Positive Subspaces

Jeffrey RAUCH, University of Michigan

1 Definitions

Suppose that \mathbb{V} is a finite dimensional complex scalar product space with scalar product $\langle \cdot, \cdot \rangle$. Suppose that $A : \mathbb{V} \to \mathbb{V}$ is an invertible self adjoint linear map. Denote by \mathbb{E}_+ the spectral subspace of A associated to positive eigenvalues and \mathbb{E}_- the negative spectral subspace so $\mathbb{E}_+ \oplus_\perp \mathbb{E}_- = \mathbb{V}$. Deonte by $\Pi_{\pm} : \mathbb{V} \to \mathbb{V}$ orthogonal projection on \mathbb{E}_{\pm} .

Definition 1.1 A linear subpace $\mathcal{N} \subset \mathbb{V}$ is **positive** when for all $v \in \mathcal{N}$, $\langle Av, v \rangle \geq 0$. It is **strictly positive** when one has strict positivity for all $v \neq 0$. A postive subspace is **maximal postivie** when it is not a proper subset of a larger postive subspace.

Example 1.1 The subspace \mathbb{E}_+ is strictly postive and maximal positive. To prove the second, observe that any larger subpace has nontrivial intersection with \mathbb{E}_- so cannot be postive.

Exercise 1.1 Prove that every postive subspace is contained in a maximal positive subspace. **Discussion.** There is a proof of this in the proof of the next proposition, but it is easy to prove directly from the definition.

Example 1.2 If Γ is a linear subspace of \mathbb{E}_+ and $M: \Gamma \to \mathbb{E}_-$ define

$$\mathcal{N} := \left\{ u + Mu : u \in \Gamma \right\}.$$

On \mathbb{E}_+ introduce the scalar product $\langle A(\cdot), \cdot \rangle$ and on \mathbb{E}_- the scalar product $\langle -A(\cdot), \cdot \rangle$. With these choices \mathcal{N} is a positive subspace if and only if the norm of $M : \Gamma \to \mathbb{E}_-$ is ≤ 1 . \mathcal{N} is strictly positive if and only if the norm is strictly less than one. Indeed, since \mathbb{E}_\pm are A-invariant and orthogonal

$$\left\langle A(u+Mu)\,,\,u+Mu\right\rangle \;=\; \left\langle Au\,,\,u\right\rangle \;+\; \left\langle A(Mu)\,,\,Mu\right\rangle \;=\; \|u\|_{\mathbb{E}_{+}}^{2}-\|Mu\|_{\mathbb{E}_{-}}^{2}$$

The set of M yielding postive spaces is convex and closed with interior equal to the set yielding strictly postive spaces.

Proposition 1.1 Every postive subspace has the form given in Example 1.2.

Proof. If \mathcal{N} is positive then $\mathcal{N} \cap \mathbb{E}_{-} = \{0\}$. Since $\mathbb{E}_{-} = \ker \Pi_{+}$ this shows that $\Pi_{+} : \mathcal{N} \to \mathbb{E}_{+}$ is injective. Define $\Gamma := \Pi_{+}(\mathcal{N})$ so Π_{+} is invertible from \mathcal{N} to Γ is invertible. For $\gamma = \Pi_{+}u \in \Gamma$, decompose $u = \Pi_{+}u + \Pi_{-}u$ and define $M\gamma := \Pi_{-}u$ to yield the desired relation $u = \gamma + M\gamma$. \Box

2 Dimension and maximality

Proposition 2.1 i. The dimension of a postive subspace is less than or equal to the dimension of \mathbb{E}_+ .

ii. A positive subspace is maximal if and only if its dimension is equal to the dimension of \mathbb{E}_+ .

Proof. i. Indeed every postive subspace is as in the example so has dimension equal to the dimension of a subspace $\Gamma \subset \mathbb{E}_+$.

ii. The bound in i shows that if \mathcal{N} is positive and dim $\mathcal{N} = \dim \mathbb{E}_+$ then \mathcal{N} is maximal.

