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INTRODUCTION 

The three lectures presented here have several goals. 

For emphasis we list them. 

(I) It is often remarked that one of the justifications 

for proving existence and uniqueness theorems in partial 

differential equations is that the methods and ideas 

developed are also useful in the more interesting quali- 

tative questions concerning solutions. The problems 

discussed illustrate this point. 

(II) The five problems of the first lecture are quite 

simple and in my opinion physically interesting. Despite 

this fact they do not seem to be in any of the standard 

elementary P.D.E. treatises. It is my hope that they 

will find their way into introductory courses. 

(III) It is an important fact that interesting physical 

questions often take a qualitative rather than quantita- 

tive form and as such can be treated by the methods 
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mentioned in (I) . 

(IV) Physical intuition is a very valuable aid in 

formulating questions; however, it is often unreliable, 

especially when it comes to answering these questions. 

We give several examples where reasonable physical intu- 

ition is dead wrong. The instances where mathematics 

tells us our intuition is faulty are clearly of great 

value. Formulas are smarter than people. 

(V) By studying the qualitative implications of mathe- 

matical models our intuition can be improved. After all, 

intuition only reflects our belief based on accumulated 

experience. 

(VI) The last two lectures are intended to serve as an 

introduction to work with M. Taylor on scattering by 

unusual obstacles. The original paper is not easy 

reading. I hope these are. 

I. A PROBLEM IN HEAT CONDUCTION 

Let ~ c ~n be a connected, bounded, open set with 

smooth boundary (of course n : 2,3 are of special 

importance). We assume that the region ~ is filled 

with a homogeneous medium and is insulated at $9. For 

example we could be considering the flow of heat in a 

metal plate or in jello inside a thermos bottle. The 

mathematical model for the temperature u(t,x) at 

time t and place x is 

(i) u t c A u in ~ , 

~u 
(2) ~--~-: 0 on ~. 
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Here c is a physical constant depending on the medium, 
2 

A = ~ 2 ' and ~w is differentiation in the direc- 
~x. 

1 
tion of the normal to 9~. Given the initial tempera- 

ture, u(0,x), (i) and (2) suffice to determine the 

time evolution. 

QUESTION. If initially the medium is strongly heated 

in a neighborhood of a point x 0 (for example with a 

torch) so that u(O,x) has a sharp maximum at x O, is 

it true that for each t > o the maximum of u(t,x) 

occurs at or near x ? 
o 

Intuitively, one feels that heat will flow from the 

hot spot to the cooler ones with the result that the 

temperature gradually decreases near x 0 and increases 

at other points. This vague idea which even sounds like 

the second law of thermodynamics indicates that the 

answer is yes. 

ANALYSIS. We solve (i), (2) by eigenfunction expansion. 

It is well known that there are eigenvalues 

0 : h 0 > h I _> ... converging to -~ and eigenfunctions 

~0,%1 .... such that 

£}. = h.%. , j = 0,1,2 ..... 
] 33 

= 0 on ~ , ~v 3 

{~.} is an orthonormal basis for L2(~). 
3 

The solution u(t,x) is then given by 
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Cl t 
U : Z a e 3 %. 

j 3 3 

where a3 = (u(0,x), 9J)L2(~). We choose 90 = 

1 
> 0. Then since h < 0 for j > 0 we have l~ll/2 

1 
u = ~ f  u + o(1). 

To be precise, for any k 

i chlt 
flu(t) - I~-~ ~f~UIIH k(~) = 0(e ) as t ÷ ~. 

EXERCISE. Prove this. 

The conclusion is that u converges rapidly to its 

average value. This is a rigorous version of the 

"approach to equilibrium". 

HYPOTHESIS. 

l I > 12. 

h I is a simple eigenvalue, that is, 

This hypothesis is satisfied by "most" domains. Its 

failure is usually due to some sort of symmetry. For 

example, in 2 it is valid for all ellipses except the 

circle and all rectangles except the square. 

EXERCISE. Verify the assertions of the last sentence. 

With this assumption we now look at the next term in 

the expression for u. 

cllt ct2t 
u = a090 + ale 91 + O(e ) 
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EXERCISE. 

ch2t 
O(e ) . 

Formulate and prove a precise sense for 

HYPOTHESIS. The eigenfunction ~l 

(resp. minimum) at P+ (resp. P_). 

has a unique maximum 

Again this behavior is expected in unexceptional 

cases. Since }i is orthogonal to constants we have 

P > 0 > P + 

ANSWER TO QUESTION. If a I > 0 (resp. < O) the point 

where u(t) achieves its maximum approaches m + 
(resp. P ) as t + ~. 

