
Chapter 3. Dispersive Behavior

3.1. Orientation.

In this chapter we return to Fourier analysis techniques as in Chapter 1. The Fourier
transform of the solution is written exactly and then analysed.

The results show how the geometry of the characteristic variety of L = L1(∂y) is reflected
in qualitative properties of the solutions of Lu = 0. The main idea is that when the
characteristic variety is curved, the corresponding solutions tend to spread out in space.
This dispersive effect is reflected in solutions becoming smaller in L∞(Rd) in contast to
L2(Rd) conservation.

Three simple examples illustrate the theme. The scalar advection operator

L := ∂t + v.∂x , (3.1.1)

in dimension d and the system

∂v

∂t
+

(

1 0
0 −1

)

∂v

∂x
= 0 (3.1.2)

in dimension d = 1 have only purely translating modes. The characteristic variety of
(3.1.1) is the hyperplane τ + v.ξ = 0 and for (3.1.2) it is the pair of lines τ ± ξ = 0. In
both cases the variety is not curved at all.

The system analogue of 1+2,

L := ∂t +

(

1 0
0 −1

)

∂1 +

(

0 1
1 0

)

∂2 (3.1.3)

behaves differently. Each component satisfies 1+2u = 0. For smooth compactly supported
data, they decay (in sup norm) as t−1/2. The characteristic variety is τ2 − |ξ|2 = 0. Since
all charateristic varieties are conic their Gauss curvatures vanish. The present variety
intersects τ = 1 in a strictly convex set. So the variety is as curved as a conic set can be.

Exercise. Prove the decay rate for compactly supported solutions of 1+2u = 0 by
expressing solutions as convolutions with fundamental solution(s).

For all three examples the L2(Rd) norm is perserved during the time evolution.

For the solutions of the transport equation associated to (3.1.1), the size of the support of
solutions does not change in time. For (3.1.3), solutions spread out over a set whose two
dimensional area grows with time. The spread together with L2 conservation, explains the
decay.

In optics, the word dispersion is used to mean that the speed of light depends on its
wavelength. In that sense, none of the above models is dispersive. The dispersion relations
of the first and third models are

τ = −v.ξ , and τ = ± |ξ| .
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Both are positive homogeneous of degree one in ξ. Therefore the group velocities −∇ξτ
satisfy

∣

∣∇ξτ
∣

∣ = |v| , and
∣

∣∇ξτ
∣

∣ = 1 ,

respectively. In neither case does the speed depend on the wavelength. However for (3.1.2),
the velocity depends strongly on ξ, though not on |ξ|. The fact that the group velocities
point in different directions has the effect of spreading the solution, and for large time the
solutions decay.

The variation of the group velocity with ξ is given by the matrix of second derivatives
∇2

ξτ . For our homogeneous operators, ∇ξτ is homogeneous of degree zero, so ξ belongs to
the kernel of matrix. The rank can be at most d − 1. The D’Alembertian 1+d achieves
this maximal rank so is as dispersive as a homogeneous operator can be.

At the extreme opposite is ∇2
ξτ ≡ 0, in which case the dispersion relation is linear in

ξ. The associated graph is a hyperplane which belongs to the characteristic variety. The
characteristic variety for (3.1.1) and (3.1.2) consist of hyperplanes while for (3.1.3) the
variety is curved. Where the variety is flat, τ = −v.ξ, the group velocity is identically
equal to v so does not depend on ξ. This is the completely nondispersive situation.
Solutions translate without spread.

If the variety contains no hyperplanes, the variation of the group velocity spreads wavepack-
ets. We will show that as t → ∞, solutions decay in L∞. These results, presented in
§3.2-§3.3, are taken from [JMR, Indiana Math. J. 1998].

An even stronger notion of uniform dispersion is when the rank of ∇2
ξτ is everywhere equal

to d − 1. In this case, the sheets of the characteristic variety are uniformly convex cones
and smooth compactly supported solutions decay at the rate t−(d−1)/2 as t→ ∞. This is
investigated in §3.4. In §3.4.1 L1 → L∞ decay estimates are proved. These are applied in
§6.7 to prove global solvability of for nonlinear problems with small initial data and high
dimension. In §3.4.3 they are used to derive Strichartz estimates. In §6.8, these estimates
are applied to study the nonlinear Klein-Gordon equation in the natural energy space.

§3.2. Spectral decomposition of solutions.

Since (τ, 0) is noncharacteristic for L, any hyperplane {aτ + b.ξ = 0} contained in the
characteristic variety must have a 6= 0. Therefore, it is necessarily a graph {τ = −v.ξ}.
Over each ξ ∈ Rd there are at most N points in the characteristic variety. Therefore,
the number of distinct hyperplanes in the variety can be no larger than N . Denote by
0 ≤M ≤ N the number of such hyperplanes, H1, . . . , HM ,

Hj = { (τ, ξ) : τ = −vj .ξ } , j = 1, . . . ,M ≤ N . (3.2.1)

Examples. 1. When d = 1 the characteristic variety is a union of lines so consists only
of hyperplanes. There are no curved sheets.

2. The operator from (3.1.3) has characteristic variety is given by τ2 = |ξ|2 so the variety
is the classical light cone, and there are no hyperplanes.
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3. The characteristic varieties of Mawell’s Equations and the the linearization at u = 0
of the compressible Euler equations are the union of a convex light cone and a single
horizontal hyperplane τ = 0.

Definition. A wave number ω ∈ Rd \ {0} is good when there is a neighborhood Ω of ω
and a finite number of real valued real analytic functions λ1(ξ) < λ2(ξ) < · · · < λm(ξ) so

that the spectrum of
∑d

j=1Ajξj is {λ1(ξ), . . . , λm(ξ)} for ξ ∈ Ω. The complementary set
consists of bad wave numbers. The set of bad wave numbers is denoted B(L).

Over a good ξ, the characteristic variety of L cotains exactly m nonintersecting sheets
τ = −λj(ξ). At bad points, eigenvalues cross and multiplicities change. The examples
above have no bad points.

Examples. Consider the characteristic equation (τ2 − |ξ|2)(τ − cξ1) = 0 with c ∈ R. If
|c| < 1 then the variety is a cone and a hyperplane intersecting only at the origin and all
points are good. If |c| > 1 the plane and cone intersect in a cone whose projection on ξ
space is the set of bad points

B =
{

ξ : (c2 − 1)ξ21 = ξ22 + . . .+ ξ2d
}

.

When |c| = 1, B(L) degenerates to a line of tangency.

Proposition 3.2.1. i. B(L) is a closed conic set of measure zero in Rd \ {0}.
ii. The complementary set, Rd \ (B ∪ {0}), is the disjoint union of a finite family of conic
connected open sets Ωg ⊂ Rd \ {0}, g ∈ G.

iii. The mulitplicity of τ = −vj .ξ as a root of detL(τ, ξ) = 0 is independent of ξ ∈
Rd \ (B ∪ {0}).
iv. If λ(ξ) ∈ Cω(Ωg) is an eigenvalue of

∑

Ajξj depending real analytically on ξ, then
either there is j ∈ {1, . . . ,M} such that λ(ξ) = −vj · ξ or ∇2λ 6= 0 almost everywhere on
Ωg.

Proof. i. Use the basic stratification theorem of real algebraic geometry (see [BR], [CR]).
The characteristic variety is a conic real algebraic variety in R

1+d \ {0}.
Over each ξ it contains at least 1 and at most N points. Therefore its projection on Rd

ξ is
the whole space so the variety has dimension at least d. On the other hand it has measure
zero by Fubini’s Theorem so the dimension is at most d, since d+ 1 dimensional algebraic
sets contain open sets.

The singular points are therefore a stratum of dimension at most d−1. The bad frequencies
are exactly the projection of this singular locus and so is a real algebraic subvariety of R

d
ξ

of dimension at most d− 1 and i follows.

ii. That there are at most a finite number of components in the complementary set is a
classical theorem of Whitney (see [BR], [CR]).
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iii. Denote by m the mulitplicity on Ωg and m′ the mulitplicity on Ωg′ . by definition of
mulitplicity,

ξ ∈ Ωg and k < m =⇒ ∂k detL(τ, ξ)

∂τk

∣

∣

∣

∣

∣

τ=−vj .ξ

= 0 . (3.2.2)

Then ∂k
τ L(−vj .ξ, ξ) is a polynomial in ξ which vanishes on the nonempty open set Ωg, so

must vanish identically. Thus it vanishes on Ωg′ and it follows that m′ ≥ m. by symmetry
one has m ≥ m′.

iv. If λ is a linear function λ = −v.ξ on Ωg, then detL(−v.ξ, ξ) = 0 for ξ ∈ Ωg so by
analytic continuation, must vanish for all ξ. It follows that the hyperplane τ = −v.ξ lies
in the characteristic variety and therefore that λ = −vj .ξ for some j.

If λ is not a linear function, then the matrix ∇2
ξλ is a real analytic function on Ωg which

is not identically zero and therefore vanishes at most on a set of measure zero in Ωg.

Definitions. Enumerate the roots of det L(τ, ξ) = 0 as follows. Let Af := {1, . . . ,M}
denote the indices of the flat parts, and for α ∈ Af , τα(ξ) := −vα.ξ. For g ∈ G and ξ ∈ Ωg,
number the roots other than the {τα : α ∈ Af} in order τg,1(ξ) < τg,2(ξ) < · · · < τg,M(g).
Multiple roots are not repeated in this list. Let Ac denote the indices of the curved sheets

Ac :=
{

(g, j) : g ∈ G and 1 ≤ j ≤M(g)
}

. (3.2.3)

Let A := Af ∪Ac. For α ∈ Af and ξ ∈ R
d define Eα(ξ) := π(−vj .ξ, ξ). For α ∈ Ac define

Eα(ξ) :=







π
(

τα(ξ), ξ
)

for ξ ∈ Ωg

0 for ξ /∈ Ωg .
(3.2.4)

The next proposition decomposes an arbitrary solution of Lu = 0 as a finite sum of simpler
waves.

Proposition 3.2.2. 1. For each α ∈ A , Eα(ξ) ∈ Cω(Rd \ (B ∪ {0})) is an orthogonal
projection valued function positive homogeneous of degree zero.

2. For each ξ ∈ Rd \ (B ∪ {0}), CN is equal to the orthogonal direct sum

C
N = ⊕α∈A ImageEα(ξ) . (3.2.5)

3. The operators Eα(Dx) := F∗E(ξ)F are orthogonal projectors on Hs(Rd), and for each
s ∈ R, Hs(Rd) is equal to the orthogonal direct sum,

Hs(Rd) = ⊕α∈A ImageEα(Dx) . (3.2.6)

4. If f ∈ S′(Rd) has Fourier transform equal to a locally integrable function, then the
solution of the initial value problem

L(∂y) u = 0 , u|t=0 = f (3.2.7)

is given by the formula

û(t, ξ) =
∑

α∈A

ûα(t, ξ) :=
∑

α∈A

eitτα(ξ) Eα(ξ) f̂(ξ) . (3.2.8)
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Remarks. 1. The last decomposition is also written

u :=
∑

α∈A

uα :=
∑

α∈A

eitτα(Dx)Eα(Dx)f .

2. Since τα is real valued on the support of Eα(ξ) the operator eitτα(Dx)Eα(Dx) is a
contraction on Hs(Rd) for all s.

3. If α ∈ Af then −iτα(Dx) = vα.∂x. For α = (g, j) ∈ Ac, |τα(ξ)| ≤ C|ξ|, so the operator
τα(Dx)f is continuous from Hs to Hs−1. The mode uα = eitτα(Dx)Eα(Dx)f satisfies
∂tuα = iτα(Dx)uα. For α ∈ Af this is

(

∂t + vα.∂x

)

uα = 0, so

uα =
(

Eα(D)f
)

(

x− vαt
)

.

4. Over B(L) only the Eα corresponding to the hyperplanes are defined. One does not

have a decomposition of CN . It is important that B is a negligible set for f̂ . The f̂ ∈ L1
loc

assumption in 4 is essential.

§3.3. Large time asymptotics.

