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Introduction 

This paper is concerned with the linear differential operator 

m a  

j-1 ax5 
L = 2 A i  - + B, 

where the Aj  and B are n x n matrix-valued functions defined on a smooth 
domain G contained in R,. The operator acts on vector-valued functions 
likewise defined on G and subject to boundary conditions which can be 
described as follows: At each point x of the boundary S of G, let N (x) denote 
a linear subspace of constant dimension which is smoothly varying on S .  
Then we require ~ ( x )  to lie in N ( x )  at each boundary point x of S .  

If we now set n(x )  = (nl, * - -, n,) equal to the outer normal to G at  
x E S, then the boundary matrix &(x) is defined by 

111 

A ,  = 2 njAi .  

Assuming A ,  to be non-singular at all points of S ,  it is shown in Section 1 
that any weak solution of Lzl = f satisfying the boundary conditions in a 
weak sense is actually a strong solution and satisfies the boundary conditions 
in the strong sense. The main tool used here is the notion of a mollifier which 
smoothes only the tangential direction and hence does not interfere signi- 
ficantly with the boundary values of the function. In Section 2 the same 
method is applied to the case where A, is merely of constant rank near the 
boundary (but not necessarily non-singular). In this case it is shown that 
a weak solution of LN = f satisfying the boundary conditions in a weak sense 
is actually what we call a semi-strong solution satisfying the boundary 
conditions in a semi-strong sense. 
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Next we restrict the A' to be symmetric and the operator to be formally 
dissipative, i.e., we assume 

m 
D = B+B*- z\ A:, f 0, 

j=1 
X E  G. 

We also take N ( x )  to be maximal non-positive at each x in S, i.e., we assume 
that 

uA,u S 0, U E N ( X ) ,  X E S ,  

and that N ( x )  is not properly contained in any other subspace having this 
property. Finally we suppose A,, to be of constant rank near S .  Under these 
assumptions it is shown in Section 3 that 

u-Lu = f 

has a strong solution satisfying the boundary conditions in the strong sense 
for each square integrable function f. A solution to this problem has pre- 
viously been obtained by K. 0. Friedrichs [2] as a biproduct of his investiga- 
tion into the smoothness properties of u as determined by those off = u-Lu. 

Following Friedrichs we are also able to extend the above result to the 
case where the boundary has corners provided that A ,  is either positive or 
negative on one of the sides of the corner. In addition we have developed a 
technique for extending the result in the presence of certain unessential 
boundary points. In particular we are able to establish the uniqueness of a 
strong solution to the Frankl problem for the Tricomi equation and so 
extend the work of C .  S .  Morawetz [3] who has obtained the existence, but 
not uniqueness, of a weak solution to this problem. 

1. Weak Implies Strong in the Regular Case 

Let L be a first order matrix partial differential operator 

where the coefficients Aj and B are n x n matrices not required to be sym- 
metric, the A j  being smooth1 functions of IZ: and the B being piecewise con- 
tinuous in x. The domain G of the independent variable x is assumed to have 
a boundary S which is of class C2. The regular case is characterized by the 
fact that S is nowhere characteristic with respect to the operator L,  i.e., it is 
assumed that the boundary matrix A ,  is nowhere singular; here 

'A function will be called smooth if it is continuous and piecewise continuously differ- 
entiable. 
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(1.2) 
m 

A ,  = 2 n, A j, 
3=1 

(n l ,  * - a ,  n,) being the normal to the surface S.  
We denote the formal adjoint of L by L*: 

(1.1') 
m 2  

Further, if we denote by parentheses the L, scalar product over G of vector- 
valued functions, then according to Green's formula 

(v, Lu)-(u, L*v)  = J vA,udS 

is valid for all vector-valued functions u and v which are, say, absolutely 
continuous in each variable separately, have square integrable first deriva- 
tives, and are continuous up to the boundary in G. 

In this paper we are interested in functions subject to certain linear 
homogeneous boundary conditions. To define these boundary conditions 
we associate with each boundary point x a linear subspace N ( x )  of n dimen- 
sional space whose dimension is the same at all points of S and which varies 
smoothly with x ,  i.e., N ( z )  is spanned by vectors which vary smoothly with 
x. Then the boundary condition is 

(1.4) u(z) in N ( z )  

for all boundary points z. 
The adjoint bo.u.ndury condition is 

(1.4') v(x)  in P ( z )  

for all boundary points x, where P(z )  is the orthogonal complement of 

If u satisfies the boundary conditions (1.4) and v the adjoint boundary 

(1.3) s 

A I t  ( x ) N ( x ) .  

conditions (1.4'), then the boundary terms in Green's formula vanish: 

(1.3') (0, Lu) - (L*ZI, zc) = 0. 

DEFINITION. Let f be a square integrable function; the square integrable 
function 21 is said to be a weak solution of 

Lu = f 

and to satisfy in the weak sense the boundary condition (1.4) if it belongs to 
the domain of the adjoint of L* defined on all smooth functions satisfying 
the adjoint boundary conditions (1.4'), i.e., if the relation 
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(1.5) (v, f)-(L*v, 24) = 0 

holds for all such .functions o. 

DEFINITION. Let u and f be square integrable functions; u is said to be 
a strong solution of 

Lu = f ,  

satisfying the boundary conditions (1.4) in the strong sense, if the pair {u, f )  
belongs to the closure of the graph of L,  more precisely, if u is the limit in the 
L,  norm of a sequence of functions {uk} which are continuous up to the 
boundary, satisfy the boundary conditions (1.4), have square integrable 
first derivatives, and such that 

f k  = Lu, 

tends to f in the L, norm. 
Applying Green’s formula (1.3’) to uk: and any smooth 71 satisfying the 

adjoint boundary conditions, and letting K tend to a, we obtain the result 
that if w satisfies in the strong sense the above differential equation and 
boundary conditions, then it also satisfies them in the weak sense. In the 
case where no boundary conditions are imposed Friedrichs has shown in [I] 
that, conversely, if u satisfies the differential equation Lu = f in the weak 
sense, then it also satisfies it in the strong sense. In this section we extend 
this result to include boundary conditions. 

