(det {ga,,})', We also introduce the 
functions p a ( x )  with p i  > 0 in 92, pana > 0 on 9 and set $,,= g,,P'. We 
can now write the equation in the form 

Here and in the following, the subscripts A and v run from 1 to m. Near the 
boundary 9, in a half-patch with xm = 0 on g, we have 

and hence 
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so that the boundary condition M u  = 0 reduces to uo = 0, as desired. 
We proceed to define tangential operators D = (D,) such that a rela- 

tion (D-t)K=KD holds with an appropriate matrix t and an appropriate 
operator K .  We shall adopt a notation which somewhat differs from the one 
introduced in Section 8 and let the operator K act only on the system {D,) 
with (T # 0, from which Do = 1 is omitted; the relation in question will then 
have the form 

1 

1 

1 

(D--t)K = K D f r  
1 

where I is an appropriate matrix. 
It is a remarkable fact that the matrices D, can be introduced in such a 

way that K reduces to K ,  making it possible to write the last relation in the 
form 1 

(D,-t,)K = KD,+Y, 

In other words, the component (KD) ,  of KD depends only on D, itself and 
is given by KD, . As a consequence, the matrix K reduces to the matrix K ,  

already assumed to have a positive definite symmetric part. The condition 
that the matrix, denoted by K in Section 8 and now to be written as 

1 1 

1 

1 

be positive definite can be achieved by multiplying all D, , and thus r ,  by a 
sufficiently small factor. 

Furthermore we shall show that the relation (D--tB)M = M D  at the 
boundary reduces to 1 

(D,- t f )M = MD,  , 

so that M = M and ,LL = p and hence p+p‘ = p+p’ 1 0. 
1 1 1 1  

Thus, the fact that the solutions of elliptic equations of the form 
(gA”+lA)Ip = -f admit differentiation of every order is-in our framework 
-reduced to the existence of operators D with the properties described. 

Consider first an interior patch and take the operator 

where 7 is the contribution of the partition of unity associated with the 
patch. We readily compute the commutator of this operator with K :  
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a 
[7&] = a 

Ygnvls 

By virtue of the relations 

we may write the commutator relation in the form 

where 

with 
yo, = vPt g , v / ,  + W V $ S  + 711 PL g s v  9 

r ~ ,  = - W n V / ,  + g A 8  + V/a gxV . 
Introducing the operators D and D--t by 

we arrive at  the relations 

as desired. 
For a half-patch with z m  = 0 on the boundary 93' we modify the defini- 

tion of the operators D, simply by substituting xm 7 for 7 in the definitions 
of D, , D,-t, and Y, . The tangential character of D, is then assured. 
According to the definition of the matrix tg given in Section 8 we have 

(D,-t,)K = KD,-Y, 



SYMMETRIC POSITIVE SYSTEMS 417 

tZ--tm = 7 and t:-t8 = 0 for s # m. 
A simple calculation shows that the relation 

holds on g. 
The operators D, are assigned to the patch Pp and should, therefore, 

be denoted by D,P . Assigning a number Q to the pair p, s and setting D, = D,P 
we obtain the operators D, as desired, 

The definition of the operators D is given in connection with a definite 
representation of the column 21 with reference to a patch, so chosen that 
wA, for A # 0, is the density of the contravariant gradient of ac0 = 4. 
The identification transformation for the column associated with different 
patches is thus the transformation of a contravariant density. This trans- 
formation is not of the character of those introduced in Section 7, which 
were orthogonal except for a factor. Here we make use of the fact that this 
restriction, made to simplify the description, was actually not necessary, 
see footnote 6 on page 363. 

The final result of these considerations is that the equation in question 
possesses a unique solution 4 in 8 with strong first and second derivatives in 8. 
The function and its first derivatives possess boundary values; those of (b 
and its tangential derivatives vanish. Here it is assumed that the identifica- 
tion transformation has continuous second derivatives; the coefficients g,, 
are assumed to have continuous first derivatives. The right member f is to 
have strong first derivatives. 

Note that we have established immediately the existence of second 
derivatives of the solution, and not, as in other procedures, the existence of 
just first derivatives as a first step. Our method does not seem suitable to 
answer this more modest question. The fact that our method immediately 
yields stronger results is, of course, one of the reasons for its complicated 
character. Indeed, among the many different approaches to the Dirichlet 
problem the one here presented seems to be the most intricate one. Still it is 
gratifying that it is possible to press this problem into the general framework 
of our theory. 

(D--t),M = MD, 
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