Thus, rather than staying in the neighborhood of the 

original hot spot the maximum always moves to one of two 

points. It is very instructive to consider the case 

= [0,7] c ~i, ~l(X ) : /2/7 cos x. If the initial hot 

spot is to the left (resp. right) of 7/2 then the 

maximum moves to 0 (resp. 7). 

EXERCISE. Verify the last assertion. 

One can even get a feeling for why this happens. If 

the initially hot region is to the left of ~/2 then 

there is more medium to the right that must be heated. 

Thus the heat is drawn off more rapidly on the right and 

the region of high temperature moves to the left because 

of "erosion on the right". 

2. A PROBLEM FROM ELECTROSTATICS 

Let ~1' ~2 in  3 be d i s j o i n t  bounded open se t s  
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with smooth boundaries. We suppose that perfect conduc- 

tors occupy these regions. Suppose a positive charge q 

is placed on ~i" The charges on the conductors distri- 

bute themselves rapidly and equilibrium is reached. 

What happens is that the positive charge on ~i attracts 

negatives on ~2 and a charge distribution as in Figure 

1 is established. 

- + 

+ 

Figure 1 

QUESTION. Is it possible that the attractive force 

between charges is so strong that so much plus charge is 

drawn to one side of ~i that a net negative charge is 

present at some point of ~l ? 

ANALYSIS. We suppose that units are chosen so that the 

electrostatic potential due to a unit positive charge at 

the origin is (4~[x]) -I. Recall that if ~ is the 

electrostatic potential then the electric field is given 

by E = -grad ~ and the force on a point charge q at 

x is qE. In the exterior of the conductors ~i' ~2 

the potential ~(x) satisfies 

(3) A~ = 0, ~ = O(i/Ixl) as Ixl ÷ ~. 
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In addition the charge on the conductors is located 

entirely on the surface and 

(4) ~} : charge density per unit area at ~i $~2 ~ 

Here u is the normal direction pointing into ~., i = 
1 

i,2. Thus the condition that ~i carry charge q and 

~2 be neutral is 

(5) ~¢=q , =0. 

~i ~2 

Since charge is free to move in the tangential direc- 

tions at ~. the tangential force must vanish there. 
1 

Thus we have E : 0 at ~ , or in terms of 
tan 

(6) } = constant on ~. , i = 1,2,. 
1 

There is a unique function } satisfying (3)-(6). 

PROOF OF UNIQUENESS. Suppose there were two solutions 

~I ' ~2" Let ~ = ~i - ~2" If ~ ~ 0 it must assume 

a positive maximum or negative minimum since 

= O(i/Ixl) as Ixl ÷ ~. By the maximum principle 

this extremum must occur on one of the conductors, which 

we call ~,. Since ~ is constant on this conductor, 
1 

each point of ~. is an extremum of the same type. By 
1 

the Hopf maximum principle ~ ~ 0 at every point of ~. 
1 

so ¢ 0, which cannot be. Therefore ~ ~ 0. D 

1 

PROOF OF EXISTENCE. Let V 1 be the solution of the 

standard exterior Dirichlet problem 
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AV I = 0 in ~\ (~i u ~2 ) , 

v I : o(i/Ixl) as Ixl + ~, 

V I = 1 on 3~ 1 , V I = 0 on $92 

Let V 2 be defined similarly except that the role of 

the conductors is reversed. If } is a solution and 

ci = ~i~ , i : 1,2 then ~ : ClV 1 + c2V 2. We will try 
1 

to find numbers c I , c 2 such that ClV 1 + c2V 2 solves 

(3)-(6) . Conditions (3) , (4) , (6) are automatic. On the 

other hand (5) yields a pair of simultaneous linear equa- 

tions for c I and c 2. To prove existence it suffices 

to show that the corresponding homogeneous equations 

have only the trivial solution. This follows from 

uniqueness. 0 

PROPOSITION. $ > 0 on jR3\ (~I u [72) and attains its 

maxi~r~m on ~i where ~ > O. ~v 

PROOF. First we show that $ >- 0. If not $ would 

attain a negative minimum which by the maximum principle 

would occur on ~. for i = 1 or 2. Also since 
1 

is constant on ~[~ each point is a minimum so -- < 0 
i Sv 

at each point of ~. , violating (5). Once we know 
1 

>- 0 the maximum principle and (5) imply that } > 0. 