THEOREM 1. Let u be a square integrable function which satisfies equation 
(1 .1)  and boundary conditions (1.4) in a domain  G whose boundary is  not 
characteristic; then the equation and boundary conditions are satisfied in the 
strong sense. 

The first step is to localize the problem; this is easily accomplished. 
Let {+i(x)} be a smooth partition of unity for G, i.e., 2 +i = 1 in G. Define 
up as +i%;  it is easy to show that if zc is a weak solution of Lu = f ,  then zdi 

is a weak solution of Lu, = f,, where 

Furthermore ui satisfies in the weak sense the same boundary conditions 
as u does. 

From now on we suppose that u vanishes outside of a set with a small 
diameter. If this set does not intersect the boundary, then the above men- 
tioned Friedrichs result suffices to establish Theorem 1 . 1  for u. On the other 
hand, if this set contains a portion of the boundary S ,  then we introduce 
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new independent variables in terms of which the relevant portion of the 
boundary becomes a hyperplane. Since u vanishes outside of the small set 
in question, we may as well assume that the domain G is a slab contained 
between two hyperplanes y = 0 and y = 1, and that u vanishes for say 

Since the boundary space N (x) was assumed to vary smoothly, we can 
introduce new dependent variables in terms of which the boundary condition 
becomes 

Y < &  

(1.6) u'(x) = * * - = %+) = 0, 

where p is the co-dimension of N ( x ) .  
We have assumed at the outset that the boundary of G is not charac- 

teristic; this means that the coefficient of u,, is non-singular on (and hence 
near) the boundary. By choosing the set, outside of which u vanishes, suf- 
ficiently small, we see that this coefficient will be non-singular on the support 
of u; however, outside of the support of u we may alter the coefficients of L 
at will, so we may as well assume that the coefficient of u, is non-singular 
throughout the slab G.  Multiplying the operator by the inverse of this co- 
efficient we can bring it into the form 

(1.7) 
a L = - + M ,  
aY 

where M is a first order differential operator in the tangential variables x 
which varies of course with y. 

The adjoint of the boundary condition (1.6) for the operator (1 .7 )  is 
clearly 

(1.6') v ~ + ~  = . . . = v n  = 0. 

We shall now deduce some properties of u merely from the fact that u 
satisfies in the weak sense the equation Lu = f ,  i.e. that Green's formula (1.5) 
holds for all smooth functions z, which vanish outside of compact subsets of G. 

The first conclusion is: u satisfies the equation 

Lu = f 

in the sense of the theory of distributions. 
For further analysis it is convenient to regard the functions defined in 

the slab G as functions of the single variable y whose values, however, lie in 
various spaces of functions of x. For this purpose we introduce the following 
scalar products, norms and spaces of functions of the x variables: 

a)  H, is the space of square integrable vector-valued functions of x; 
the scalar product in H,, is denoted by [r, s], the norm [r, r]* by Ir]. 
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b) H I  is the space of vector-valued functions of z with square integrable 
first derivatives. The norm in H ,  is denoted by Is/,, and is defined, as usual, 
by 

Isl? = Is?+ 2 IW, 
the summation being over all first order partial derivatives Ds of s with 
respect to the x-variables. 

c) H-, is the dual space to N, with respect to the scalar product of 
H,; the norm in H-, is defined by 

H-, is a space of distributions. We shall have occasion to use the Schwartz 
inequality 

rr> SI 5 I ~ I l l S I - 1  
valid for any r in H , ,  s in H-,. 

We shall denote by L,(H,), L,(H,), L,(H-,) the space of square inte- 
grable functions of y ,  0 < y < 1, with values lying in the spaces H,, H ,  and 
H-, , respectively. 

The space of square integrable functions u over the slab G will be 
denoted by L,, and the L,  norm over G by jjulj. 

We think of all these spaces as being obtained by completion in their 
respective norms of the space of smooth functions defined in the slab G 
having bounded support. 

The following propositions about these spaces are self-evident for con- 
tinuous functions and follow for the completed spaces by continuity with 
respect to the appropriate norm: 

L ,  (No)  is  isometrically isomorphic to L,  . 
L, is a subs+ace of L,(H-,). 
L,(H-,) i s  a subspace of the space of distributions over the slab G. 
The space of functions over the slab G wzth square integrable jirst derivatives 

Let M denote a first order partial differential operator with respect to 

M maps H ,  boundedly into H,. 

M maps L,(H,) boundedly into L2(Ho).  
If the principal coefficients of M have piecewise continuous partial 

derivatives of first order with respect to x, then M* has bounded coefficients 
and it follows from the previous result that M* maps N, into H,. From this 
it follows by duality that M maps H ,  boundedly into H-l. 

i s  a subspace of L,(H,).  

the x-variables whose coefficients are bounded, then 

From this we conclude 
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We sketch the proof: 
Integrating by parts and using the Schwarz inequality we have 

[Y, M s ]  = [M*r, s] 5 IM*rjIsl 5 const IrI1/s/. 

Since by definition 

we have 
IMsl-, 5 const /s I .  

From this result we conclude 

iM maps L,(H,) boundedly into LZ(H-,) ,  

The following result is an immediate consequence of the Schwartz in- 

If w belongs to L,(H-,), v to L,(Hl), then [ ~ ( y ) ,  v ( y ) ]  i s  a square infegrable 

Combining this with previous results we have: 
If u belongs to L,(H,), v to L,(H,), then both [Mu,  v ]  and [u, M*v]  are 

square integrable scalar functions of y and they are equal. 

LEMMA 1.1 .  Suppose that both u and f belong to L, and Lu = f weakly; 
then u ( y )  considered as a fwnction of y with values ilz H-, i s  continuous in 
0 5 y 2 1 alzd u, lies in L2(HJ.  Fzadhermore, Greens' formula 

equality: 

scalar function of y .  