Definition. Define A as the set of tempered distributions whose Fourier transforms belong
to L1(Rd). Then A is a Banach space with norm

‖f‖A := (2π)−d/2

∫

Rd

|f̂(ξ)| dξ . (3.3.2)

The Fourier Inversion Formula implies that A ⊂ L∞(Rd) and

‖f‖L∞(Rd) ≤ ‖f‖A . (3.3.3)

The elements of A are continuous and tend to zero as x → ∞. Moreover, the Fourier
transform of f2 is a multiple of f̂ ∗ f̂ and therefore in L1, so A is an algebra. It is called
the Wiener algebra. It was a centerpiece of the Tauberian Theorems of N. Wiener.

Theorem 3.3.1 (L∞ asymptotics for symmetric systems). Suppose that f ∈ A and u is
the solution of the initial value problem L(∂x)u = 0, u|t=0 = f . Then with the notation
introduced in the preceding section,

lim
t→∞

∥

∥

∥
u(t) −

∑

α∈Af

(Eα(Dx)f) (x− vαt)
∥

∥

∥

L∞(Rd)
= 0 . (3.3.1)
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Remarks. 1. This result shows that a general solution of the Cauchy problem is the sum
of M rigidly translating waves, one for each hyperplane in the characteristic variety, plus
a term which tends to zero in sup norm. The last part decays because of the dispersion of
waves.

2. The Theorem does not extend to f whose Fourier Transform is a bounded measure.
For example, u :=

(

ei(x1−t), 0
)

is a solution of (3.1.3) with f̂ equal to a point mass. The

characteristic variety contains no hyperplanes so (3.3.1) asserts that solutions with f̂ ∈ L1

tend to zero in L∞(Rd) while u(t) has sup norm equal to 1 for all t.

Proof of Theorem. Step 1. Approximation-decomposition. Symmetric hyper-
bolicity implies that for each t, ξ, exp

(

it
∑

Ajξj
)

is unitary on C
N . Therefore S(t) :=

exp
(

− t
∑

j Aj∂j

)

is isometric on A. Since the family of linear maps

f 7−→ S(t)f −
∑

α∈Af

(Eα(Dx)f) (x− vαt)

is uniformly bounded from A to L∞(Rd), it suffices to prove (3.3.1) for a set of f dense in
A.

For α ∈ Ac, Propostion 3.2.1.iv shows that the matrix of second derivatives, ∇2
ξτα can

vanish at most on a closed set of measure zero. The set of f we choose is those with

f̂ ∈ C∞
0

(

R
d \

{

B ∪ {0} ∪
⋃

α∈Ac

{ξ ∈ Ωg : ∇2
ξτα(ξ) = 0 }

} )

.

Since the removed set is a closed null set, these f are dense.

To prove (3.3.1) for such f decompose

f =
∑

α∈A

fα :=
∑

α∈A

Eα(Dx) f , u(t) = S(t)f =
∑

uα(t) :=
∑

S(t) fα . (3.3.4)

For α ∈ Af , uα(t) = (Eα(Dx)f) (x − vαt) which recovers the summands in (3.15). To
prove (3.15) it suffices to show that for α ∈ Ac

lim
t→∞

‖uα(t)‖L∞(Rd) = 0 . (3.3.5)

Step 2. Stationary and nonstationary phase. Part 4 of Proposition 3.2. shows that
for α ∈ Ac,

uα(t, x) =

∫

Ωg

ei(τα(ξ)t+x.ξ) f̂α(ξ) dξ , f̂α ∈ C∞
0 (Ωg) . (3.3.6)

For each ξ in the support of f̂α, there is a vector r ∈ Rd so that 〈∇2
ξτ(ξ) r, r 〉 6= 0 on a

neighborhood of ξ. Using a partition of unity we can write f̂α as a finite sum of functions
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hµ ∈ C∞
0 (Ωg) so that for each µ there is a rµ ∈ C

N so that on an open ball containing
the support of hµ, 〈∇2

ξτ(ξ) rµ, rµ 〉 6= 0. It suffices to show that for each µ

lim
t→∞

sup
x∈Rd

∫

ei(τα(ξ)t+x.ξ) hµ(ξ) dξ = 0 . (3.3.7)

For ease of reading we suppress the subscripts. Write x = tz. For each t > 0, the sup in x
is equal to the sup in z so it suffices to show that

lim
t→∞

sup
z∈Rd

∣

∣

∣

∫

eit(τ(ξ)+z.ξ) h(ξ) dξ
∣

∣

∣
= 0 .

Choose

σ > sup
ξ∈supp h

∣

∣∇ξτ(ξ)
∣

∣ .

There is a δ > 0 so that for all |z| ≥ σ,

∣

∣∇ξ(τ(ξ) + z.ξ)
∣

∣ ≥ δ .

The method of nonstationary phase implies that

∀N > 0, ∃CN , ∀|z| ≥ σ, t > 1,
∣

∣

∣

∫

eit(τ(ξ)+z.ξ) h(ξ) dξ
∣

∣

∣
≤ CN t−N .

It remains to show that

lim
t→∞

sup
|z|≤σ

∣

∣

∣

∫

eit(τ(ξ)+z.ξ) h(ξ) dξ
∣

∣

∣
= 0 . (3.3.8)

Make a linear change of variables in ξ so that r = (1, 0, . . . , 0) and therefore

∂2τ

∂2ξ1
6= 0 , on supp h .

Choose R > 0 so that for ξ ∈ supp h, |ξ| ≤ R. Set

Γ := {|z1| ≤ σ} × {|ξ2, . . . , ξd| ≤ R} ⊂ R
1 × R

d−1 .

Define

K(t) := sup
|z|≤σ, |ξ2,...,ξd|≤R

∣

∣

∣

∫

eit(τ(ξ)+z1.ξ1) h(ξ) dξ1

∣

∣

∣

= sup
Γ

∣

∣

∣

∫

eit(τ(ξ)+z1.ξ1) h(ξ) dξ1

∣

∣

∣
.

7



Then

sup
|z|≤σ

∣

∣

∣

∫

eit(τ(ξ)+z.ξ) h(ξ) dξ
∣

∣

∣

≤
∫

|ξ2,...,ξd|≤R

ei(z2ξ2+...+zd.ξd)
(

∫

eit(τ+z1ξ1) h(ξ) dξ1

)

dξ2 . . . dξd

≤
∣

∣

∣

{

|ξ2, . . . , ξd| ≤ R
}

∣

∣

∣
K(t) .

It therefore suffices to show that

lim
t→∞

K(t) = 0 . (3.3.9)

The points of Γ are split according to whether the phase τ(ξ)+z1ξ1 has a stationary point
with respect to ξ1 or not. If γ ∈ Γ is such that

∣

∣

∣

∣

∂τ

∂ξ1
+ z1

∣

∣

∣

∣

> δ > 0 for all |z1| ≤ σ, |ξ| ≤ R,

the same is true on a neighborhood of γ. The principal of nonstationary phase shows that

∫

eit(τα(ξ)+z.ξ) ĥµ(ξ) dξ1 = O(t−N )

uniformly on such a neighborhood.

On the other hand if for γ there is a stationary point, then the strict convexity of τ in ξ1
shows that it is unique and nondegenerate. Therefore for nearby γ there is a nearby unique
and nondegenerate stationary point. The inequality of stationary phase (see Appendix)
implies that

∫

eit(τα(ξ)+z.ξ) ĥµ(ξ) dξ1 = O(t−1/2)

uniformly on a neighborhood of γ.

Covering the compact set Γ by a finite family of neighborhoods proves (3.39) and therefore
the Theorem.

Definition. The operator L purely dispersive when its characteristic variety contains
no hyperplanes. It is call nondispersive when its characteristic variety is equal to a union
of hyperplanes.

The nondispersive operators have a discrete set of group velocities. The characteristic
variety of purely dispersive operators have only curved sheets. The latter name is justified
by the next Corollary.

Corollary 3.3.2. If L = L1(∂x) is a constant coefficient homogeneous symmetric hyper-
bolic operator, then the following are equivalent.
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1. The characteristic variety of L contains no hyperplanes (i.e. L is purely dispersive).

2. Every solution of Lu = 0 with u
∣

∣

t=0
∈ C∞

0 (Rd) satisfies,

lim
t→∞

‖u(t)‖L∞(Rd) → 0 . (3.3.10)

3. Every solution of Lu = 0 with u
∣

∣

t=0
∈ A satisfies (3.3.10).

4. If τ(ξ) is a C∞ solution of detL(τ, ξ) = 0 defined on a open set of ξ ∈ Rd then for
every v ∈ R

d, {ξ ∈ R
d : ∇ξτ = −v} has measure zero.

Proof. Theorem 3.3 shows that 1 ⇔ 3. To complete the proof we show that 3 ⇔ 2 and
1 ⇔ 4.

The assertions 2 and 3 are equivalent because the family of mappings u(0) 7→ u(t) is
uniformly bounded from A → L∞, and C∞

0 is dense in A.

That ∼ 1 =⇒∼ 4 is immediate.

If 4 is violated there is a smooth solution τ so that ∇ξτ = −v on a set of positive measure.
It follows from the Fundamental Stratification Theorem (see [BR],[CR]) that ∇ξτ = −v
on a conic open real algebraic set of dimension d in Rd \ 0. Then τ = −v.ξ on this set
and we conclude that the polynomial detL(−v.ξ, ξ) vanishes on this set and therefore
everywhere. Thus the hyperplane {τ = −v.ξ} is contained in the characteristic variety
and 1 is violated.

Thus 1 and 4 are equivalent.

Remark. Part four of this Corollary shows that for any velocity v the group velocity
−∇ξτ associated to a curved sheet of the characteristic variety takes the value v for at
most a set of frequencies ξ of measure zero.

The nondispersive evolutions are described in the next results.

Corollary 3.3.3. If L = L1(∂y) is a constant coefficient homogeneous symmetric hyper-
bolic operator with A0 = I, then the following are equivalent.

1. The characteristic variety of L is a finite union of hyperplanes.

2. (Motzkin and Tausky) The matrices Aj commute.

3. If u satisfies Lu = 0 with u(0) ∈ A and ‖u(t)‖L∞(Rd) → 0 as t→ ∞, then u is identically
equal to zero.

Proof. 2 ⇒ 3. A unitary change of variable u = V v replaces the equation Lu = 0 with the
equivalent equation L̃v = 0 with Ãj := V ∗AjV . When the Aj commute, V can be chosen

so that the Ãj are all real diagonal matrices. Property 3 is clear for the tilde equation
as each component of the solution rigidly translates as time goes on. The only way its
supremum can tend to zero at t→ ∞ is for it to vanish.

3 ⇒ 1. This is an immediate consequence of Theorem 3.3.

1 ⇒ 2. This is a result of Motzkin and Tausky.
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Theorem 3.3.4. (Motzkin and Tausky) Suppose that A and B are hermitian N × N
matrices. The eigenvalues of ξA+ ηB are linear functions of ξ, η if and only if A and B
commute.

Proof. We must show that linear eigenvalue implies commutation. The proof is by
induction on N . The case N = 1 is trivial. We suppose that N > 1 and the result is
known for dimensions ≤ N − 1.

Consider the characteristic variety det(τ + ξA + ηB) = 0. Choose a good point (ξ, η) so
that above this point the variety has k ≤ N real analytic sheets. If η = 0, leave the spatial
coordinates as they are. If η 6= 0, change orthogonal coordinates in R2 so that (ξ, η) is a
mutiple of dy1. In this way we can without loss of generality assume that above η = 0 the
variety consists of k real analytic sheets.

For s small the eigenvalues of A+sB are real analytic function λj(s) with λj(0) < λj+1(0)
for 1 ≤ j < k−1. Denote by µj the multiplicity of λj(0) and therefore of λj(s) for s small.
By hypothesis the λj(s) are affine functions of s so λ′′ = 0. We use this only at s = 0.

By a unitary change of variable in CN one can arrange that A is block diagonal with
diagonal entries λj(0)Iµj×µj

.