EXERCISE. Prove the last assertion. 

Since ~ > 0 it must attain a positive maximum at all 

points of ~. for i = 1 or 2 Then ~--~ > 0 at $~. so 

by (5), i : i. 0 
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ANSWER TO QUESTION. 

the answer is NO. 

Since ~> 0 on ~i we see that 

3. ANOTHER PROBLEM FROM ELECTROSTATICS 

Since we have developed these nice tools we'll do 

another problem. We have essentially the same situation 

as before except that conductor number 2 is grounded. 

Mathematically this means that the boundary condition on 

~2 becomes 

= 0 on $~2 

Practically this means that ~2 is connected to some 

very large object, for example, Lake Michigan. Physi- 

cally a new phenomenon occurs. The attractive force of 

the positive charges on ~i causes negative charge to 

flow from the "large object" to ~2 so that ~2 becomes 

negatively charged. The negative charge is called 

induced charge. As before we could ask whether any point 

of ~i has a net negative charge or if any point of ~2 

has a net positive charge. The answer to both questions 

is NO. 

QUESTION. Is it possible that the total negative charge 

induced on ~2 is greater (in absolute value) than the 

positive charge on ~i ? 

I£ c is the value of % on ~i then it is easy to 

see that ~ = cV I. It is also a simple matter to show 
~V 1 

that 0 s V 1 s ! so that __ > 0 at all points of ~ 
~w 
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It follows that c > 0 

more information about 

the region R = {x E jR3 \ ([21 U ~2 ) [ Ixl -< r} 

~+ + 
0 = ¢ = Dr 

[x[=r D ~I 2 

since DD~I-~D~ = q > 0. To get 

we apply Green's identity in 

to obtain 

Therefore 

]xl=r D~ 2 

This proves that the left hand side is independent of 

for r large. In addition, using the standard multi- 

pole expansion of harmonic functions (see [4; Ch. 5, 

§7, 8]*) one shows that (3) and ¢ ~ 0 imply 

r 

(8) ~ = negative constant + O(i/]x[3). 
Dr 2 Ixl 

Thus the left hand side of (7) is negative for r large, 

and hence it is negative. Therefore 

[Total charge on 

[2 2 

=q+ ~<q. 
[xl=r 

ANSWER TO QUESTION. NO. 

For a heuristic proof using lines of force see 

[6; §89c]. In fact Chapter III of [6] is one of the 

nicest treatments of electrostatics available. A more 

References are to the Bibliography at the end of 
Lecture #3. 
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mathematical approach can be found in [3] or [4; Ch. 9, 

~i2]. 

4. A PROBLEM ABOUT WAVE MOTION WITH FRICTION 

We consider damped wave motion in ~3. A typical 

mathematical model is 

= Au - a(x)u t utt 

where a(x) h 0 represents a frictional resistance. 

Given the initial position and velocity u(0,x), 

u (0,x), the motion is uniquely determined. It is a 
t 

simple matter to show that the energy 

E(t) + IVul2)dx 

is a decreasing function of time. In fact, 

dE /z u2 
= - a(x) (t,x)dx S 0. 

3 

It appears from this formula and from physical intuition 

that if the friction coefficient a(x) is increased the 

energy dissipation is enhanced. For fixed initial data 

we can consider the solution as depending parametrically 

on a(x), that is, we have 

E(t; a(x)). 

u(t,x; a(x)) and 

QUESTION. If a (x) >- a (x) for all 

that E(t; a(x)) >-E(t; ~(x)) for 

tial data? 

3 
x c m it is true 

t ~ 0 and all ini- 

ANALYSIS. We attack the problem in case the functions 
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a, ~ are constant. In this case we can effectively use 

the Fourier transform. Let 

^ 

u(t,~; a) = (2~)-3/2fu(t,x; a)eiX'~dx 

be the partial Fourier transform of u. For u we have 

the ordinary differential equation in t depending 

parametrically on ~, 

^ i P ^ 

utt = - I~12U - au t- 

For fixed ~ this is just the equation of a damped 

spring. Furthermore, the energy is given by 

E = f(lut 12 + l~121u12)d~ 

which is merely the "sum" of the separate spring ener- 

gies. Let us concentrate on the spring equation 

~ + ay + y: 0 

with energy 

• 2 2 
y + y = e(t) = e(t; a). 