(1.8) [Zt(l), V ( l ) l - [ U ( O ) ,  @)I = (/, V ) - ( U ,  L"V) 

holds for all smooth functions v (x ,  y )  with bounded support. 

the expression 
Proof: Let v (3, y) be any smooth function with bounded support; form 

(1.9) j; {[/, vl-", L*VI)dY, 

y1 any value between 0 and 1. If integration by parts were permissible, we 
could easily show that the above expression is [ u ( y l ) ,  v ( y , ) ] .  Instead we 
proceed as follows: 

If v ( y l )  = 0, then we can continue v as identically zero for y > y1 and 
rewrite (1.9) as 

which is zero since Lu = f weakly. It follows then that if v1 and vz are two 
test functions which agree at y = yl, then the value of (1.9) for v1 and vz  is 
the same. Take now v = r to be independent of y .  Then L*v = M*r; 
applying the Schwarz inequality we see that (1.9) is a bounded linear 

(f, .) - (u, L* v )  
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functional of r in the H ,  norm; by the duality of H, and H-, this linear 
functional can be represented as 

[G., TI> 

where 6 = G(y,) is some element of H-,. 

inequality 
We claim that G(y) depends continuously on y; for, by the Schwarz 

[G(y,)-6(y7.)Tl = 1;; 5 Iy,--Y21y" const. I Y I l ,  

so by the definition of the H-, norm 

I~(y1)-~(y2)I-, 5 const. Iy1--y21y". 
Next we verify that ii(y), regarded as a distribution in the slab is 

equal to ~ ( 9 ) ;  for this it is sufficient to show that 

(6, v )  = (u, .) 

for all smooth v.  By definition of z2 we have 
1 111 

(', ') = s,' ['(yl), vhl)ldyl = I. I. [ f ,  z'l-(UJ L*vldydyl j  

which can be transformed into 

jol [ f ( Y ) >  (l--Y)v(Y)l-[U(Y), ( l - - Y ) ~ * ' I ~ Y .  
Define 

Noting that 

we can rewrite the above integral as 

(1-y)v = w. 

L*w = (l-y)L*v+v 

( f ,  w)- (u., L*w)+ ( u , v ) .  
Since the function w does vanish at  y = 1 and since u satisfies weakly 
Lu = f ,  the first two terms in the above expression add up to zero. This 
shows that (G, v )  = (u, v )  for all smooth v ,  and so u = G. 

is a weak solution of Lu = f and satisfies in the weak sense the boundary 
conditions (1.6), the relation (1.5) holds for all smooth v satisfying the ad- 
joint boundary conditions (1.6'). Comparing (1.5) with (1.8) we see that 

Relation (1.8) can be obtained from (1.9) by putting y, = 1. Since 

[=(I),  v(1)I = 0 

for all smooth vector valued functions v (1 )  of 2 whose last n-p components 
are zero. From this we conclude the 
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COROLLARY TO LEMMA 1.1. If u i s  a weak solution and satisfies in the 
weak sense the boundary conditions (1.6), then the first p components of u(1) 
are zero as distributions in the x-variables. 

We are now ready to proceed with the proof of the main theorem. 
Let j(x) be any infinitely differentiable non-negative function with com- 

pact support and total mass one: I j(x)dx = 1. 

The functions j ,  are defined, for positive 6, as 

where k is the dimension of the x-space, in this case m-1. 
The operator J ,  (called mollifier) is defined as convolution with j,: 

J E s  = j ,  * s = 

The following lemmas are classical: 

j ,(z)s(x-z)dz. s 
LEMMA 1.2. J, maps H, into H,, and its norm i s  equal to 1. 

COROLLARY. J ,  mafs L, into L,  and its norm is  equal to 1. 

LEMMA 1.2’. Denote partial differentiation with respect to any of the 
x-variables by  D ;  DJ,  maps  H ,  into H ,  and L, into L,. 

LEMMA 1.3. For any s in H,, IJ,s-sl tends to zero as E tends to zero. 

COROLLARY. For any  u in L,, IIJEu-ull tends to zero as E tends to zero. 
Lemma 1.3 is easily verified if s and 24 are continuous functions; to prove 

it for any square integrable s and u, it is sufficient to  approximate them by 
continuous functions and use Lemma 1.2. 

The key results in Friedrichs’ paper [l] are the following two lemmas? 

2Friedrichs’ argument can be extended in two ways: (i) the A J  need only be smooth in G 
and (ii) the boundary G need only be Lipschitz continuous. (i) is readily verified simply by 
checking through Friedrichs’ proof of the main theorem in [I] which actually holds under the 
hypothesis of (i). As for (ii), we note that the theorem deals with a local property. Hence, sup- 
pose we have a boundary patch and after a suitable rotation of coordinates the patch can be 
represented by 

where f satisfies the condition 
l/(z‘) - j (Z’ ) I  5 M[z’--e’( 

for arbitrary d, 9‘ of distance less than 1 from the origin and fixed M 2 1. Let z be a function 
in the domain of L* which vanishes near the inner portions of the boundary of the patch. 
Then in terms of the Friedrichs’ mollifier (see Section 2) 
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LEMMA 1.4. J ,  "almost commutes" with any first order operator M with 
piecewise continuous B and smooth A1 's;  i.e., the commutator 

MJe-JsM 

maps H,, into H ,  and i s  bounded by a constant independent of E .  

COROLLARY. The operators {MJ,- J,M} map L, into L,  and are uni- 

For every s in H , ,  

formly bounded in norm. 

LEMMA 1.5. 

I {MJ& - J ,  M)sl 
tends to zero with E. 

COROLLARY. For every u in L,, 

I I {MJ,-J,M)uI I 
tends to zero with. E .  

Lemma 1.5 is easily verified if s and u are smooth and have compact 
support; it follows for any square integrable s and u by approximating them 
by smooth functions, and using Lemma 1.4. 

Suppose now that u and Lu = f are square integrable, and the first p 
components of u vanish as distributions at y = 1. We define the sequence 
of functions {u,) as 

We claim that 
U ,  = J,u. 

i) u, tends to u and f 6  = Lu, to f in the L, norm, 
ii) u, has square integrable first derivatives, 

iii) u, is continuous in the closure of G and satisfies the boundary 
conditions (1.7) at every point of the boundary. 