Corresponding to this block structure and the eigenvalue λ1, one has one has

π = diag
(

Iµ1×µ1
, 0µ2×µ2

, . . . , 0µk×µk

)

,

Q = diag
(

0µ1×µ1
,

1

λ2 − λ1
Iµ2×µ2

, . . . ,
1

λk − λ1
Iµk×µk

)

.
(3.3.11)

The matrix B has block structure

B =







B1,1 B1,2 ..... B1,k

B2,1 B2,2 ..... B2,k

Bk,1 Bk,2 .... Bk,k






,

with Bij a µi × µj matrix and Bij = B∗
ji.

The fundamental formula of second order perturbation theory (see Appendix) yields λ′′π =
2πBQBπ. By hypothesis this is equal to zero.

Straightforward calculation shows that

πB =







B1,1 B1,2 ..... B1,k

0 0 ..... 0
0 0 0
0 0 .... 0






, QBπ =









0 0 .... 0
1

λ2−λ1
B2,1 0 .... 0

1
λk−λ1

Bk,1 0 .... 0









.

Therefore, the µ1 × µ1 upper left hand block block of πQBQπ is equal to

k
∑

j=2

1

λj − λ1
B1,jB

∗
1,j .
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Conclude that this sum of positive square matrices vanishes. Thus, for j ≥ 2, B1,j = 0
and Bj,1 = 0.

Thus B and A are reduced by the splitting

C
N = C

µ1 × C
N−µ1 .

The commutation then follows by the inductive hypothesis applied to the diagonal blocks.
This proves the case N and completes the induction.

This completes the proof of Corollary 3.3.3.

Example. The implication 1 ⇒ 2 is not true without the symmetry hypothesis. For
example, the hypberbolic system

∂t +

(

1 0
0 −1

)

∂1 +

(

1 1
0 1

)

∂2

has flat characteristic variety with equation

(τ + ξ1 + ξ2)(τ − ξ1 + ξ2) = 0 ,

and the coefficient matrices do not commute. The conclusion is correct assuming that the
hyperbolic system generates a semigroup in L2(Rd) (see [GR, Hyperbolic multipliers are
translations]).

Theorem (P. Brenner). If L = L(∂y) is a constant coefficient homogeneous symmetric
hyperbolic operator then the conditions of Corollary 3.3.3 are equivalent to each of the
following.

i. For all t ∈ R and p ∈ [1,∞] the Fourier multiplication operator

S(t) := F−1 e−it
∑

Ajξj F

is a bounded from Lp(Rd) to itself.

ii. For some t ∈ R \ 0 and 2 6= p ∈ [1,∞] the operator S(t) is bounded from Lp(Rd) to
itself.

Remark. The Fourier multiplication operators are unitary on L2. The properties ii means
that the restriction to S(R) extend to bounded operators on Lp, equivalently

sup
f∈S(Rd)\0

‖S(t)f‖Lp(Rd)

‖f‖Lp(Rd)

< ∞ .

Proof. The conditions of Corollary 3.3.3 implies that after an orthogonal change of basis,
the Aj are all real diagonal matrices. It is then elementary to verify that i is satisfied.
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Clearly i implies ii. It remains to show that ii implies the conditions of the Corollary.

If the conditions of the the Corollary are violated, then ii is violated. The first remark is
that ii is stronger than it appears. Since S(t) is unitary on L2, if ii is satisfied then S(t)
is bounded on Lp for all p between 2 and p. Thus we may assume that p in not equal to 1
or ∞.

For σ ∈ R \ 0, Lu = 0 if and only if uσ(t, x) := u(σt, σx) satisfies Luσ = 0. It follows that
if ii is satisfied then

‖S(t)‖Hom(L
p
) = ‖S(t)‖Hom(L

p
) < ∞ , ∀ t 6= 0 . (3.3.12)

If q is the conjugate index to p, that is 1
p

+ 1
q

= 1, then

‖S(t)‖Hom(L
q
(Rd)) = sup

f,g∈S\0

(

S(t)f , g)

‖f‖L
q
(Rd) ‖g‖L

p
(Rd)

= sup
f,g∈S\0

(

f , S(−t)g)
‖f‖L

q
(Rd) ‖g‖L

p
(Rd)

= ‖S(−t)‖Hom(L
p
(Rd) .

Thus when ii is satisfied for p it is satisfied for q so we may suppose that p > 2.

When the conditions of Corollary 3.3.3 are violated, there is a conic set of good points Ωg

and a sheet τ = τ(ξ) over Ωg with ∇2
ξξτ 6= 0 for almost all ξ ∈ Ωg. Denote by π(ξ) with

associated spectral projection. Choose an f ∈ S(Rd) with f̂ compactly supported in Ωg.

Replacing f̂ by π(ξ)f̂ we may assume that π(D)f = f . Theorem 3.3.1 implies that

lim
t→∞

‖S(t) f‖L∞(Rd) = 0 .

Then

‖S(t)f‖p

L
p
(Rd)

≤ ‖S(t)f‖p−2

L∞(Rd)
‖S(t)f‖2

L2(Rd) = ‖S(t)f‖p−2

L∞(Rd)
‖f‖2

L2(Rd) → 0 ,

as t→ ∞.

Therefore,

∥

∥S(−t)
∥

∥

Hom(L
p
)
≥

∥

∥S(−t)
(

S(t)f
)∥

∥

L
p

∥

∥S(t)f
∥

∥

L
p

=

∥

∥f
∥

∥

L
p

∥

∥S(t)f
∥

∥

L
p

→ ∞ .

Thus (3.3.12) is violated and the proof is complete.

Example. It may seem that (3.3.12) together with limt→0 S(t)f = f might imply that
S(t) has norm equal to 1. That this is not true can be seen from the one dimensional
example

∂t +

(

0 0
0 1

)

∂x ,

12



and Lp norm chosen so that for p = 2 one has unitarity,

‖(u1, u2)‖p :=

∫

‖(u1, u2)‖p dx
)1/p

, ‖(u1, u2)‖ :=
(

|u1|2 + |u2|2
)1/2

.

Choosing u1(0) = u2(0) = f ∈ C∞
0 ({|x| ≤ ρ}) one has

‖u(0)‖p
p = (

√
2)p‖f‖p

p ,

and for |t| > ρ,
‖u(t)‖p

p = 2 ‖f‖p
p .

It follows that for all t 6= 0 and p < 2, ‖S(t)‖p
Hom(Lp) ≥ 21− p/2 > 1. Reversing time, treats

p > 2.

§3.4. Maximally dispersive systems.

§3.4.1. The L1 → L∞ decay estimate.

If τ = τ(ξ) parametrizes a real analytic patch of the characteristic variety of a hyperbolic
operator then τ is homogeneous of degree 1 in ξ. The group velocity v(ξ) = −∇ξτ(ξ) is
homogeneous of degree 0. Therefore ξ.∇ξv = 0 so ξ belongs to the kernel of the symmetric
matrix ∇ξv(ξ) = ∇2

ξτ(ξ). Thus the rank of ∇2
ξτ is at most d− 1. When the rank is equal

to d−1 the group velocity depends as strongly on ξ as possible. The dispersion is as strong
as possible.

Definition. The homogeneous constant coefficient symmetric hyperbolic operator is max-
mally dispersive when

CharL = ∪m
j=1

{

(τ, ξ) : τ = τj(ξ)
}

where for ξ ∈ R
d \ 0

τ1(ξ) < τ2(ξ) . . . < τm(ξ) ,

the τj are real analytic, positive homogeneous of degree one in ξ, and

∀j, ∀ ξ ∈ R
d \ 0 , rank∇2

ξτ(ξ) = d− 1 . (3.4.1)

Examples. i. The simplest example is

(τ2 − |ξ|2) (τ2 − c2|ξ|2) = 0 , 0 < c 6= 1 .

The variety in this case consists of two sheets τ = |ξ| and τ = c|ξ| which have d−1 strictly
positive principal curvatures. The other sheets bound τ ≤ −|ξ| and τ ≤ −c |ξ| and have
d− 1 strictly negative curvatures.

13



ii. The next figure gives an example with two sheets bounding strictly convex regions
for which the functions τj change sign. In particular the generator G = −∑

Aj∂j is not
elliptic since the points where the cone crosses τ = 0 are characteristic for G.

The next result is closely related to Hadamard’s Ovaloid Theorem which is recalled in
Appendix III.

Propostion 3.4.1. If τ(ξ) is smooth in ξ 6= 0, homogeneous of degree one and the hessian
has rank equal to d− 1 at all points, then the nonzero eigenvalues of ∇2

ξτ have the same
sign. When they are positive (resp. negative) τ is convex (resp. concave).

Proof. When d = 2, ∇2
ξτ has only one nonzero eigenvalue and the result is immediate.

For d ≥ 3, consider the mapping

Γ(ξ) := v(ξ) = −∇ξτ(ξ) .

The differential of the mapping Γ is equal to −∇2
ξτ so ξ is in its kernel and it is invertible

when restricted to the orthogonal to ξ.

Since Γ is homogeneous of degree 0, it is natural to consider Γ as a map from Sd−1 =
{|ξ| = 1}. As such it is an immersion onto a compact d−1 dimensional manifold, M. The
image is oriented by the image of the orientation of Sd−1.

Since ξ is orthogonal to the image of −∇2
ξτ(ξ) it follows that the ξ is the unit normal to

M at Γ(ξ). Thus, at least locally, Γ is the inverse of the Gauss map of M. Since the
differential is invertible it follows that the Gauss curvature of M is nowhere vanishing.

Since ξ ∈ ker(∇2
ξτ(ξ), the unit normal to M at v(ξ) is equal to ξ. Since the map from

ξ ∈ Sd−1 to v(ξ) has invertible jacobian, the Gauss curvature of M is nowhere vanishing.

Since d ≥ 3, it follows from Hadamard’s Ovaloid Theorem, that M is the boundary of a
strictly convex set and Γ : Sd−1 → M is a diffeomorphism.

Thus each value −∇ξτ(ξ) ∈ M is attained at a unique ξ ∈ Sd−1.

The normals to τ = τ(ξ) are the nonzero multiples of (1, v(ξ)). Thus, the hyperplane
{τ + v(ξ).ξ = 0} is tangent at τ = τ(ξ) and at no other point τ = τ(ξ′) with ξ′ ∈ Sd−1.

It follows that the cone τ = τ(ξ) is strictly convex in the sense that its intersection with
its tangent plane conists exactly of the line (R \ 0)(τ(ξ), ξ).

14



This implies that the d− 1 nonzero eigenvalues must have one sign.

Examples. The characteristic variety of a maximally dispersive system consists of m
disjoint sheets, each the boundary of a strictly convex cone.

Lemma 3.4.2 (Pointwise decay). If d ≥ 2, τ is as above and k ∈ C∞
0 (Rd \ 0) then there

is a constant C so that

u(t, x) :=

∫

eitτ(ξ) eix.ξ k(ξ) dξ ,

satisfies
‖u(t)‖L∞(Rd) ≤ C (1 + |t|)−(d−1)/2 . (3.4.2)

Remark. This is the decay rate for solutions of 1+du = 0 which corresponds to the
choice τ(ξ) = ±|ξ|.

Proof. The easy estimate

‖u(t, x)‖L∞(Rd) ≤
∫

|k(ξ)| dξ ,

shows that only the decay for |t| ≥ 1 needs to be proved.

Let
y :=

x

t
, x = ty .

Then

sup
x

∣

∣u(t, x)
∣

∣ = sup
y

∣

∣u(t, ty)
∣

∣ = sup
y

∣

∣

∣

∫

eit(τ(ξ)+y.ξ) k(ξ) dξ
∣

∣

∣
.

The phase τ(ξ) + y.ξ is stationary when

−∇ξτ(ξ) = y .

The left hand side is the group velocity.

As in Lemma 3.4.1, denote by M the set of attained group velocities which is an embedded
strictly convex compact d− 1 manifold.

For any open neighborhood O of M, the method of nonstationary phase shows that for
any N ,

sup
y∈Rd\O

∣

∣

∣

∫

eit(τ(ξ)+y.ξ) k(ξ) dξ
∣

∣

∣
≤ CN |t|−N ,

as t→ ∞.

