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1 Definitions

Suppsoe that V is a finite dimensional complex scalar product space with
scalar product 〈·, ·〉. Suppose that A : V → V is an invertible self adjoint
linear map. Denote by E+ the spectral subspace of A associated to positive
eigenvalues and E− the negative spectral subspace so E+⊕⊥E− = V. Deonte
by Π± : V→ V orthogonal projection on E±.

Definition 1.1 A linear subpace N ⊂ V is positive when for all v ∈ N ,
〈Av, v〉 ≥ 0. It is strictly positive when one has strict positivity for all
v 6= 0. A postive subspace is maximal postivie when it is not a proper
subset of a larger postive subspace.

Example 1.1 The subspace E+ is strictly postive and maximal positive. To
prove the second, observe that any larger subpace has nontrivial intersection
with E− so cannot be postive.

Exercise 1.1 Prove that every postive subspace is contained in a maximal
positive subspace. Discussion. There is a proof of this in the proof of the
next proposition, but it is easy to prove directly from the definition.

Example 1.2 If Γ is a linear subspace of E+ and M : Γ→ E− define

N :=
{
u+Mu : u ∈ Γ

}
.

On E+ introduce the scalar product 〈A(·), ·〉 and on E− the scalar product
〈−A(·), ·〉. With these choices N is a positive subspace if and only if the
norm of M : Γ → E− is ≤ 1. N is strictly positive if and only if the norm
is strictly less than one. Indeed, since E± are A-invariant and orthogonal〈
A(u+Mu) , u+Mu

〉
=
〈
Au , u

〉
+
〈
A(Mu) , Mu

〉
= ‖u‖2E+

−‖Mu‖2E− .

The set of M yielding postive spaces is convex and closed with interior equal
to the set yielding strictly postive spaces.
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Proposition 1.1 Every postive subspace has the form given in Example
1.2.

Proof. If N is positive then N ∩ E− = {0}. Since E− = ker Π+ this shows
that Π+ : N → E+ is injective. Define Γ := Π+(N ) so Π+ is invertible from
N to Γ is invertible. For γ = Π+u ∈ Γ, decompose u = Π+u + Π−u and
define Mγ := Π−u to yield the desired relation u = γ +Mγ. �

2 Dimension and maximality

Proposition 2.1 i. The dimension of a postive subspace is less than or
equal to the dimension of E+.

ii. A positive subspace is maximal if and only if its dimension is equal to
the dimension of E+.

Proof. i. Indeed every postive subspace is as in the example so has dimen-
sion equal to the dimension of a subspace Γ ⊂ E+.

ii. The bound in i shows that if N is positive and dimN = dimE+ then N
is maximal.

It remains to show that if dimN < dimE+ then N is not maximal. In this
case

N =
{
u+Mu : u ∈ Γ

}
,

with Γ a proper subspace of E+ and M : E+ → E+ with norm less than or
equal to one with the spaces normed as in Example 1.2

Π+(N ) is a proper subscpace of E+. Endow E+ with the scalar product
〈A(·) , ·〉. Denote by W ⊂ E+ the orthogonal complement of Π+(N ) in this
scalar product. Extend M to a linear map from E+ → E− by defining M
to vanish on W. Define the linear subspace

N2 :=
{
u+Mu : u ∈ E+

}
.

Then N is a proper subspace of N2. To complete the proof it suffices to show
that N2 is postive. It suffices to show that M is a contraction. Compute
using the orthogonality of γ ∈ Γ and w,

‖M(γ + w)‖2E− = ‖Mγ‖2E− ≤ ‖γ‖
2
E+

= ‖γ + w‖2 − ‖w‖2E+
≤ ‖γ + w‖2E+

.

�
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Exercise 2.1 Find all maximal postive subspaces for the map of C2 defined
by the matrix (

1 0
0 −1

)
.

3 Maximality and the adjoint space

Definition 3.1 If N is a maximal postive space define the adjoint space
N † := A(N )⊥.

Proposition 3.1 If N is a maximal postive subscpace for A, then N † is a
maximal postive subspace for −A.

Proof. The dimension of N † is equal to the dimE−. This is equal to the
dimension of the postive spectral subspace of −A. Part ii of Proposition 2.1
implies that it suffices to show that N † is a positive subspace for −A.

Assume not. Then there is a ζ ∈ N † with〈
−Aζ , ζ

〉
< 0 . (3.1)

Define
N2 := N + Cζ .

Then N2 is a positive subspace since for η ∈ N and z ∈ C

〈A(η + zζ) , η + zζ〉 = 〈Aη, η〉+ |z|2〈Aζ, ζ〉+ 2Re〈zζ,Aη〉 .

The last term vanishes since ζ ⊥ A(N ). The fist two terms are positive.

The maximality of N implies that ζ ∈ N . Then since ζ ∈ N † = A(N )⊥ one
has 〈Aζ, ζ〉 = 0 . This contradicts (3.1). �

Exercise 3.1 Show that the adjoint space of N † is the original N .

4 The characteristic case

Definition 4.1 If A is not invertible the definition of postive and maximal
positive remain unchanged. Define E≥0 to be the spectral subspace associated
to nonnegative eigenvalues and E− to negative eigenvalues, and, K := kerA.
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The value of the bilinear form 〈Au, v〉 does not change if each of u, v is
modified by adding possibly different elements of K. Thus the form induces
a form on V/K and the map A induces an invertible self adjoint map from
V/K to itself. In this way the theory is reduced to the invertible case.

Proposition 4.1 i. Every maximal postive subspace contains K.

ii. The dimension of a postive subspace is ≤ dimE≥0. A positive space is
maximal if and only if there is equality.

iii. If N is maximal positive, then the adjont space N † := A(N )⊥ is maximal
positve for −A.

Exercise 4.1 Prove this proposition.

Exercise 4.2 Find all maximal postive subspaces for the map of C3 defined
by the matrix 1 0 0

0 −1 0
0 0 0

 .
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