These properties of the approximating sequence establish u as a strong 
solution of Lu = f ,  satisfying in the strong sense the boundary conditions. 

i) The corollary of Lemma 1.3 implies that u, tends to u in the L,  norm. 
Next we compute f ,  = Lu,; using the fact that the operators J ,  and a/ay 
commute: 

we set 

where 6,  = (0, 0, . . ., 0, 2 M e ) .  Then for any x in the patch we see that j,(r-5+cl,) is dif- 
ferent from zero only for Srn > f ( # ) .  With this choice of mollifier the Friedrichs' argument 
goes through essentially as before to give the desired result. 
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= J ,  LU + {M J,- J ,  M ) u  

= J,f+{MJ&-J&Wu. 
I t  follows now from the corollaries of Lemmas 1.3 and 1 . 5  that f, tends to f 
in the L,  norm. 

ii) According to Lemma 1.2’ all x partial derivatives Du, = DJEuE of 
uE are square integrable. Since 

and, as we have already shown, both f, and Mu, are square integrable, it 
follows that au,/ay is also square integrable. 

iii) We shall show that u, is continuous separately in y and in x, uni- 
formly for fixed E. 

For fixed x, i,(x-z) as function of z belongs to H,;  denoting this ele- 
ment of HI by j,(x) we can write 

so we have 
u,(x, Y) = [ i E @ ) ’  U(Y) l ,  

u,k, Y)-td&(x> Y’) = [i&(4> 4 Y ) - - u ( Y ’ ) l -  

li&lll”(Y) -4Yf)I-1. 

By the Schwartz inequality this is less than 

Since according to Lemma 1.1 ,  u(y) as function of y with values in H-, is 
continuous, it follows that u, is continuous in y, uniformly in x for fixed E. 

Likewise 
U,(% Y)-u&(x’? Y) = ri&)-i&(xfL .U(Y)I  

li, (2) -i, (4 I1 IU (Y) 1-1 . 

which by the Schwartz inequality is less than 

Since u(y)-being continuous-is bounded in the H-,  norm, and since i(x) 
is continuously differentiable in the H ,  norm, it follows that u, is a contin- 
uous function of x, uniformly in y for fixed E. 

According to the corollary of Lemma 1.1 the first + components of u(1) 
are zero as distributions. Since the value of any component of u, at a point 
on the boundary is an integral involving the corresponding component of 
u ( l ) ,  it follows that the first + components of u, vanish for y = 1. This 
completes the proof of Theorem 1.1. 

Lemma 1.1 is a special and more specific instance of the following 
proposition: 
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Let L be a differential operator with C" coefficients for which the hyper- 
$lanes y = const. are not characteristic. Let u be a distrib.ution solution of 

Lu = f ,  
/ in C". T h e n  u, regarded as a function of y ,  whose values are distributions in x, 
belongs to C". 

2. Weak Implies Semi-strong in the Singular Case 
In this section we shall extend the previous development to the case in 

which the boundary matrix A ,  is possibly singular but of constant rank in a 
neighborhood of the boundary S. For this case the same approach yields a 
somewhat weakened version of the theorem of the previous section. 

We now assume that the linear subspace N ( x )  defining the linear homo- 
geneous boundary condition not only has the same dimension at all points z 
of S and varies smoothly with x on S ,  but that it contains the null space of 
An(x)  at each point x of S (This condition is automatically satisfied in the 
applications considered in Section 3.) We note that N ( s )  can then be describ- 
ed as the orthogonal complement of A:@) P ( x ) ,  where P(z )  defines the ad- 
joint boundary condition as in (1.4'). 

DEFINITION. Let u and f be square integrable functions; u is said to be 
a semi-strong solution of 

satisfying the boundary conditions (1.4) in the semi-strong sense if u is the 
limit in the L, norm of a sequence of functions (uk} such that (i) uk is a 
weak solution of Luk = f k ,  where f k  tends to f in the L, norm, (ii) there exist 
patches GI, 9 -, G, covering G and functions with support in Gi such 
that u, = z:=l u,,~, (iii) the u,,~ are continuously differentiable for interior 
patches Gi , and (iv) for boundary patches Gi and suitable local coordinates 
in Gi ,  A,  is of the form (2.1), A n U k , d  is continuous up to the boundary and 
orthogonal to P ( x )  on the boundary, is continuous and has square 
integrable first derivatives in the tangential directions, and in the normal 
direction A n ~ k , i  is continuous and has a square integrable first derivative. 

THEOREM 2.1. If u satisfies the equation Lu = f and boundary conditions 
(1.4) in the weak sense, then it also satisfies them in the semi-strong sense. 

Proof: As before the discussion can be localized and because of the pre- 
viously mentioned Friedrichs result [ 11 for interior patches, it will suffice 
to consider only the situation where G is a slab contained between two hyper- 
planes y = 0 and y = 1, and where u vanishes for y < Q and has a bounded 
support in the slab. Since by hypothesis A,  is of constant rank near S, we 
may, without loss of generality, also assume that A ,  is of constant rank Y 

Lu = f 
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throughout the slab. A smooth orthogonal transformation of the dependent 
variable will therefore bring A ,  into the form 

(2.1) 

where A,, is an r X r  matrix-valued function on G .  
Finally we transform the first r components of the dependent variable 

so that the boundary conditions become 

(2.2) u'(x) = * * - = a+) = 0 on y = 1, 

where again p is the co-dimension of N ( x ) .  Multiplying the operator by a 
suitable smooth non-singular matrix-valued function3 will bring Lu into the 
form 

awl Lu= - + M u ,  
aY 

where the first I components of u, are the same as those of u but the remain- 
ing components vanish. 

The adjoint of the boundary condition (2.2) for the operator (2.3) is now 
(2.3') 

LEMMA 2.1. Su$#ose that both u and f belong to L,  and Lu = f weakly, 
then ul(y) considered as a function of y with vahes  in H-, is  continuous in 
0 5 y 5 1 with ul, in L2(H-,), 

vP+l(x) = - * * = vv(x) = 0 for y = 1. 