Choose 0 < r1 < r2 so that

supp k ⊂ {r1 ≤ |ξ| ≤ r2} .
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Write
∫

eit(τ(ξ)+y.ξ) k(ξ) dξ =

∫ r2

r1

(

∫

|ξ|=1

eit(τ(ξ)+y.ξ) k(r ξ) dσ(ξ)
)

rd−1 dr .

It suffices to show that for any y ∈ M and r ∈ [r1, r2] one has

∫

|ξ|=1

eit(τ(ξ)+y.ξ) k(r ξ) dσ(ξ) ≤ C |t|−(d−1)/2 ,

uniformly for r, y in a neighborhood of r, y.

For r, y fixed, there is a unique ξ with |ξ| = r for which the phase is stationary and the
stationary point is nondegenerate because of the rank equal to d− 1 hypothesis. It follows
that for r, y in a neighborhood, there is a unique uniformly nondegenerate startionary
point. The desired estimate follows from the inequality of stationary phase (see Appendix
II).

Proposition 3.4.3. Suppose that 0 < R1 < R2 <∞ and ω := {ξ ∈ R : R1 < |ξ| < R2}.
There is a constant C so that for all f ∈ L1(Rd

x) with supp f̂ ⊂ ω ,

u(t, x) := (2π)−d/2

∫

ei(tτj(ξ)+x.ξ) f̂(ξ) dξ := eitτj(Dx) f

satisfies
‖u(t)‖L∞(Rd) ≤ C (1 + |t|)−(d−1)/2 ‖f‖L1(Rd). (3.4.3)

The proof is based on a simple idea. The solution u is equal to the convolution of the
fundamental solution with f . The Fourier transform of the fundamental solution at t = 0
is equal to a constant. To have an analogous but more regular representation, it is sufficient
that one convolve with a solution whose initial data has Fourier Transform equal to this
constant on the spectrum of f .

Proof. Choose a k ∈ C∞
0 (Rd \0) with k equal to (2π)−d/2 on a neighborhood of ω. Define

G so that Ĝ := k. Then since (2π)d/2 k f̂ = f̂ one has G∗f = f . Since eitτ(Dx) is a Fourier
multiplier, one has

u(t) := eitτ(Dx) f = eitτ(Dx)
(

f ∗G
)

= f ∗
(

eitτ(Dx)G
)

.

Then
‖u(t)‖L∞ ≤ ‖f‖L1 ‖eiτ(Dx)G‖L∞ .

The preceding Lemma shows that

‖eiτ(Dx)G‖L∞ ≤ C (1 + |t|)−(d−1)/2 .

16



The next subsections consist of two different paths for exploiting the estimates just proved.
The first is more elementary and will be used in Chapter 6 to derive, in the spirit of John-
Klainerman, that in high dimensions there is global solvability for maximally dispersive
nonlinear problems with small data. The second is devoted to Strichartz estimates which
are important in trying to treat existence problems with low regularity data. That in
turn is important in trying to pass from local solvability to global solvability for nonlinear
problems for which the natural a priori estimates control few derivatives.

§3.4.2. Fixed time dispersive Sobolev estimates.*

We next find decay estimates for ‖u(t)‖L1 for sources with Fourier transform supported in
λω for 0 < λ. The starting point is

‖u(t)‖L∞(Rd) ≤ C |t|−(d−1)/2 ‖f‖L1(Rd) , supp f̂ ⊂ ω . (3.4.4)

Proposition 3.4.4. There is a constant C so that for all λ > 0 and f ∈ L1 with
supp f̂ ⊂ λω, the solution of

Lu = 0 , u
∣

∣

t=0
= f ,

satisfies
‖u(t)‖L∞(Rd) ≤ C |t|−(d−1)/2 ‖ |D|(d+1)/2f‖L1(Rd) . (3.4.5)

First verify the dimensions of the homogeneous estimate (3.4.5). With t, x having the
dimensions of a length ℓ, the factor |t|(d−1)/2 has dimension ℓ(d−1)/2. On the other hand,
in

‖ |D|γf‖L1(Rd) =

∫

∣

∣|D|γf
∣

∣ dx

the integrand has dimension ℓ−γ and dx has dimension ℓd. In total the right hand side
of (3.4.5) has dimension ℓd−γ−(d−1)/2. It is dimensionless as is the left hand side exactly
when

γ :=
d+ 1

2
.

Proof. Choose ψ ∈ C∞
0 (Rd

ξ) so that ψ± = |ξ|±γ on ω. Then

|D|γf = C ψ̂+ ∗ f , and f = C ψ̂− ∗ (|D|γf) .

Young’s inequality implies that ‖ |D|γf‖L1 is a norm equivalent to that on the right in
(3.4.4) so

‖u(t)‖L∞(Rd) ≤ C |t|−(d−1)/2 ‖ |D|γf‖L1(Rd) , supp f̂ ⊂ ω .

* The material in this subsection is not needed for the Strichartz estimates in the next
subsection
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If uλ(t, x) := u(λt, λx) then, Luλ = 0 if and only if Lu = 0 and ûλ(λt, ξ) = λ−dû(t, ξ/λ).
The spectrum of u is contained in ω if and only if the spectrum of uλ is contained in λω.

Exercise. Show that if fλ(x) := f(λx),

|D|γfλ(x) = λ−γ
(

|D|γf
)

(λx) .

The change of variable z = λx yields

‖ |D|γfλ‖L1(Rd) =

∫

λ−γ
(

|D|γf
)

(λx) dx = λ−γ−d‖ |D|γf‖L1(Rd) .

Then (3.4.3) yields

∥

∥uλ(t)
∥

∥

L∞
=

∥

∥u(λt)
∥

∥

L∞
≤ C

∣

∣λt
∣

∣

−(d−1)/2 ‖ |D|γf‖L1(Rd)

= C
∣

∣λt
∣

∣

−(d−1)/2 ‖ |D|γf‖L1(Rd)

= C λ−(d−1)/2+γ+d|t|−(d−1)/2‖ |D|γfλ‖L1(Rd) .

The choice γ = (d+ 1)/2 is made so that the λ factors cancel.

Since û and f̂ are locally integrable functions, the point ξ = 0 is negligible so we have the
Littlewood-Paley decompositions

u =

∞
∑

j=−∞

χ(2−jDx) u :=

∞
∑

j=−∞

uj , f =

∞
∑

j=−∞

χ(2−jD) f :=

∞
∑

j=−∞

fj ,

where the dyadic decomposition of unity is constructed in the Appendix on the stationary
phase inequality. This expresses a solution of Lu = 0 as a sum of spectrally localized
solutions. The estimates of the next exercise show that |D|σ acts like multiplication by
2σj on fj .

Exercise. Show that there is an integer k and a constant C depending on σ and χ so that
for p ∈ [1,∞]

∥

∥ |D|σfj

∥

∥

Lp ≤ C 2σj
∑

|n−j|≤k

‖fn‖Lp , (3.4.6)

∥

∥ fj

∥

∥

Lp ≤ C 2−σj
∑

|n−j|≤k

‖ |D|σfn‖Lp . (3.4.7)

Theorem 3.4.5. i. If Lu = 0 and u
∣

∣

t=0
= f then,

‖u‖L∞ ≤ C |t|−(d−1)
∞
∑

j=−∞

‖ |D|γfj‖L1 , γ =
d+ 1

2
. (3.4.8)
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ii. If 0 < δ < γ there is a constant C(γ, δ) so that

∞
∑

j=−∞

‖ |D|γfj‖L1 ≤ C
(

∥

∥ |D|γ−δf
∥

∥

L1(Rd)
+

∥

∥ |D|γ+δf
∥

∥

L1(Rd)

)

. (3.4.9)

Remarks. 1. The sum on the right of (3.4.8) is the definition of the norm in the homoge-
neous Besov space Ḃγ

1,1. Estimate (3.4.9) yields a bound which is not as sharp but avoids
these spaces.

2. A slightly weaker estimate than (3.4.8-3.4.9) was proved by [Lucente-Ziliotti].

S. Lucente and G. Ziliotti, A decay estimate for a class of hyperbolic pseudo-differential
equations, Math. App. 10(1999), 173-190, Atti, Acc. Naz. Linccei Cl. Sci. Fis. Mat.
Natur. Rend. Lincei (9).

3. It is impossible to have a decay estimate of the form

‖u(t)‖L∞ ≤ g(t)‖f‖Hs , lim
t→∞

g(t) = 0 ,

with a conserved norm on the right hand side. If there were such an estimate one can
apply it to v(t) = v(t− T ) at t = T → ∞ to find

‖u(0)‖L∞ ≤ g(T ) ‖f‖Hs → 0 .

The appearance of norms which are not propagated by the equation is necessary.

4. An L1 condition encodes more rapid decay as |x| → ∞ than an L2 condition. This is
natural since the energy in a ring R < |x| < R + 1 can focus at time t ∼ R into a ball of
radius O(1). If the amplitude in the initial ring in ∼ a the L2 norm is ∼ a2Rd−1. If the
focused amplitude is ∼ A one obtains A2 ∼ a2Rd−1. If this focussing is to take place at
t ∼ R and also A2 ≤ t−(d−1) that yields a ≤ R−(d−1) which is on the L1 borderline. Thus
one cannot have t−(d−1)/2 decay estimates as in the Theorem with Lp norms on the right
with p > 1.

Proof of Theorem. i. Estimate (3.4.5) implies

‖uj(t)‖L∞ ≤ C |t|−(d−1) ‖ |D|γfj‖L1 .

Summing yields

‖u‖L∞ ≤
∑

‖uj‖L∞ ≤ C |t|−(d−1)
∑

‖ |D|γfj‖L1 .

ii. For j ≥ 0, estimate (3.4.6) implies

∥

∥ |D|γfj

∥

∥

L1 ≤ C 2γj
∑

|n−j|≤k

∥

∥fn

∥

∥

L1 .
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Estimate (3.4.7) implies

∥

∥fn

∥

∥

L1 ≤ C 2−σn
∑

|m−n|≤k

∥

∥ |D|σfm

∥

∥

L1 .

Finally,
∥

∥ |D|σfm

∥

∥

L1 ≤ C
∥

∥ |D|σf
∥

∥

L1 .

Combining yields

∑

j≥0

‖ |D|γfj‖L1 ≤ C
∥

∥ |D|σf
∥

∥

L1

∑

j≥0

∑

|n−j|≤k

2γj−σn .

With σ = γ + δ, the sum is finite, so

∑

j≥0

‖ |D|γfj‖L1 ≤ C
∥

∥ |D|γ+δf
∥

∥

L1 .

Exercise. Prove the complementary estimate

∑

j<0

‖ |D|γfj‖L1 ≤ C
∥

∥ |D|γ−δf
∥

∥

L1 .

This completes the proof.

Corollary 3.4.6. For any d/2 > δ > 0 there is a constant C so that if Lu = 0, then

‖u(t)‖L∞(Rd) ≤ C 〈t〉−(d−1)/2
(

‖f‖Hd/2+δ(Rd)

+ ‖ |D|(d+1)/2+δf‖L1(Rd) + ‖ |D|(d+1)/2−δf‖L1(Rd)

)

.
(3.4.10)

Remark. The smaller is δ > 0 the stronger is the conclusion.

Proof. Sobolev’s inequality yields

‖u(t)‖L∞(Rd) ≤ C ‖u(t)‖Hδ+d/2(Rd) = C ‖f‖Hδ+d/2(Rd) .

This yields (3.4.10) for |t| ≤ 1.

For |t| ≥ 1 use the two estimates of the Theorem.

§3.4.3. Strichartz estimates.
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The estimates involve norms

∥

∥u
∥

∥

Lq
t Lr

x
:=

(
∫ ∞

0

‖u(t)‖q
Lr(Rd

x)
dt

)1/q

which integrate over space and time. If such a norm is finite, then the integrand must be
small for large times. This requires r > 2. The estimates express time decay because of
dispersion.