REDUCED QUESTION. For the spring equation is e(t; a) 

a monotone decreasing function of a for arbitrary 

initial data? 

EXERCISE. Show that a yes or a no answer for the reduced 

question implies the same answer for the original 

question. 

ANSWER TO QUESTIONS. NO. 
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Since any question about constant coefficient second 

order ordinary differential equations must be trivial 

this is left as an exercise. However, as a hint I sug- 

gest you investigate the overdamped case a >> i. 

Once the answer has been found and the root cause 

identified as overdamping several observations can be 

made. First the answer is not entirely unreasonable 

since in the case of extreme damping everything happens 

very slowly including energy decay. Second, looking at 

the Fourier transform solution we see that overdamping 

corresponds to I~I small compared to a. Thus after 

a while only the slowly decaying modes will be notice- 

able. That is, u(t,~) will tend to become concen- 

trated near ~ = 0. This corresponds to a flattening 

out of u. Not only does dissipation decrease energy 

but it tends to iron out the "wrinkles" in u. 

5. A PROBLEM ABOUT PERFECT SHADOWS 

In this section we will study wave motion in the 

presence of a periodic (in time) driving force. This 

falls into the class of problems called radiation 

problems. We will investigate whether obstacles can 

form perfect shadows, that is, whether there can be an 

open set which is unaffected by the radiation. Atypical 

mathematical model is 

(9) u = c2Au + F(x)e i~t, (t,x) c ~ x ~3\~), 
tt 

where ~ represents an obstacle. In addition we have 

some condition which prescribes how the wave interacts 

with the obstacle. This usually takes the form of a 
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boundary condition, for example, a Dirichlet or Neumann 

condition at ~. In many situations it can be shown 

that the solution can be written as 

(i0) v(x)e iat + transient wave motion. 

iat 
Here v(x)e is a motion at the same frequency as the 

driving term and the transient term tends to zero at 
3 

each point x E ~ \ ~ as t ÷ ~. Thus after an initial 
iat 

adjustment an observer sees the steady state ve , for 

the transient has died away. This is called the prin- 

ciple of limiting amplitude (see [5; Thm. 4.4] for a 

proof). 
iat 

We suppose that the radiating term Fe is 

spatially localized in a region R ~ supp F. 

QUESTION. Is it possible for there to be a perfect 

shadow? Precisely, can there be an open set ~ in the 

exterior of ~ u R such that v = 0 on w? 

Physically one might try to construct such a set as 

in Figure 2. 

@ 

[]R 

Figure 2 
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ANALYSIS. Plugging the expression (10) into the dif- 

ferential equation (9), we see that v must satisfy 

(c2A + a2)v = -F. 

Thus exterior to R we have (c2A + a2)v = 0, 

real analytic outside R. Therefore if v = 0 

open set ~ exterior to R, 

SO v is 

on an 

then v { 0 outside R. 

ANSWER. The only way for there to be any region that is 

not affected by the light is for the radiation to be 

confined entirely to R, that is, there is no radiation 

at all. 

There is one possibility that is overlooked here. 

This is illustrated by Figure 3. 

Figure 3 

It is possible to have a perfect shadow inside the 

source. For example the source can radiate outgoing 

spherical waves which never affect the inside of the 

"antenna". For more detailed information see [8]. 



LECTURE #2. THE MATHEMATICAL THEORY OF CRUSHED ICE 

by 

JEFFREY RAUCH 

Department of Mathematics 
University of Michigan 

Ann Arbor, Michigan 48104 

In this lecture we will investigate the cooling 

efficiency of crushed ice. With certain idealizations 

this becomes a problem of estimating the smallest eigen- 

value for an elliptic boundary value problem. These 

eigenvalue estimates will be needed in the next lecture 

in order to study scattering by many small objects. 

Consider a container filled with some homogeneous 
3 

continuous medium and occupying an open region ~ c~ , 

The boundary of ~ is assumed to be insulated and 

smooth. ~ contains spherical coolers < i' ~2' <3'''''<n 

of radius r (depending on n) and centers 

Xl' x2'''''Xn'* Overlap of coolers is permitted. We 

view K = n <. as one large cooler for the medium in 
n i~ 1 l 

~ ~ \ K . The coolers are assumed to be stationary 
n n 

and to have internal mechanisms which maintain their 

boundaries at temperature zero. If u(t,x) is the 

Other shapes can easily be treated. 
after the statement of the theorem. 