Furthermore, Green's formula 

(2.4) [ U , ( l ) ,  ~ ( l ) l - - [ ~ l ( O ) ,  @)I = (f, V ) - ( %  L*v) 
holds for all smooth functions v with bounded support. 

appropriate places. 
The proof proceeds more or less as before if we replace 21 by u1 in the 

For instance in the present case 

so that (1.9) becomes 

8Multiplying A ,  of (2.1) by a suitable orthogonal matrix-valued function on the left will 
bring i t  into the form 

where A ,  is an Y x Y non-singular matrix-valued function on G. Finally multiplying on the 
left by 

will bring the operator L into the form (2.2). 
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Again we note that 

belongs to L, (H- l ) .  

in this more general case. 

that 

UIU = f--Mu 

We may also conclude as before that the corollary to Lemma 1.1 holds 

The proof of the main theorem now proceeds much as before. We show 

i)  ue tends to  u and f, 3 Lu, to f in the L,  norm, 
ii) uE is absolutely continuous and has square integrable derivatives in 

the x-directions, whereas (us)1 is absolutely continuous and has a square 
integrable derivative in the y-direction, 

iii) (uJ1 is continuous in the closure of G and satisfies the boundary 
conditions (2.2) at every point of the boundary, 

iv) ue satisfies the boundary conditions (2.2) at every point of the 
boundary. 

We shall remark only on points of difference between the proofs of the 
above propositions and the proofs of their analogues in Section 1. In the 
case of i) we note that 

where the last equality essentially asserts the equivalence between ztl (y) 
being differentiable in the weak and strong H-, topologies and follows from 
Lemma 2.1. In  proposition ii), the square integrability of (uJlV follows from 

Proposition iii) follows as before if we simply replace us by (uJl in the 
previous argument. Finally u, satisfies the boundary conditions whenever 
( u , ) ~  does, since these conditions are independent of the last n--r compo- 
nents. 

3. Symmetric Dissipative Operators 

A first order operator L is called symmetric if its coefficients Aj are 
(real) symmetric matrices. Symmetric operators with smooth A’ and piece- 
wise continuous B,  satisfy the following identity: 

ULU = &uA’z~),~+uKu, 
where K = B - S Z  A:,. Integrating the above relation over G we obtain 
the so-called energy identity 

(3.1) (u, Lu) = (u, Kzt) + J ztA,udS, 
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where the parentheses denote the L, scalar product for vector-valued func- 
tions defined on G, and A ,  denotes as before the boundary matrix (1.2). 

This formula is valid for all functions u which have continuous first 
derivatives in G and which are continuous up to the boundary of G; it is then 
also valid for all u which have square integrable first derivatives in G and 
are continuous up to the boundary, since such functions can be approximat- 
ed, through mollification, by continuously differentiable ones. 

To be able to deal with the case in which A ,  is singular on the boundary 
we need the following result. 

Let u be a square integrable function which is semi-strong in the sense 
of Section 2, i.e., has square integrable first derivatives in the interior, A,u is 
continuous up to the boundary and has square integrable first derivatives 
while % itself has square integrable first derivatives in the tangential 
directions. 

LEMMA. The energy identity (3.1) holds for semi-strong functions. 
Proof: First we localize the problem. Let (rjbi} be a smooth partition of 

unity in G in this sense: 

2 (4J2 = 1 on G. 
i 

Define 

We claim that 

for, 

U i  = r$<24. 

2 (Ui, L U , )  = (u, Lu);  

(Ui, LuJ = (+i% L+,u) = ($$4 +iL.U++idAj.U) 

= (+?a, L U ) + + (  (+;)*iU, Aju) .  

Sum with respect to i and use the relation 14; = 1; the sum of the first 
terms is (26, Lu) the sum of the second terms is zero. Similarly we find that 

so we conclude: if the energy relation (3.1) holds for the functions ui, then 
it holds for u. 

Since u is assumed to be smooth on interior patches, there is no diffi- 
culty in deriving the energy relation for ui whose support lies in the interior 
of G. Consider now ui = u whose support lies in a boundary patch; change 
coordinates and map the patch into a slab with tangential coordinates x 
and normal coordinate y .  Denote by ul the projection of u into the range of 
A , .  Clearly, 

UA,U = uIA,uI. 
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By assumption, A,u-and therefore also u,-is continuous up to the bound- 
ary and has square integrable first derivatives. 

Consider now the divergence expression 

ULU = ~{uA ,u ) ,+(uA~u} .~+uK~.  

Since uA,u = u1 Anul is continuous up to the boundary and is differentiable 
with respect to y ,  the first term can be integrated with respect to y .  Since u 
was assumed differentiable with respect to the tangential variable xi, the 
integration of the rest of the terms can be performed too, yielding (3.1).  

If we impose the additional condition 

(3.2) 
the operator L becomes formally dissifiative. 
I -L ,  calls the latter operator positive if (3.2) is satisfied. 

D = K+K* 5 0, 

Friedrichs [ 2 ] ,  dealing with 

LEMMA 3.1. If L i s  formally dissipative, then so is  its adjoirct L*. 
Proof: It follows from the formula (1.1) for L* that the K corresponding 

to L* is just the adjoint of the K for L and hence L and L* have the same D. 

DEFINITION. The boundary condition 

u ( x )  in N ( x )  for x on S 

is called non-positive if the matrix A,@) is non-positive over N ( x ) ,  i.e. if 

(3.3) %An% S 0 

for all u(x) in N ( x ) ,  x E S. A formally dissipative operator with domain 
limited by non-positive boundary conditions will be called dissipative. 

THEOREM 3.1. Let L be a formally dissipative operator, zc a function with 
square integrable first derivatives which i s  continuous u p  to the boundary and 
satisfies non-positive boundary conditions. For such 2.t the inverse of I -L i s  
bounded, in fact the following inequality holds: 

(3.4) 

Proof: I t  follows from (3.1), (3.2) and (3.3) that 

(24, Lu)+ (Lu, u )  5 0. 
Consequently 

2llU1l2 5 ( U ,  (I-L)u)+( (I-L)% .) 5 211~11 Il(I-L)4L 
which yields (3.4). 

corollaries by passing to the limit: 
Recalling the definition of strong solutions we can derive the following 
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COROLLARY 1. The inequality (3.4) holds for all strong (semi-strong) 
solutions of u - Lu = f which satisfy in the strong sense non-fiositive boandary 
conditions. 