The group velocities lie on the strictly convex manifold M. For a typical Fourier Transform,
an open set of these velocites is sampled. The method of nonstationary phase shows that
for large time the solution is concentrated on the rays with these speeds, starting from the
support of the initial data. Thus, a solution is expected to be concentrated on and spread
over a region of measure which grows like td−1. An example is concentration in an annulus
ρ1 < |x| − t < ρ2. Or even finer, concentration on that part of the annulus subtending a
fixed solid angle.

The conservation of L2(Rd) and also Lemma 3.4.2 show that the expected amplitude is
O(t−(d−1)/2). Then

‖u(t)‖r
Lr ∼ t−r(d−1)/2 td−1 ,

so
∥

∥u
∥

∥

q

Lq
t Lr

x
∼

∫ ∞

1

(

t−r(d−1)/2 td−1
)q/r

dt .

The limiting indices are those for which the power of t is equal to −1, that is with

σ := d− 1 ,

(−rσ
2

+ σ
)q

r
= −1 , equivalently,

−σ
2

+
σ

r
=

−1

q
.

The admissible indices are those for which the power is less than or equal to −1,

−σ
2

+
σ

r
≤ −1

q
.

Definitions. The pair 2 < q, r <∞ is σ-admissible if

1

q
+

σ

r
≤ σ

2
.

It is sharp σ-admissible when equality holds.

The estimates involve the homogeneous Sobolev norms

‖ |D|γf‖L2 :=
(

∫

∣

∣ |ξ|γf̂(ξ)
∣

∣

2
dξ

)1/2

.
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Theorem 3.4.7 (Strichartz inequalities). Suppose that L(∂) is maximally dispersive,
σ = d− 1, q, r is σ-admissible, and γ is the solution of

1

q
+

d

r
=

d

2
− γ .

There is a constant C so that for f ∈ L2 with ‖ |D|γf‖L2 < ∞, the solution of Lu = 0,
u|t=0 = f satisfies

∥

∥u
∥

∥

Lq
t Lr

x
≤ C

∥

∥ |D|γf
∥

∥

L2(Rd)
. (3.4.11)

There are two complicated relations in this assertion. The first is the definition of admis-
sibility. It is the crucial one which encodes the rate of decay of solutions. The second is
the definition of γ. Once admissible q, r are chosen, γ is forced so that the two sides of
(3.4.11) scale the same for (t, x) 7→ (at, ax). From this perspective the dispersion is key as
it constrains the q, r.

There is a diametrically opposite perspective which starts from the scaling relation which
is independent of the dispersion. For example if you are obliged to work with a specific
γ then the scaling restricts 1/q, 1/r to lie on a line. Then the admissability chooses an
interval on that line. Changing the dispersion, for example considering a problem with the
same scaling but weaker dispersion leaves the line fixed but constrains the 1/q, 1/r to lie
on a smaller subinterval.

We follow the proof of [Keel-Tao]. Another standard reference is [Ginibre-Velo]. The limit
point case is treated in the first reference. The key step is an estimate for spectrally
localized data.

Lemma 3.4.8. Suppose that σ := d− 1, q, r is σ-admissible, and ω is as in the Corollary.
There is a constant C so that for all f ∈ L2(Rd) with supp f̂ ⊂ ω,

u(t) := eitτj(Dx)f := U(t)f , U(t)∗ = U(−t) ,

satisfies
∥

∥u
∥

∥

Lq
t Lr

x
≤ C

∥

∥f
∥

∥

L2 . (3.4.12)

Futhermore, for all F ∈ Lq′

t L
r′

x with supp F̂ (t, · ) ⊂ ω,

∥

∥

∥

∫ ∞

0

U(s)∗ F (s) ds
∥

∥

∥

L2(Rd)
≤ C

∥

∥F
∥

∥

Lq′

t Lr′
x

(3.4.13)

Discussion. The estimate is true in the sharp admissible case even though for the heuris-
tics given before the definition, the integral diverged. It is not possible to achieve the
concentration suggested in the heuristics with data which has spectrum with support in
an annulus. For example, if one considers the wave operator on R1+3 with data supported
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in |x| ≤ 1 the solutions are supported in |x| − t ≤ 1 and decay along with their derivatives
exactly as in the heuristic. Thus one gets divergent integrals. However, compact support
and compactly supported Fourier transform are not compatible, and the compact spectrum
is enough to overcome the divergence.

Proof. Denote by ( , ) the L2(Rd) scalar product. Since.

∫ ∞

0

(U(t) f , F (t)) dt =

∫ ∞

0

(f , U(t)∗ F (t)) dt =
(

f ,

∫ ∞

0

U(t)∗ F (t) dt
)

,

estimates (3.4.12) and (3.4.13) are equivalent thanks to the duality representations of the
norms,

∥

∥

∥

∫ ∞

0

U(t)∗ F (t) dt
∥

∥

∥

L2(Rd)
= sup

{(

f ,

∫ ∞

0

U(t)∗ F (t) dt
)

: f̂ ∈ C∞
0 (ω), ‖f‖L2 = 1

}

,

∥

∥

∥
U(t)f

∥

∥

∥

LqLr
= sup

{

∫ ∞

0

(U(t) f , F (t)) dt : F̂ ∈ C∞
0

(

]0,∞[×ω
)

, ‖F‖Lq′Lr′ = 1
}

.

Estimate (3.4.13) holds if and only if

(

∫ ∞

0

(U(t)∗F (t)) dt ,

∫ ∞

0

(U(s)∗G(s)) ds
)

is a continuous bilinear form on Lq′

Lr′

, that is

∣

∣

∣

∫ ∞

0

∫ ∞

0

(

U(s)∗ F (s) , U(t)∗G(t)
)

ds dt
∣

∣

∣
≤ C ‖F‖

Lq′

t Lr′
x
‖G‖

Lq′

t Lr′
x
. (3.4.14)

Unitarity implies that

∀s, t , B := U(t)U∗(s) , satisfies ‖Bf‖L2 ≤ ‖f‖L2 .

The dispersive estimate (3.4.3) is

∀s, t , ‖Bf‖L∞ ≤ C〈t− s〉−σ‖f‖L1 .

With r′ ∈]1, 2[ the dual index to r, choose θ ∈]0, 1[ so that

1

r′
= θ

1

1
+ (1 − θ)

1

2
, then, θ =

2 − r′

r′
=
r − 2

r
. (3.4.15)

The Riesz-Thorin Theorem implies that

‖Bf‖Lr ≤ Cθ 〈t− s〉−σθ ‖f‖Lr′ .
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With Hölder’s inequality, this yields the interpolated bilinear estimate,

∣

∣

∣

(

U(s)∗ F (s) , U(t)∗G(t)
)

∣

∣

∣
≤ Cθ 〈t− s〉−σθ ‖F (s)‖Lr′‖G(t)‖Lr′ .

Admissibility implies that

1

q
≤ σ

(1

2
− 1

r

)

= σ
(r − 2

2r

)

=
σ θ

2
.

When strict inequality holds in the definition of admissibility, 〈t − s〉−σθ ∈ Lq/2(Rt).
The hypothesis q > 2 is used here. For the limiting case, it is nearly so. The Hardy-
Littlewood inequality shows that convolution with |t|−2/q has the Lp mapping properties
that convolution with an element of Lq/2(R) would have.

The Hausdorff-Young inequality shows that

Lp1 ∗ Lp2 ⊂ Lp3 , provided
1

p1
+

1

p2
= 1 +

1

p3
. (3.4.16)

The Hardy Littlewood inequality asserts that when 1 < p1, p2, p3 <∞

1

〈t〉1/p1
∗ Lp2(R) ⊂ Lp3(R) , provided

1

p1
+

1

p2
= 1 +

1

p3
. (3.4.17)

Set
p1 =

q

2
, p2 = q′, and, p3 = q . (3.4.18)

The index conditions in (3.4.16)-(3.4.17) become

2

q
+

1

q′
= 1 +

1

q
,

which holds by definition of q′. Then (3.4.16) in the admissible case and (3.4.17) in the
sharp admissible case imply that

∥

∥

∥

∫ ∞

−∞

〈t− s〉−σθ ‖F (s)‖Lr′ ds
∥

∥

∥

Lq(Rt)
≤ C

∥

∥F
∥

∥

Lq′

t Lr′
x
. (3.4.19)

Hölder’s inequality yields

∫ ∞

0

(

∫ ∞

0

〈t− s〉−σθ
∥

∥F (s)
∥

∥

Lr′ ds
)

∥

∥G(t)
∥

∥

Lr′ dt ≤ C
∥

∥F
∥

∥

Lq′

t Lr′
x

∥

∥G
∥

∥

Lq′

t Lr′
x
.

This proves the desired estimate (3.4.14).

A scaling yields estimates for sources with Fourier transform suppoerted in λω for 0 < λ.

24



Lemma 3.4.9. With q, r, ω, σ as in the previous lemma and γ as in the Theorem, there
is a C so that for all 0 < λ and f ∈ L2 with supp f̂ ⊂ λω,

u(t) := eitτj(Dx)f := U(t)f ,

satisfies
∥

∥u
∥

∥

Lq
t Lr

x
≤ C

∥

∥ |D|γf
∥

∥

L2 . (3.4.20)

Proof of Lemma. If uλ(t, x) := u(λt, λx) then, Luλ = 0 and the spectrum of uλ is
contained in ω.

The two sides of (3.4.12) scale differently. Compute

∥

∥uλ(t)
∥

∥

Lr =
(

∫

|uλ(t, x)|r dx
)1/r

=
(

∫

|u(λt , λx)|r dx
)1/r

.

The substitution y = λx, dx = λ−ddx yields

= λ−d/r
(

∫

|u(λt , y)|r dy
)1/r

= λ−d/r
∥

∥u(λt)
∥

∥

Lr .

A similar change of variable for the time integral shows that

∥

∥uλ

∥

∥

Lq
t Lr

x
= λ−1/q − d/r

∥

∥u
∥

∥

Lq
t Lr

x
.

For any γ, ‖ |D|γf‖L2 is a norm equivalent to the norm on the right hand side for sources
with spectrum in ω. Compute

‖ |D|γfλ‖L2 =
(

∫

|ξ|2γ
∣

∣f̂λ(ξ)
∣

∣

2
dξ

)1/2

=
(

∫

|ξ|2γ
∣

∣λ−df̂(ξ/λ)
∣

∣

2
dξ

)1/2

= λγ − d/2
(

∫

|ξ|2γ
∣

∣f̂(ξ)
∣

∣

2
dξ

)1/2

= λγ − d/2‖ |D|γf‖L2 .

Given q, r, the γ of the Theorem is the unique value so that the two norms scale the same.
Therefore the estimate of the present Lemma follows from the preceding Lemma.

Proof of Theorem. With χ from the dyadic partition of unity for Rd
ξ \ 0 constructed in

the stationary phase inequality, introduce the Littlewood-Paley decomposition of tempered
distributions

g =
∑

J∈Z

gj , gj := χ(D/2j) g := (2π)−d/2

∫

eixξ χ(ξ/2j) ĝ(ξ) dξ .
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Then for 1 < r <∞ the classical square function estimate (see [Stein, Singular Integrals])
asserts that there is a C > 1 so that

C−1‖g‖Lr ≤
∥

∥

(

∑

j∈Z

|gj|2
)1/2∥

∥

Lr ≤ C ‖g‖Lr .

Lemma 3.4.10. If 2 ≤ q, r <∞, there is a constant C so that

∥

∥F
∥

∥

2

Lq
t Lr

x
≤ C

∑

j∈Z

∥

∥Fj

∥

∥

2

Lq
t Lr

x
, (3.4.21)

where F (t) =
∑

j Fj(t) is the Littlewood-Paley decomposition in x.

Proof of Lemma. The square function estimate yields

∥

∥F (t)
∥

∥

2

Lr
x

≤ C

∫

(

∑

j

|Fj(t)|2
)r/2

dx = C
∥

∥

∑

j

|Fj(t)|2
∥

∥

Lr/2 .

Minkowski’s inequality in Lr/2 shows that this is

≤ C
∑

j

∥

∥Fj(t)
2
∥

∥

Lr/2 = C
∑

j

∥

∥Fj(t)
∥

∥

2

Lr .