See the remark 
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temperature at time t and place x, then heat flow in 

is modeled by the boundary value problem 

u = c A u for t >- 0, x c ~7, 
t 

~u 
--= 0 on ~, av 

u = 0 on aK . 
n 

Here c is a constant depending on the conductivity and 

specific heat of the medium and A is the Laplacian in 

~3. Notice that only heat flow by conduction is con- 

sidered here - the medium is stationary. To completely 

describe u, the initial temperature distribution 

u(0,x) must be given. The boundary value problem is 

solved by eigenfunction expansion 

c~.t 
u = Ea.e 3 ~ 

3 3 

where a. = (u(0,x), Cj(X))L2(~ ) 
3 n 

normalized eigenfunctions of A: 

and the ~. are 
J 

A¢. = k.~. , 
J J J 

= 0 on ~K , 
j n 

3 = 0 on 

The eigenvalues are ordered so that 0 > 1 i > 12 Z .... 

As in Lecture i, u goes to zero like 

cllt 
e , so II gives the rate of cooling. We are 

interested in the behavior of ~i as n ÷ ~, r ÷ 0. 

This problem is related to common experience with 
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crushed ice. It is well known that a given volume of 

ice is more efficient as a cooler if it is divided into 

many small pieces. The idealization we have made is that 

the ice neither moves nor melts. 

ORTHODOX EXPLANATION. The reason that crushed ice is an 

efficient coolant is that the surface area of the ice is 

large. After all, the cooling takes place by contact of 

the medium with the coolers, and increasing the surface 

area increases the amount of contact. Furthermore the 
3 

total volume of coolers in our case goes like nr and 
2 

the total surface area like nr so for fixed volume, 

2 1 (nr 3 ) the surface area nr = -- " goes to infinity as 
r 

r ÷ 0. This analysis leads to 

GUESS #i. If n ÷ ~, r ÷ 0 in such a way that the 

total volume of the coolers stays constant then the 

cooling becomes infinitely efficient, that is h I ÷ -~, 

provided the coolers are evenly spaced throughout ~. 

In addition there is a companion conjecture. 

GUESS #2. If n ÷ ~ and r ÷ 0 in such a way that the 

total surface area goes to zero, then the cooling disap- 

pears in the limit, i.e. Ii ÷ 0. 

Reasonable as all this is, one of the above guesses 

is incorrect. If you think that is not surprising try 

to figure out which one without reading further. The 

correct answer is provided by the following 

< 2nr 
THEOREM. For nr small we have -l I - ~ (i + O(nr)). 
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If the coolers are evenly spaced in 

positive constants c I, c 2 such that 

for all n. 

then there are 

-h I k clnr - c 2 

The precise sense of even spacing will emerge in the 

proof. In addition the constants c I, c 2 and the term 

O(nr) can be crudely estimated from the data of the 

problem if necessary. If one is interested in coolers 

which are not spherical, one can get lower bounds by 

replacing the coolers by spherical ones contained inside 

them and upper bounds by larger spherical coolers. In 

this way the estimates can be carried over to more or 

less arbitrary shapes. 

Applying the theorem we see that Guess #i is correct, 

2 !(nr 2 for if nr ÷ ~ then nr : ) ÷ ~, so 
r 21 

Notice, however, that for r small nr >> nr so the 

cooling efficiency is greater than predicted by surface 

area considerations. In particular, nr may grow 
2 

infinitely large even though nr ÷ 0 so that Guess #2 
2 

is wrong. The correct results replace nr by nr in 

both guesses. I do not have any intuitive idea why this 

should be but in the next lecture we will gain some 

insight into the failure of our intuition. 

PROOF OF THE UPPER BOUND FOR -h I 

We use the variational characterization of h I. 

-~ = inf 
i 

n 

n 

C ~ the infimum over all } c (~n) such that ~ 7 0 and 
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= 0 on DK . The infimum is attained for multiples 
n 

of ¢i" It is important to notice that the condition 
D@ 
D~ 0 on D~ is not imposed; this is a natural 

boundary condition (see [i; Ch. 6,§1]). To get an upper 

bound we will plug in a good trial function. To describe 

the function let me review the notion of capacity. For 
3 

a reasonably well-behaved set r c ]R there is a unique 

solution to the Dirichlet problem 

A¢ = 0 in 3 \ r, 

¢ = I on Dr , 

= o(i/Ixl) as IX I + ~. 

is called the capacitary potential of r. The 

capacity of F, cap(r), is defined as 

Dr 

where 9 is the outward normal to 3 \ r. Physically 

this is the amount of charge which must be placed on a 

conductor occupying the region r in order to raise its 

potential to i. Thus capacity measures the ability to 

hold charge For ~ we have IVy1 O(I/Ixl 2) . = so a 

straightforward application of Green's identity shows 

that 

0 3 < r  A¢ ~ ¢12 * Dr ~ ' 

SO 

D r 3 

2 
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an alternate expression for the capacity. We need two 

facts (see [7; p.125 ff.]): 

(~) The capacity of a sphere of radius r is r. 