COROLLARY 2. If u i s  a strong (semi-strong) solution of u-Lu = 0 and 

COROLLARY 3. The  equation 

satisfies non-positive boundary conditions, then u = 0. 

u-Lu = f 
has at most one strong (semi-strong) solution satisfying given non-positive 
boundary conditions. 

We turn now to the question of existence of strong solutions. Clearly, 
we cannot expect the equation u-Lu = f to have a solution for every f i f  we 
impose too many boundary conditions. This is certain to be the case if we can 
enlarge the domain of the operator and still maintain uniqueness, thus in 
particular if the spaces N ( z )  can be enlarged without violating non-positivity. 
Hence we assume: 

We note that 
when N ( x )  is maximal, then.it necessarily contains the null space of A,,(x)  
at each x on S. 

The following lemma will be needed (cf. R. Phillips [4], Lemma 3.2 and 
K. 0. Friedrichs [2], Section 5):  

LEMMA 3.2. If the boundary conditions (1.4) are maximal non-fiositive tor 
L,  then the adjoint boundary conditions (1.4') are non-positive for L". 

Proof: According to formula (1.1') the boundary matrix for L* is equal 
to - A , .  Hence it suffices to  show that vA,v is non-negative for each v satis- 
fying the adjoint boundary condition. Suppose the contrary were true, i.e., 
for such a v suppose that 

vA,v < 0. 

The boundary spaces N ( x )  are maximal non-positive. 

Consider the linear space N 
of the form 

NOW 

v spanned by N and v ;  it consists of elements 

u in N and real a. u+av, 

(zc+av)A,(u+av) = u A , ~ + 2 a u A ~ v t  a2vdnv.  

Since v satisfies the adjoint boundary condition, the term linear in a is zero 
and since vA,v was assumed negative, we may conclude that N 0 v is non- 
positive. On the other hand, N being maximal non-positive, it follows that 
v belongs to N .  Finally since v also satisfies the adjoint boundary condition, 
we imply vA?,v = 0, which is contrary to our assumption; this proves the 
lemma. 
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We now come to our main theorem. 

THEOREM 3.2. Let L be a formally dissipative symmetric operator, G a 
domain whose boundary is  of class C2, and N ( x )  smoothly varying boundary 
spaces which are maximal non-positive. Then for any given square integrable 
function f the equation 

u-Lu = f 

has a unique strong solution salisfying in the strong sense the given boundary 
conditions. 

As mentioned in the introduction, essentially the same existence theo- 
rem has been derived by Friedrichs [2] via his differentiability theorem. 

Proof: We claim that the range of g-Lu for smooth functions u which 
satisfy the prescribed boundary conditions at every point of S is not dense 
in L,. For suppose the contrary; then there is a non-trivial function v ortho- 
gonal to this range, i.e., 

(Lzt, v )  = (24, v )  

for all such u. Recalling the definition from Section 1, we see that v is a 
weak solution of 

L*v = v 

satisfying in the weak sense the adjoint boundary conditions. According to  
Theorem 1.1 of the first section, ZJ is then a strong (semi-strong) solution 
and satisfies in the strong sense the adjoint boundary conditions. According 
to Lemmas 3.1 and 3.2 the operator L* is formally dissipative and the adjoint 
boundary conditions are non-positive. Thus by Corollary 2 of Theorem 3.1, 
v is necessarily zero. This contradiction allows us to conclude that the range 
of ( I -L)  is dense in the L,  norm. 

Let f be any square integrable function; since functions of the form 
u-Lu are dense, there exists a sequence {u,,} of smooth functions satisfying 
the prescribed boundary conditions such that un-Lu, tends to f .  According 
to the inequality (3.4) of Theorem 3.1 the functions 'u, also converge in the 
L,  norm and it follows that the limit u is the desired strong solution. 

4. Exceptional Corners 

Following Friedrichs one can extend the previous results to the case 
where the boundary contains corners provided the coefficients Aj are 
suitably restricted. More precisely we permit boundary patches which map 
into half-slabs of the form 
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with the associated portion of S mapping into y = 1 and x1 = 0. Again we 
assume that the y-coefficient A ,  is of constant rank throughout the half-slab 
and now, in addition, we assume that A1 is either 
5 1  = 0. 

If A l  2 0 we extend L onto the entire slab 

We then proceed precisely as before except that 

where has its first component equal to e and its 

positive or negative on 

by setting 

for x1 > 0. 

we redefine j ,  as 

other components zero. 
Suppose now that u is a weak solution satisfying the maximal negative 
boundary condition weakly. Then the adjoint boundary condition along 
x1 = 0 is unrestricted. After localizing u to the half-slab so that it vanishes 
for y < 4 and has bounded support, we extend it to the entire slab by defin- 
ing it to be 0 throughout the upper half-slab. Extending f in the same way, 
it is readily seen that u is now a weak solution of Lu = f on the entire slab; 
here we make use of the unrestricted nature of the adjoint boundary condi- 
tion. The u, which we now obtain by mollifying will vanish for x1 > --E 

and hence satisfies the negative boundary condition trivially. Theorems 2.1 
and 3.2 go through essentially as before. 

In case A1 5 0 on d = 0 we proceed differently. Starting in Section 1 
we redefine the spaces H ,  and H, so that they consist of vector-valued func- 
tions of x defined for the half-space z1 < 0. In order to perform the neces- 
sary integrations by parts, it is necessary that H ,  be the completion of 
smooth functions which vanish outside of compact subsets of this half-space. 
The space H-, is defined as before to be dual to H ,  with respect to the H ,  
inner product. The smooth functions utilized in Lemma 2.1 are also restrict- 
ed to have compact support in the half-space. This condition again appears 
when we construct the mollifiers and will be satisfied if we now replace j ,  by 

The development of Section 2 goes through just as before and the resulting 
function uE is absolutely continuous in the &direction for x1 5 0. These 
functions obviously satisfy the condition u,A1u, 5 0 along x1 = 0 if A1 5 0 
on this portion of the boundary. We then proceed exactly as in Theorem 3.2. 
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5. Unessential Boundary Points 