Using this yields

∥

∥F
∥

∥

2

Lq
t Lr

x
≤ C

(

∫ ∞

0

(

∑

j

∥

∥Fj(t)
∥

∥

2

Lr

)q/2

dt
)2/q

= C
∥

∥

∑

j

‖Fj(t)‖2
Lr(Rd

x)

∥

∥

Lq/2(Rt)
.

Minkowski’s inequality in Lq/2(Rt) shows this is

≤ C
∑

j

∥

∥‖Fj(t)‖2
Lr(Rd

x)

∥

∥

Lq/2(Rt)
= C

∑

j

‖Fj(t)‖2
Lq

t Lr
x
.

Return now to the proof of the Theorem. Associate to the sheet τ = τk(ξ) the projector
πk(ξ) := π(τk(ξ), ξ) from §3.2. The πk are real analytic on ξ 6= 0 and homogeneous of
degree 0 in ξ. In addition

∑

k πk = I. The solution u satisfies

u =
∑

k

eitτk(D) πk(D) f :=
∑

k

uk .

Apply (3.4.21) to uk to find using (3.4.20)

∥

∥uk

∥

∥

2

Lq
t Lr

x
≤ C

∑

j

‖uk,j‖2
Lq

t Lr
x

≤ C′
∑

j

‖ |D|γπk(D)fj‖2
L2 ≤ C′ ‖ |D|γf‖2

L2 .
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The finite sum on k completes the proof of the Theorem.

Corollary 3.4.11. Denote by S(t) the L2 unitary mapping u(0) 7→ u(t) for solutions of
Lu = 0. With the indices of the Theorem one has

∥

∥

∥

∫ ∞

0

S(s)∗ F (s) ds
∥

∥

∥

L2(Rd)
≤ C

∥

∥|Dx|γ F
∥

∥

Lq′

t Lr′
x
. (3.4.22)

Proof. Estimate (3.4.22) is equivalent to the Strichartz estimate (3.4.11) by a duality like
that used to establish the equivalence of (3.4.12) and (3.4.13).

Exercise. Prove the following complement to (3.4.21) which comes from the other side of
the square function inequality. If 1 < p ≤ 2 and 1 ≤ r ≤ 2 then there is a C so that

∞
∑

j=−∞

∥

∥Fj

∥

∥

2

Lr
t Lp

x
≤ C

∥

∥F
∥

∥

2

Lr
t Lp

x
. (3.4.23)

§6.8. The subcritical nonlinear Klein-Gordon equation in the energy space.

§6.8.1. Introductory remarks.

The mass zero nonlinear Klein-Gordon equation is

1+du + F (u) = 0 . (6.8.1)

where

F ∈ C1(R) , F (0) = 0 , F ′(0) = 0 . (6.8.2)

The classic examples from quantum field theory are the equations with F (u) = up with
p ≥ 3 an odd integer. For ease of reading we consider only real solutions.

The equation (6.8.1) is Lorentz invariant and if

G′(s) = F (s) , G(0) = 0 , (6.8.3)

The local energy density is defined as

e(u) :=
u2

t + |∇xu|2
2

+ G(u) . (6.8.4)

Solutions u ∈ H2
loc(R

1+d) satisfy the differential energy law,

∂te− div
(

ut ∇xu
)

= ut

(

u + F (u)
)

= 0 . (6.8.5)
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The corresponding integral conservation law for solutions suitably small at infinity is,

∂t

∫

Rd

u2
t + |∇xu|2

2
+ G(u) dx = 0 , (6.8.6)

is one of the fundamental estimates in this section. Solutions are stationary for the La-
grangian,

∫ T

0

∫

Rd

u2
t − |∇xu|2

2
−G(u) dt dx .

When F is smooth, the methods of §6.3-6.4 yield local smooth existence.

Theorem 6.8.1. If F ∈ C∞, s > d/2, f ∈ Hs(Rd), and g ∈ Hs−1(Rd), then there is a
unique maximal solution

u ∈ C
(

[0, T∗[ ; Hs(Rd)
)

∩ C1
(

[0, T∗[ ; Hs−1(Rd)
)

.

satisfying

u(0, x) = f , ut(0, x) = g .

If T∗ <∞ then

lim sup
t→T∗

‖u(t)‖L∞(Rd) = ∞ .

In favorable cases, the energy law (6.8.6) gives good control of the norm of u, ut ∈ H1×L2.
Controling the norm of the difference of two solutions is, in contrast, a very difficult problem
for which many fundamental questions remain unresolved.

An easy first case is nonlinearities F which are uniformly lipschitzean. In this case, there
is global existence in the energy space.

Theorem 6.8.2. If F satisfies F ′ ∈ L∞(R) , then for all Cauchy data f, g ∈ H1×L2 there
is a unique solution

u ∈ C
(

R ; H1(Rd)
)

∩ C1
(

R ; L2(Rd)
)

.

For any finite T , the map from data to solution is uniformly lipschitzean from H1 ×L2 to
C([−T, T ; H1) ∩ C1([−T, T ] ; L2). If f, g ∈ H2 ×H1 then

u ∈ L∞
(

R ; H2(Rd)
)

, ut ∈ L∞
(

R ; H1(Rd)
)

.

If f, g ∈ Hs ×Hs−1 with 1 ≤ s < 2, then

u ∈ C
(

R ; Hs(Rd)
)

, ut ∈ C
(

R ; Hs−1(Rd)
)

.
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Sketch of Proof. The key estimate is the following. If u and v are solutions then

(u− v) = F (v) − F (u), |F (u) − F (v)| ≤ C|u− v| .

Multiplying by ut − vt yields

d

dt

∫

(ut−vt)
2+|∇x(u−v)|2dx = 2

∫

(ut−vt)
(

F (v)−F (u)
)

dx ≤ C ‖ut−vt‖2
L2 ‖u−v‖2

L2 .

It follows that for any T there is an a priori estimate

sup
|t|≤T

(

‖u(t)− v(t)‖H1 + ‖ut − vt‖L2

)

≤ C(T )
(

‖u(0)− v(0)‖H1 + ‖ut(0)− vt(0)‖L2

)

.

This estimate exactly corresponds to the asserted Lipschitz continuity of the map from
data to solutions.

Applying the estimate to v = u(x + h) and taking the supremum over small vectors h,
yields an a priori estimate

sup
|t|≤T

(

‖u(t)‖H2 + ‖ut‖L2

)

≤ C(T )
(

‖u(0)‖H2 + ‖ut(0)‖H1

)

,

which is the estimate correponding to the H2 regularity.

Higher regularity for dimensions d ≥ 10 is an outstanding open problem. For example,
for d ≥ 10, smooth compactly supported initial data, and F ∈ C∞

0 or F = sinu, it is not
known if the above global unique solutions are smooth. For d ≤ 9 the result can be found in
[Brenner-vonWahl 1982]. Smoothness would follow if one could prove that u ∈ L∞

loc. What
is needed is to show that the solutions do not get large in the pointwise sense. Compared
to the analogous regularity problem for Navier-Stokes this problem has the advantage that
solutions are known to be unique and depend continuously on the data.

§6.8.2. The ordinary differential equation and nonlipshitzean F.

Concerning global existence for functions F (u) which may grow more rapidly than linearly
as u → ∞, the first considerations concern solutions which are independent of x and
therefore satisfy the ordinary differential equation,

utt + F (u) = 0 . (6.8.7)

Global solvability of the ordinary differential equation is analysed using the energy con-
servation law

(u2
t

2
+ G(u)

)′

= ut

(

utt + F (u)
)

= 0 .

Think of the equation as modeling a nonlinear spring. The spring force is attractive, that
is pulls the spring toward the origin when

F (u) > 0 when u > 0 and, F (u) < 0 when u < 0 .
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In this case one has G(u) > 0 for all u 6= 0. Conservation of energy then gives a pointwise
bound on ut uniform in time

u2
t (t) ≤ u2

t (0) + 2G(u(0)) , |ut(t)| ≤
(

u2
t (0) + 2G(u(0))

)1/2
.

This gives a pointwise bound

|u(t)| ≤ |u(0)| + |t|
(

u2
t (0) + 2G(u(0))

)1/2
.

In particular the ordinary differential equation has global solutions.

In the extreme opposite case consider the replusive spring force F (u) = −u2 and G(u) =
−u3/3. The energy law asserts that u2

t/2 − u3/3 := E is independent of time. Consider
solutions with

u(0) > 0, ut(0) > 0 so E > −u
3(0)

3
.

For all t > 0,

|ut| =
∣

∣

u3

3
+ E

∣

∣

1/2
,

At t = 0 one has

ut(0) =
(u3(0)

3
+ E

)1/2

> 0 .

Therefore u increases and u3/3 +E stays positive and one has for t ≥ 0

ut(t) =
(u3(t)

3
+ E

)1/2

> 0 .

Both u and ut are strictly increasing.

Since
du

(

u3

3 + E
)1/2

= dt ,

u(t) approaches ∞ at time

T :=

∫ ∞

u(0)

du
(

u3

3 + E
)1/2

.

Exercise. Show that if there is an M > 0 so that G(s) < 0 for s ≥M and

∫ ∞

M

1
√

|G(s)|
ds < ∞

then there are solutions of the ordinary differential equation which blow up in finite time.
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Proposition 6.8.3 [J.B. Keller 1957]. If

a, δ > 0, d ≤ 3, E := δ2/2 − a3/3, T :=

∫ ∞

a

∣

∣

u3

3
+ E

∣

∣

−1/2
du ,

and φ, ψ ∈ C∞(Rd) satisfy

φ ≥ a and ψ ≥ δ for |x| ≤ T ,

the the smooth solution of

1+du − u2 , u(0) = φ, ut(0) = ψ

blows up on or before time T .

Proof. Denote by u the solution of the ordinary differential equation with initial data
u(0) = a, ut(0) = δ.

If u ∈ C∞
(

[0, t] × Rd
)

, then finite speed of propagation and positivity of the fundamental
solution of 1+d imply that

u ≥ u on
{

|x| ≤ T − t
}

.

Since u diverges as t→ T it follows that t ≤ T

In the case of attractive forces where G ≥ 0 one can hope that there is global smooth
solvability for smooth initial data. This question has received much attention and is very
far from being understood. For example even in the uniformly lipschitzean case where
solutions H2 in x exist globally, higher regularity is unknown in high dimensions.

In the remainder of this section we will study solvability in the energy space defined by
u, ut ∈ H1 × L2. This regularity is suggested by the basic energy law. For uniformly
lipschitzean nonllinearities the global solvability is given by Theorem 6.8.2. The interest
is in attractive nonlinearities with superlinear growth at infinity.

A crucial role is played by the rate of growth of F at infinity. There is a critical growth rate
so that for nonlinearities which are subcritical and critical there is a good theory based on
Strichartz estimates. The analysis is valid in all dimensions.

To concentrate on essentials, we present the family of attractive (repulsive) nonlinearities
F = u|u|p−1 (F = −u|u|p−1) with potential energies given by ±

∫

|u|p+1/(p+ 1)dx. Start
with four natural notions of subcriticality. They are in increasing order of strength. One
could expect to call p subcritical when

1. H1(Rd) ⊂ Lp(Rd) so the nonlinear term makes sense for elements of H1.

2. H1(Rd) ⊂ Lp+1(Rd) so the potential energy makes sense for elements of H1.

3. H1(Rd) is compact in Lp+1
loc (Rd) so the potential energy is in a sense small compared to

the kinetic energy.
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4. H1(Rd) ⊂ L2p(Rd) so the nonlinear term belongs to L2(Rd) for elements of H1.

The Sobolev embedding is

H1(Rd) ⊂ Lq(Rd) , for, q =
2d

d− 2
. (6.8.8)

The above conditions then read (with the values for d = 3 given in parentheses),

1. p ≤ 2d/(d− 2), (p ≤ 6) ,

2. p+ 1 ≤ 2d/(d− 2),
(

equiv. p ≤ (d+ 2)/(d− 2)
)

, (p ≤ 5),

3. p < (d+ 2)/(d− 2), (p < 5),

4. p ≤ d/(d− 2), (p ≤ 3).