It remains to show that if $\dim \mathcal{N} < \dim \mathbb{E}_+$ then \mathcal{N} is not maximal. In this case

$$\mathcal{N} = \left\{ u + Mu : u \in \Gamma \right\},\$$

with Γ a proper subspace of \mathbb{E}_+ and $M : \mathbb{E}_+ \to \mathbb{E}_+$ with norm less than or equal to one with the spaces normed as in Example 1.2

 $\Pi_+(\mathcal{N})$ is a proper subseque of \mathbb{E}_+ . Endow \mathbb{E}_+ with the scalar product $\langle A(\cdot), \cdot \rangle$. Denote by $\mathbb{W} \subset \mathbb{E}_+$ the orthogonal complement of $\Pi_+(\mathcal{N})$ in this scalar product. Extend M to a linear map from $\mathbb{E}_+ \to \mathbb{E}_-$ by defining M to vanish on \mathbb{W} . Define the linear subspace

$$\mathcal{N}_2 := \left\{ u + Mu : u \in \mathbb{E}_+ \right\}.$$

Then \mathcal{N} is a proper subspace of \mathcal{N}_2 . To complete the proof it suffices to show that \mathcal{N}_2 is postive. It suffices to show that M is a contraction. Compute using the orthogonality of $\gamma \in \Gamma$ and w,

$$\|M(\gamma+w)\|_{\mathbb{E}_{-}}^{2} = \|M\gamma\|_{\mathbb{E}_{-}}^{2} \le \|\gamma\|_{\mathbb{E}_{+}}^{2} = \|\gamma+w\|^{2} - \|w\|_{\mathbb{E}_{+}}^{2} \le \|\gamma+w\|_{\mathbb{E}_{+}}^{2}.$$

Exercise 2.1 Find all maximal postive subspaces for the map of \mathbb{C}^2 defined by the matrix

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \, .$$

3 Maximality and the adjoint space

Definition 3.1 If \mathcal{N} is a maximal postive space define the adjoint space $\mathcal{N}^{\dagger} := A(\mathcal{N})^{\perp}$.

Proposition 3.1 If \mathcal{N} is a maximal postive subscrace for A, then \mathcal{N}^{\dagger} is a maximal postive subspace for -A.

Proof. The dimension of \mathcal{N}^{\dagger} is equal to the dim \mathbb{E}_{-} . This is equal to the dimension of the postive spectral subspace of -A. Part **ii** of Proposition 2.1 implies that it suffices to show that \mathcal{N}^{\dagger} is a positive subspace for -A. Assume not. Then there is a $\zeta \in \mathcal{N}^{\dagger}$ with

$$\langle -A\zeta, \zeta \rangle < 0.$$
 (3.1)

Define

$$\mathcal{N}_2 := \mathcal{N} + \mathbb{C}\zeta.$$

Then \mathcal{N}_2 is a positive subspace since for $\eta \in \mathcal{N}$ and $z \in \mathbb{C}$

$$\langle A(\eta + z\zeta), \eta + z\zeta \rangle = \langle A\eta, \eta \rangle + |z|^2 \langle A\zeta, \zeta \rangle + 2 \operatorname{Re} \langle z\zeta, A\eta \rangle.$$

The last term vanishes since $\zeta \perp A(\mathcal{N})$. The fist two terms are positive. The maximality of \mathcal{N} implies that $\zeta \in \mathcal{N}$. Then since $\zeta \in \mathcal{N}^{\dagger} = A(\mathcal{N})^{\perp}$ one has $\langle A\zeta, \zeta \rangle = 0$. This contradicts (3.1).

Exercise 3.1 Show that the adjoint space of \mathcal{N}^{\dagger} is the original \mathcal{N} .

4 The characteristic case

Definition 4.1 If A is not invertible the definition of postive and maximal positive remain unchanged. Define $\mathbb{E}_{\geq 0}$ to be the spectral subspace associated to nonnegative eigenvalues and \mathbb{E}_{-} to negative eigenvalues, and, $\mathcal{K} := \ker A$.

The value of the bilinear form $\langle Au, v \rangle$ does not change if each of u, v is modified by adding possibly different elements of \mathcal{K} . Thus the form induces a form on \mathbb{V}/\mathcal{K} and the map A induces an invertible self adjoint map from \mathbb{V}/\mathcal{K} to itself. In this way the theory is reduced to the invertible case.

Proposition 4.1 i. Every maximal postive subspace contains \mathcal{K} .

ii. The dimension of a postive subspace is $\leq \dim \mathbb{E}_{\geq 0}$. A positive space is maximal if and only if there is equality.

iii. If \mathcal{N} is maximal positive, then the adjont space $\mathcal{N}^{\dagger} := A(\mathcal{N})^{\perp}$ is maximal positive for -A.

Exercise 4.1 Prove this proposition.

Exercise 4.2 Find all maximal postive subspaces for the map of \mathbb{C}^3 defined by the matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \,.$$