In this and the next section we will consider certain other exceptional 
situations for which Theorem 3.2 continues to hold. Thus we again suppose 
that L is formally dissipative and that the boundary spaces N ( x )  are maxi- 
mal non-positive. Suppose further that there exists a sequence of real- 
valued smooth scalar multipliers {4n} such that for each n, satisfying 
L*v = f weakly and the adjoint boundary conditions in the weak sense, 
we have 

n > 0, (i) 

(ii) 

(L*4,v, A n ) +  ( A v ,  L"4,v)- (Dbv, A 1 n )  I 0, 
(L*v, 2 ) )  + (0, L*v) - (Dv, v) 

= lim [(L*4,v, 4,v)+ (42, L"4,v)- (@klv, 4,v)I.  
n+Co 

It then follows that 
(L*v, v )  + (v, L*v) 5 0, 

and we may conclude as in the proof of Theorem 3.2 that for any given square 
integrable function f the equation u-La = f has a unique strong solution 
satisfying in the strong sense the given boundary conditions. 

Condition (i) will be satisfied if each 4, vanishes at all points of the 
boundary S in the neighborhood of which S is not of class C2, or N ( x )  does 
not vary smoothly or at  corner points of the kind not treated in the previous 
section. Condition (ii) holds if the points, at which all of the +n vanish, are 
what we shall call "unessential points". 

We note that 

(5.1) (L*+nv, 4,.)+ (4nv, L*+,v)- (D4,D9 4n.v) 
- [( (4n)2'*v, v ) + (  (4n12vo, L*v)-( (4,)2Dv, v > l - ~ C  (4n+ndAjv> v ) .  - 

j 

We shall choose the 4, such that 0 5 4, 5 1 and limn +,(z) = 1 for each z 
in G. In this case the bracketed expression in the right member of (5.1) 
obviously converges to [ (L*v, v)+ (v, L*v) - (Dv, v)] and hence condition (ii) 
will be satisfied if it can be shown that 

(5.2) 

The expression zj (~$~d,,,A'v, v )  can be thought of as a smeared-out bound- 
ary integral around the unessential points of s. 

We are not prepared to give a general theory of unessential boundary 
points but we shall only present two possibilities: 

1. The quadratic form vAv in the boundary integral in the sum of terms 
of the form at$, where a is a coefficient and 7 and 5 are a pair of components 
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of the dependent variables of which one, say [, is known to have square 
integrable first derivatives. 

2. The coefficients A ,  tend to  zero fast enough when the boundary point 
in  question is approached. 

Thus there is present in both cases some feature compensating for the 
singularity of the boundary or boundary conditions. Condition 1 .is frequent- 
ly satisfied when the operator L results from converting a second order equa- 
tion into a first order system. Condition 2 is satisfied in the Frank1 problem 
discussed in Section 6 .  

\Vith (i) as our basic assumption, let us further assume that the bound- 
ary patch in question maps into a wedge G of the form 

n 
2 (xi))' < 1, 

i=l 

X 1  

X n  
0 2 a < tan-1 - < /3 5 Sn, 

where the mapping is of class C2 on the closure of the patch except perhaps 
along the edge x1 = 0 = xnJ where it need only be of class C1.  The portion 
of S in the patch maps into tan-1 (xl/zn) = a and ,t?. In addition to allowing 
S to have an edge of this sort we permit N ( x )  to  have a discontinuity along 
2' = 0 = x n .  

We now set 
p = [(z1)2+ (z")Z]" 

and define 

i1 1 

n- 1 
for p > -, 

1 1 
p -  - for -- s p  S --, (, n n-1 

1 

n 
for p < ---. 

\Vithout loss of generality we can suppose that q and ( vanish near what cor- 
responds to the inner boundary of G, that is near the non-planar portions of 
the boundary of G. Setting 6 = tan-I ( x l / x n )  and x' = (x2, * ., x ' I - ~ ) ,  we 
see that 

so that 
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and hence 

where 

Consequently 

Suppose now that 

lim IG 14n4npgldx 2 2 E .  

Then for n sufficiently large 

where 

0. 

However this is impossible since 

We remark that a similar technique can often be used to extend the 
results of this paper to unbounded domains G. 

6. The Frank1 Problem 

As an illustration of the second possibility indicated in Section 5 we 
treat the Frank1 problem for a mixed type partial differential equation. We 
shall make extensive use of a recent paper by C. S. Morawetz [3] in which the 
existence of a weak solution is established for this problem. In particular we 
shall follow Morawetz in her choice of operator and domain and show that 
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our technique can be used to prove that the solution obtained by Morawetz 
is a strong solution and that it is unique, 

The equation to  be studied is 

(6.1) 

where K (unrelated to the K in Section 3) is a function which depends only 
on x2 and 

aK 
- > 0 for x2 > xi for some xt < 0, 
ax2 

xzK(x2) 2 0 for all 5 2 ,  

The domain G is shown in Figure 1: C ,  is essentially star shaped in the 

t 

Figure 1 

XI, y-coordinate system, where 

y = j;* [K (41  K? do; 

more precisely it is assumed that 

(x')-yx'dy-ydx2) 2 hods > 0 

on C,. On C, and C, it is assumed that 

K - + 1 > 0, x1dx2 2 K O  ds > 0. (::I2 
Finally y1 and yz are taken to be characteristics on which 
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Morawetz transforms equation (6.1) into a system by introducing 

U' = w,+, U' == Wxa, 

as new unknowns; (6.1) becomes 

K&i+U,2z = 0,  

while the compatibility equation is 

zd2-u1 = 0. 

Combining these two equations by weight functions a,  b and b, -a, we obtain 
a system of two new equations which in the matrix notation (1.1) can be 
written as Ju-Lu = f with 

x u  

Ka Kb A 2 = - (  --Kb a a b ) .  
A ' = - ( K b  - A J  

(6.2) B = J I ,  
J = 4[Aki+A,22]. 