The correct answer is 3. Much that will follow can be extended to the critical case p =
(d+ 2)/(d− 2). The case 1 in contrast is supercritical and comparatively little is known.
It is known that in the supercritical case, solutions are very sensitive to initial data. The
dependence is not lipschitzean, and it is lipschitzean in the subcritical and critical cases.
The books of Sogge, and Shatah-Struwe and the orignal 1985 article of Ginibre and Velo
are good references. The sensitive dependence is a recent result of Lebeau.

Notation. Denote by Lq
tL

r
x([0, T ]) the space Lq

tL
r
x([0, T ] × R

d), Denote with an open
interval

Lq
tL

r
x([0, T [) := ∪0<T<T Lq

tL
r
x([0, T ]) .

Theorem 6.8.4. i. If p is subcritical for H1, that is p < (d + 2)/(d − 2), then for any
f ∈ H1(Rd) and g ∈ L2(Rd) there is T∗ > 0 and a unique solution

u ∈ C([0, T∗[ H
1(Rd)) ∩ C1([0, T∗[ ; L

2(Rd)) ∩ Lp
tL

2p
x ([0, T∗[) (6.8.9)

of the repulsive problem

u − u|u|p−1 = 0 , u(0) = f, ut(0) = g . (6.8.10)

If T∗ <∞ then
lim inf
tրT∗

‖∇t,xu‖L2(Rd) = ∞ . (6.8.11)

The energy conservation law (6.8.6) is satisfied.

ii. For the attractive problem

u + u|u|p−1 = 0 , u(0) = f, ut(0) = g . (6.8.12)

one has the same result with T∗ = ∞ and with u ∈ Lp
tL

2p
x (R). For any T > 0, the map

from Cauchy data to solution is uniformly lipschitzean

H1 × L2 → C([−T, T ] ; H1) ∩ C([−T, T ] ; L2) ∩ Lp
tL

2p
x ([0, T ])) .
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In the proof of this result and all that follows a central role is played by the linear wave
equation and its solution for which we recall the basic energy estimate

‖∇t,xu(t)‖L2(Rd) ≤ ‖∇t,xu(0)‖L2(Rd) +

∫ t

0

‖ u(t)‖L2(Rd) dt .

This is completed by the L2 estimate

‖u(t)‖L2(Rd) ≤
∫ t

0

‖ut(t)‖L2(Rd) dt .

In particular, for h ∈ L1
loc

(

R ; L2(Rd)
)

there is a unique solution

u ∈ C
(

R ; H1(Rd)
)

∩ C1
(

R ; L2(Rd)
)

,

to
u = h , u(0) = 0 , ut(0) = 0 .

This solution is denoted
−1h .

In order to take advantage of this we seek solutions so that

Fp(u) := ±u|u|p−1 ∈ L1
tL

2
x .

Compute

‖Fp(u)‖L1
tL2

x
=

∫ T

0

(

∫

|up|2 dx
)1/2

dt ,

where
(

∫

|u|2p dx
)1/2

=
[(

∫

|u|2p
)1/2p]p

= ‖u‖p
L2p(Rd)

,

so

‖Fp(u)‖L1
tL2

x
=

∫ T

0

‖u‖p

L2p
t Rd

x

dt = ‖u‖p

Lp
t L2p

x
. (6.8.13)

The above calculation proves the first part of the next lemma.

Lemma 6.8.5. The mapping u 7→ Fp(u) takes Lp
tL

2p
x ([0, T ] to L1

tL
2
x([0, T ]). It is uniformly

Lipshitzean on bounded subsets.

Proof. Write

Fp(v) − Fp(w) = G(v, w)
(

v − w
)

, |G(v, w)| ≤ C
(

|v|p−1 + |w|p−1
)

.
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Write
∥

∥G(v, w)(v − w)
∥

∥

2

L2
x

=

∫

|G|2 |v − w|2 dx .

Use Hölder’s inequality for L
p/(p−1)
x × Lp

x to estimate by

≤
(

∫

|G(v, w)|2p/(p−1)dx
)

p−1

p
(

∫

|v − w|2pdx
)

1
p

.

Then

‖Fp(v) − Fp(w)‖L2 ≤ C ‖v, w‖p−1

L2p
x

‖v − w‖L2p
x
.

Finally estimate the integral in time using Hölder’s inequality for L
p/(p−1)
t × Lp

t .

It is natural to seek solutions u ∈ Lp
tL

2p
x ([0, T ]). With that as a goal we ask when it is

true that
−1

(

L1
tL

2
x

)

⊂ Lp
tL

2p
x .

This is exactly in the family of questions addressed by the Strichartz inequalities. The
next Lemma gives the inequalities adapted to the present situation.

Lemma 6.8.6. If

q > 2 , and
1

q
+

d

r
=

d

2
− 1 , (6.8.14)

then there is a constant C > 0 so that for all T > 0, h, f, g ∈ L1
t (L

2
x)×H1×L2 the solution

of

u = h , u(0) = f , ut(0) = g ,

satisfies

∥

∥u
∥

∥

Lq
t Lr

x([0,T ])
≤ C

(

∥

∥h‖L1
t L2

x([0,T ]) +
∥

∥∇xf
∥

∥

L2(Rd)
+

∥

∥g
∥

∥

L2(Rd)

)

. (6.8.15)

Proof. 1. Rewrite the wave equation as a symmetric hyperbolic pseudodifferential system
motivated by D’Alembert’s solution of the 1 − d wave equation. Factor,

∂2
t − ∆ = (∂t + i|D|) (∂t − i|D|) = (∂t + i|D|) (∂t − i|D|) .

Introduce

v± := (∂t ∓ i|D|)u , V := (v+, v−) ,

so

Vt +

(

1 0
0 −1

)

i|D|V =

(

h
h

)

.
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Lemma 3.4.8 implies that for σ = d − 1, q > 2, (q, r) σ- admissible, and h, f, g with
spectrum in {R1 ≤ |ξ| ≤ R2} one has

‖u‖Lq
t Lr

x
≤ C ‖∇t,xu‖Lq

t Lr
x

≤ C ‖V ‖Lq
t Lr

x
≤ C

(

‖h‖L1
t L2

x
+ ‖|D|f‖L2 + ‖g‖L2

)

.

2. Denote by ℓ the dimensions of t and x. With dimensionless u , the terms on right of
this inequality have dimension ℓd/2−1.

The dimension of the term on the left is equal to

(

ℓdq/r ℓ
)1/q

= ℓ
d
r + 1

q .

The two sides have the same dimensions if and only if

d

r
+

1

q
=

d

2
− 1 . (6.8.16)

Under this hypothesis it follows that the same inequality holds, with the same constant C
for data with support in λR1 ≤ |ξ| ≤ λR2.

Comparing (6.8.16) with σ-admissibility which is equivalent to

d

r
+

1

q
≤ d

2
− 1

2
− 1

r
,

shows that (6.8.16) implies admissibility since r ≥ 2.

3. Lemma 6.8.6 follows using Littlewood-Paley theory as at the end of §3.4.3.

We now answer the question of when −1 maps L1
tL

2
x to Lp

tL
2p
x . This is the crucial

calculation. In Lemma 6.8.6, take r = 2p to find

1

q
+

d

2p
=

d− 2

2
,

so,
1

q
=

d− 2

2
− d

2p
=

p(d− 2) − d

2p
, q = p

(

2

p(d− 2) − d

)

.

We want q ≥ p, that is

2

p(d− 2) − d
≥ 1 , ⇔ p(d− 2) − d ≤ 2 ⇔ p ≤ d+ 2

d− 2
.

The critical case is that of equality, and the subcritical case that we treat is the one with
strict inequality. For d = 3 the critical power is p = 5 and for d = 4 it is p = 3. In the
subcritical case the operator has small norm for T << 1.
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The strategy of the proof is to write the solution u as a perturbation of the solution of the
linear problem, at least for small times. Define u0 to be the solution of

u0 = 0 , u0(0) = f,
∂u0

∂t
(0) = g . (6.8.17)

Write
u = u0 + v (6.8.18)

with the hope that v will be small at least for t small.

Lemma 6.8.7. If u = u0 + v with v ∈ Lp
tL

2p
x

(

[0, T ]
)

satisfying

v = ± −1Fp(u0 + v) . (6.8.20)

then
u ∈ C([0, T ] ; H1(Rd)) ∩ C1([0, T ] ; L2(Rd)) ∩ Lp

tL
2p
x ([0, T ]) (6.8.21)

satisfies
u ± Fp(u) = 0 , u(0) = f, ut(0) = g , (6.8.22)

Conversely, if u satisfies (6.8.21)-(6.8.22) then v := u − u0 ∈ Lp
tL

2p
x ([0, T ]) and satisfies

(6.8.21)

Proof. The Strichartz inequality implies that u0 ∈ Lp
tL

2p
x and by hypothesis the same is

true of v. Therefore u0 + v belongs to Lp
tL

2p
x so Fp(u0 + v) ∈ L1

tL
2
x.

Therefore v = ± −1Fp is C(H1) ∩ C1(L2). The differential equation and initial condition
for v are immediate.

The converse is similar, not used below, and left to the reader.

Proof of Theorem 6.8.4. ForK > 0 arbitrary but fixed, we prove unique local solvability
with continuous dependence for 0 ≤ t ≤ T with T uniform for all data f, g with

‖f‖H1 + ‖g‖L2 ≤ K .

Choose R = R(K) so that for such data,

‖u0‖Lp
t L2p

x ([0,1]) ≤ R

2
.

Define
B = B(T ) :=

{

v ∈ Lp
tL

2p
x ([0, T ]) : ‖v‖Lp

t L2p
x ([0,T ]) ≤ R

}

.

We show that for T = T (K) sufficiently small, the map v 7→ −1Fp(u) is a contraction
from B to itself.

This is a consequence of three facts.
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1. Lemma 6.8.5 shows that Fp is uniformly lipschitzean from B to L1
tL

2
x([0, T ]) uniformly

for 0 < T ≤ 1.

2. Lemma 6.8.6 together with subcriticality shows that there is an r > p so that −1 is
uniformly lipshitzean from L1

tL
2
x to Lr

tL
2p
x uniformly for 0 < T < 1.

3. The injection Lr
tL

2p
x 7→ Lp

tL
2p
x has norm which tends to zero as T → 0.

This is enough to carry out the existence parts of Theorem 6.8.4.

If there are two solutions u, v with the same initial data, compute

(u− v) = G(u, v)(u− v) .

Lemma 6.8.6 together with subcriticality shows that with r slightly larger than p,

‖u− v‖Lr
t L2p

x
≤ C ‖G(u, v)(u− v)‖L1

tL2
x

≤ C ‖u− v‖Lp
t L2p

x
.

Use this estimate for 0 ≤ t ≤ T << 1 noting that Hölder’s inequality shows that for T → 0,

‖u− v‖Lp
t L2p

x
≤ C T ρ ‖u− v‖Lr

t L2p
x

≤ C T ρ‖u− v‖Lp
t L2p

x
, ρ > 0 ,

to show that the two solutions agree for small times. Thus the set of times where the
solutions agree is open and closed proving uniqueness.

To prove the energy law note that Fp(u) ∈ L1
tL

2
x so the linear energy law shows that

∫ |ut|2 + |∇xu|2
2

dx

∣

∣

∣

∣

t

t=0

= ∓
∫ t

0

∫

ut Fp(u) dx dt . (6.8.23)

Now
ut ∈ L∞

t L
2
x , and Fp(u) ∈ L1

tL
2
x .

Hölder’s inequality shows that

∫

|ut Fp(u)|dx ≤ ‖ut(t)‖L2
x
‖Fp(u(t)‖L2

x
.

The latter is the product of a bounded and an integrable function so

∀T, ut Fp(u) ∈ L1([0, T ] × R
d) .

Let

w :=
|u|p+1

p+ 1
.

Since p is subcritical, one has for some 0 < ǫ,

‖w(t)‖L1
x

≤ C‖u(t)‖H1−ǫ(Rd) ∈ L∞([0, T ]) .
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In particular w ∈ L1([0, T ]× R
d) and the family {w(t)}t∈[0,T ] is precompact in L1

loc.

Formally differentiating yields

wt = utFp(u) ∈ L1([0, T ]× R
d) . (6.8.24)

Using the above estimates, it is not hard to justify (6.8.24).

It then follows that w ∈ C([0, T ] ; L1(Rd)) and

∫

w(t, x) dx

∣

∣

∣

∣

∣

t=T

t=0

=

∫ T

0

∫

ut Fp(u)dx dt .

Together with (6.8.23) this proves the energy identity.

Once the energy law is known, one concludes global solvability in the attractive case since
the blow up criterion (6.8.11) is ruled out by energy conservation.
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Chapter 3. Appendix I. Perturbation theory for semisimple eigenvalues.

The computation of the form of the operator π Lπ requires formulas from the perturba-
tion theory of eigenvalues. These results for multiple eigenvalues which are semisimple
is not that well known. The key idea is that one should NOT make a choice of basis of
eigenfunctions, but work systematically with the spectral projections.

Definition. An eigenvalue λ of a matrix A is semisimple when the kernel and range of
A−λI are complementary subspaces. In this case denote by π the spectral projection onto
the kernel of A− λI along its range and by Q the partial inverse defined by

Qπ = 0 , Q
(

A− λ I
)

= I − π . (1)

Theorem. Suppose that ]a, b[∋ s→ A(s) is a smooth family of complex matrices with an
isolated smooth semisimple eigenvalue λ(s). Then λ(s) and π(s) are smooth functions of
s whose first derivatives satisfy

λ′(s) π(s) = π(s) A′(s) π(s) , (2)

λ′′ π = π A′′ π − 2 πA′QA′ π , (3)

π′ = −π A′Q−QA′π . (4)

Proof. For s fixed, choose r > 0 so that A(s) has only the eigenvalue λ(s) in the disc |z−
λ(s)| ≤ 2r. The smoothness of π(s) near s follows from the contour integral representation

π(s) :=
1

2πi

∮

|z−λ(s)|=r

(

z −A(s)
)−1

dz .

The identity

Q(s) = (I − π(s))
(

π(s) +A(s)
)−1

∈ C∞ .

The identity A(s)π(s) = λ(s)π(s) implies that

λ(s) =
Trace

(

A(s)π(s)
)

Traceπ(s)
∈ C∞ .

The formulas (2-4) are proved by differentiating the identity (A − λ)π = π(A − λ) = 0
with respect to s. The equation for each dj/dsj is analysed by considering its projections
π and I − π. Equivalently, each equation is multiplied first by π, then by Q.

Denoting d/ds with a ′ . Differentiating (A− λ)π yields

(A− λ)′ π + (A− λ) π′ = 0 . (5)
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Mulitplying on the left by π eliminates the second term to yield

π (A− λ)′ π = 0 , (6)

which is equivalent to (2).

Multiply equation (5) on the left by Q to find

(I − π)π′ = −Q
(

A− λ
)′
π .

Since Qπ = 0 this simplifies to

(I − π)π′ = −QA′π . (7)

Equation (5) is exhausted and we take a second derivative,

(A− λ)′′π + 2(A− λ)′π′ + (A− λ)π′′ = 0 .

Mutiply on the left by π to eliminate the last term,

π(A− λ)′′π + 2π(A− λ)′π′ = 0 .

Subtract 2(π(A− λ)′π)π′ = 0 π′ = 0 to find

π(A− λ)′′π + 2π(A− λ)′(I − π)π′ = 0 .

Then (7) yields
π(A− λ)′′π + 2π(A− λ)′(−QA′π) = 0 . (8)

Since πQ = 0 one has
2 πλ′(−QA′π) = 0 . (9)

Adding (8) and (9) yields (3).

To prove (4) knowing (7), what is needed is π π′. Differentiate π2 = π to find

π π′ + π′ π = π′ , whence π π′ = π′(I − π) . (10)

Differentiate π (A− λ) = 0 to find

π′(A− λ) + π (A− λ)′ = 0 .

Mulitply on the right by Q to find

π′(I − π) = −π (A− λ)′Q .

Use (10) and simplify using πQ = 0 to find

π π′ = −π A′Q .

Adding this to (7) completes the proof.

40



Chapter 3, Appendix II. The stationary phase inequality.

Definition. A point x in an open subset Ω ⊂ Rd is a stationary point of φ ∈ C∞(Ω ; R)
when ∇xφ(x) = 0. It is nondegenerate when the matrix of second derivatives at x is
nonsingular..

When x is a nondegenerate stationary point the map x 7→ ∇xφ(x) has nonsingular Jacobian
at x. It follows that the map is a local diffeomorphism and in particular the stationary
point is isolated.

Taylor’s Theorem shows that

∇xφ(x) =
1

2
∇2

xφ(x) (x− x) + O(|x− x|2) .

Therefore if ω ⊂⊂ Ω contains x and no other stationary point, nondegeneracy implies that
there is a constant C > 0 so,

∀x ∈ ω ,
∣

∣∇xφ(x)
∣

∣ ≥ C |x− x| . (1)

We estimate the size of oscillatory integrals whose phase has a single nondegenerate station-
ary point. These integrals have a complete asymptotic expansion. Proving the estimate is
easier than deriving the expansion. The estimate is proved by the method of nonstationary
phase. I learned the dyadic proof below from G. Métivier. See [Stein, Harmonic Analysis,
Real Variable Methods] for an alternate proof.

Theorem. Suppose that φ ∈ C∞(Ω ; R) has a unique stationary point x ∈ Ω. Suppose
that x is nondegenerate and let m denote the smallest integer strictly larger than d/2.
Then for any ω ⊂⊂ Ω there is a constant C so that for all f ∈ C∞

0 (ω), and 0 < ǫ < 1,

∣

∣

∣

∫

eiφ/ǫf(x) dx
∣

∣

∣ ≤ C ǫd/2 sup
|α|≤m

‖∂αf(x)‖L∞(ω) . (2)

Lemma. There is a nonnegative χ ∈ C∞
0 (Rd\0) so that for all x 6= 0,

∑∞
k=−∞ χ(2k x) = 1.

Proof of Lemma. Choose nonnegative g ∈ C∞
0 (Rd \ 0) so that g ≥ 1 on {1 ≤ |x| ≤ 2}.

Define the locally finite sum

G(x) :=

∞
∑

k=−∞

g(2kx) , G(2kx) = G(x) .

Then G ∈ C∞(Rd \ 0), and G ≥ 1. The function χ := g/G has the desired properties.
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Proof of Theorem. Translating coordinates we may suppose that x = 0. Choose χ as
in the lemma and write

∫

eiφ/ǫf(x) dx =

∞
∑

k=−∞

∫

χ(2k x) eiφ/ǫ f(x) dx :=

∞
∑

k=−∞

I(k) .

The half sum
∑

k<0 χ(2kx) is a smooth function on Rd which vanishes on a neighbhorhood
of the origin and is identically equal to 1 outside a large ball. The nonstationary phase
Lemma 1.2.2 implies that

∣

∣

∣

∫

eiφ/ǫ
(

∑

k<0

χ(2k x)
)

f(x) dx
∣

∣

∣
≤ C ǫm sup

|α|≤m

‖∂αf(x)‖L1(ω) .

The sum
∑

2kǫ1/2≥1 χ(2k x) is a bounded function supported in a ball |x| ≤ Cǫ1/2 so

∣

∣

∣

∫

eiφ/ǫ
(

∑

2kǫ1/2≥1

χ(2k x)
)

f(x) dx
∣

∣

∣
≤ C ǫd/2 ‖f(x)‖L∞(ω) .

There remains the sum over 1 ≤ 2k < ǫ−1/2. The change of variable y = 2k x yields

I(k) = 2−kd

∫

χ(y) eiφk(y)/(22kǫ) f(2−ky) dy , φk(y) := 22k φ(2−k y) .

It follows from (1) that there is a constant c > 0 so that on the support of χ,

c−1 ≤
∣

∣∇φk

∣

∣ ≤ c .

In addition there is are constants C(α) independent of k ≥ 0 so that |∂αφk| ≤ Cα. The
method of nonstationary phase shows that there is a constant independent of k ≥ 0 so
that

∣

∣

∣

∫

χ(y) eiφk(y)/(22kǫ) f(2−ky) dy
∣

∣

∣
≤ C

(

22k ǫ
)m

sup
|α|≤m

‖∂αf(x)‖L1(ω) .

Therefore

∑

1≤2k<ǫ−1/2

|I(k)| ≤ C ǫm
∑

1≤2k<ǫ−1/2

2−kd 22km sup
|α|≤m

‖∂αf(x)‖L1(ω) .

The finite geometric sum has ratio r = 22m−d > 1. If K is the largest index,

rK ≤ 1 + r + r2 . . .+ rK =
rK+1 − 1

r − 1
<

r

r − 1
rK := C(r) rK .
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The sum is comparable to the last term. Therefore, with C = C(m, d) = r/(r − 1),

ǫm
∑

1≤2k<ǫ−1/2

2−kd 22km ≤ C ǫm
(

2K)2m−d ≤ C ǫm
(

ǫ−1/2
)2m−d

= C ǫd/2 .

This completes the proof.

Corollary. Suppose that φ(x, ζ) is a family of phases depending smoothly on ζ on a
neighborhood of 0 ∈ Rq and that φ(x, 0) satisfies the hypotheses of the preceding Theorem.
Then there is a neighborhood 0 ∈ O so that the hypotheses are satisfied for ζ ∈ O and the
estimate (1) holds with a constant independent of ζ ∈ O.

Proof. The first assertion follows from the implicit function theorem applied to the system
of equations ∇xφ(x, ζ) = 0. The estimates of the proof are all locally uniform which proves
the second assertion.
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Chapter 3, Appendix III. Hadamard’s Ovaloid Theorem.

Theorem (Hadamard). If d ≥ 3 and M is an oriented connected compact immersed
hypersurface of Rd whose Gaussian curvature is nonzero at all points, then M is the
boundary of a strictly convex set.

Proof. Consider the Gauss map N from M to Sd−1 which takes a point to its unit normal
consistent with the orientation.

The nonvanishing curvature is equivalent to the differential of N being invertible at all
points. The inverse function theorem shows that this is equivalent to N being a local
diffeomorphism.

For any ξ ∈ Sd−1 the point(s) x ∈ M where x.ξ is maximal have normal equal to ξ so N
is surjective.

The number of preimages of points is finite and locally constant, hence constant. Therefore
N is a covering map.

Since Sd−1 is simply connected, it follows that N is a homeomorphism and therefore a
diffeomorphism. We recall the proof.

It suffices to show that N is injective. If N (m1) = N (m2) = p ∈ Sd−1 choose a curve
γ0 : [a, b] → M connecting m1 to m2. The image N ◦ γ is a closed curve µ0 in Sd−1

beginning and ending at p.

Simple connectivity implies that there is a homotopy of closed curves µt for 0 ≤ t ≤ 1
beginning and ending at p with µ1 reducing to the constant path p.

Since N is a covering, the homotopy lifting lemma shows that there is a homotopy γt,
0 ≤ t ≤ 1 so that N ◦ γt = µt.

The point γt(a) is a point of M depending continuously on t with N (γt(a)) = p. It follows
that γt(a) is constant and therefore equal to m1. Similarly γt(b) = m2. In particular this
holds for t = 1.

But γ1 is a lifting of the constant map µ1 and is therefore constant. Therefore

m1 = γ1(a) = γ1(b) = m2

proving injectivity.

Thus each vector in Sd−1 is normal to M at exactly one point. This shows that M is
strictly convex in the sense that it intersects each tangent plane in exactly one point.

That it is strictly convex in the stronger sense of osculating ellipsoids, then follows from
the nonvanishing Gaussian curvature.

Example. A curve in R
2 with positive curvature and looping twice about the origin shows

that the result is not true when d = 2.
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