The appropriate choice for the as yet undetermined factors a and b, i.e., a 
choice which permits the application of the foregoing theory, is as follows: 

a = x1, b = c l d ]  for 2 2  5 0, 

a = 51, K"b = cK%/rlxll + /" 'K%do for x2 2 0, 
(6.3) 

0 

c being a constant to be determined later. The elements of Al  and A 2  are 
readily seen to  be smooth. 

Because of the singular behavior of the system at  Po, Morawetz treats L 
as an operator on a Hilbert space Hl(G)  with elements ul, v l ,  * - * to the 
Hilbert space H,(G) with elements u2, v2, - * *; the inner products for these 
spaces are defined for uf = [+, $7 and vi = [Cl, c2] as 

(6.4) 

here I = [(x1)'+(x2)2]". We note that Hl(G)  and II,(G) are dual Hilbert 
spaces with respect to the inner product 

(6.5) (u', = lc ($ 5'' + r21'2)dx. 
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It is easy to show that J maps H,(G) into H,(G) boundedly; in addition, 
as Morawetz has shown 

(6.8) (Jul, ul) 2 c J 4 l ~  

for some c1 > 0. 
The use of dual Hilbert spaces for the domain and range, respectively, 

of the differential operator L introduces no essential difficulties (see [6]). 
A dissipative operator L on H,(G) to H,(G) is now defined by the property 

( L d ,  ul)+ (u', Lul) 5 0 

for all ui in its domain. If L is dissipative and 

J z t l - L ~ ~  = f 2 ,  

then it is readily proven as in Theorem 3.1 that 

(6.7) ~ l l l 4 l  5 IIf211. 
For the present operator L with coefficients (6.2), the matrix D of (3.2) 

is equal to zero so that the differential operator L is formally dissipative. 
We proceed to choose N ( x )  on S to be maximal negative and smoothly 
varying except at the points Po,  P I ,  and P,. The resulting operator is now 
dissipative. 

Given any f2 in H,(G),  we wish to show that 

Ju'-Lu' = f 2  

has a unique strong sokition in H,(G) satisfying in the strong sense the given 
boundary conditions. As before it suffices to show that the range of Jul- Lul 
is dense in H,(G) as u1 varies over all smooth functions which satisfy the 
prescribed boundary conditions. Again, if this were not the case, then there 
would exist a non-zero vl in H,(G) such that 

(Jd,  v') = (Lu', v') 
for all such ul. Taking the adjoint L* of L relative to the mixed inner pro- 
duct, we see that v1 is a weak solution of L*v1 = Jvl ,  satisfying the adjoint 
boundary conditions in the weak sense. A contradiction will be reached if it 
can be shown that 

(6.8) (L* 211, v') + (vl, L* v') < 0. 

Proceeding as in Sections 2, 3, and 4 we can show that (6.8) is satisfied 
by all functions v 1  in the domain of L* (in the weak sense) which satisfy the 
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adjoint boundary conditions (also in the weak sense) and have support in 
a n  interior patch or in a boundary patch not containing Po.  In  fact as long 
a.s a patch does not contain Po,  the corresponding portions of Hl(G) and 
H,(G) are equivalent to the corresponding portions of L, and so no additional 
argument is required. I t  suffices merely to show that the boundary points 
for such patches are either regular boundary points or corners of the type 
considered in Section 4. To this end we note that 

One readily computes that the product of the eigenvalues of A ,  is 

On C, , where K 2 0, it is clear that this product is always negative and hence 
that A ,  has one positive and one negative eigenvalue. Along C ,  we see that 

K(nA2+ ( B z Y  > 0 
and that 

(Kb2faZ) =   KC+^)(&)^ > 0 

for c positive but sufficiently small. Hence, with this choice of c ,  the form A ,  
also has one positive and one negative eigenvalue on C, . A similar argument 
applies to C,. On the characteristics y1 and y 2  we have 

K(n,)2+ (nz)' = 0 

so that the product of the eigenvalues is zero; since the sum of the eigenvalues 
is (I<- 1)  (bn,-an,) and since this expression is negative for c sufficiently 
small, we see that A ,  is negative and of rank one along both y, and y z  for 
such c .  It  follows that the points P, and P, correspond to corners of the 
type treated in Section 4. On the other hand, the points X ,  and X ,  are criti- 
cal only in the sense that some of the coefficients are small near these points. 
However, for our choice of S the eigenvalues are bounded away from zero and 
since the coefficients are smooth so are the eigenspaces. This is all that is 
required of a regular boundary point. Thus if we make use of a suitable 
partition of unity, we may conclude by (3.6) that the relation (6.8) holds for 
all functions v1 in the domain of L* (in the weak sense) which satisfy the 
adjoint boundary conditions (also in the weak sense) and which vanish in 
the neighborhood of Po.  

We now show that Po is an unessential point in the sense of Section 5. 
This will establish (6.8) for our original choice of vl which satisfies 
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L*vl = Jvl and we can then conclude that v l =  0; this shows that our assump- 
tion-that the range of Jul-Ld was not dense-was false and hence 
proves the existence of a strong solution to the Frank1 problem. The unique- 
ness follows from (6.7). It should be remarked that showing Po to be an 
unessential point is the only thing actually novel in the present section. 

x2 t 

X ’  - 

I 
Figure 2 

The scalar multipliers +n will be defined by means of the rectangular 
frame A,, shown in Figure 2. The vertical sides are 

and the horizontal sides are 

Strangely enough the exponent 213 is rather critical. We now define 4, to 
be 1 outside of the rectangular frame, zero inside of it, and extended linearly 
on the frame itself. We note that 

4n.l == O(fi2) and 4n.Z = 0 on d:, 
on d z .  and +nzs = O(nS”) (6.9) 

4n+ = 0 

We shall show that 
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for all vl in Hl(G) and j = 1, 2 .  

of the order 
It is readily seen from (6 .2)  and (6.3) that on d i  the elements of A' are 

whereas on d: the elements of A? are of the order 

Combining this with the estimates (6 .9)  we see that 

5 x n  $d [^Jl$12 + l~2121~x,  
n 

where C is independent of n. Hence if 
2 

l h  2 S , ~ ~ n l $ , a v l A w [ d ~  2 2E > 0,  
j=l 

the above inequality shows that 

which is impossible if v1 belongs to H,(G).  
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