(~) Capacity is a subadditive set function. 

Using these we have 

cap(K n) = cap(0 < ) S Z cap~.) = nr. 
i l 

Let @n be the capacitary potential of K . The 
n 

trial function will be (l-~n) I~ n. We immediately have 

that 

= i on DK , (i) ~n n 

(ii) ~[VCn ]2 < 
n ]{3 V~nl 

n 

2 _< nr. 

Furthermore, for any x { F we can perform the "ball of 

radius E argument" on 

IR 9~@n<K " A i y Ix-yl 
n 

to conclude that 

1 (Y) Ix-yl dy. ~n (x) = 4-~ ~K 
n 

Therefore 

4~J~ n(x) I -< cap(Kn ) " dist(x, Kn ) -< nr - dist(x, Kn )" 

Let 0 be a bounded open set at positive distance from 

~. Then there is a constant c such that 

Iloll 2 -< c(ll ll 2 + IIWlIL2( R ))' 
L (~) L (0) 
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the inequality holding for all 

this to 

nn 
we get 

E HI,R3). Applying 

3 \K 
n 

K 
n 

n 

< cnr 

with c independent of 

then satisfies 

n. The function ~ : 1 - 
n 

~Iv~l 2 : ~lV0n [2 ~ c nr, 
n n 

2 l~nl - 2f~ ~n + ,~ ~n 2 
n n n 

-> I ~ n l -  2l~nl%ll4~nll + II~nll 2 

+ $ 2 
-> I~nl- (l[~nl 2[l~nI~) + II nil 

provided nr 

], , 
_> 21~nl - O(nr) 

is small. Therefore 

n n ~lel-o(nr) 

which completes the proof of the upper bound. 
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PROOF OF THE LOWER BOUND FOR -I 1 • It is a well known 

general principle that lower bounds are harder to obtain 

than upper bounds. Ours is no exception to the rule. 

The notion of evenly spaced is that one can cover ~ by 

balls with centers at x I , x 2 , x 3 ,..., Xn with the 

property that there is not a great deal of overlap. To 

be precise we assume that there are numbers R(n) > 2r 

such that the balls 

satisfy 
n 

(i) U B. ~ ~, 
i=l 1 

B. : {X I ix-x.l < R(n)}, i:i,2, .... n 
1 1 

(ii) there is a number M independent of n such 

that each point of ~ is in at most M of 

the B.. 
1 

As a consequence of (ii) we see that 

some constant c independent of n. 

nR 3 _< c1~ i for 

The number R 

serves as a measure of distance between adjacent coolers. 

Suppose ~ ~ Hl(~n), ~ = 0 on ~Kn. We extend ~ to 

~ext ~ HI~R3) by extending it as zero in Kn and then 

d o i n g  a L i o n s  t y p e  r e f l e c t i o n  a c r o s s  S~.  T h i s  c a n  b e  

done so that 

ll%xtLl 

provided -< c < 1 

< oII II 
HI(jR3 ) H 1 (~n) 

with c independent of n. 

When this condition fails the problem becomes 
n 

uninteresting. Let 9 = u B • First we get a lower 
ext i=l m 

IV~ext 12 by estimating 41V~ext 12 from bound for -~ext 
i 

below. We use the 
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LEMMA. If r < ~R and A : {X i r < Ixl < R} then 

41V~i 2 k c_r_r3 4 t2 for all ~ c H 1 (A) with ~ = 0 on 
R 

Ixl = r. 

PROOF. The minimum of <~AIV}I21o/r~A ~2 occurs for the 

eigenfunction A} = I% , = 0 Ixl = r, ~r = 0 

for I xl = R corresponding to the largest eigenvalue I. 

This eigenfunction must be positive. (The proof of this 

well-known fact is not trivial.) It follows (exercise) 

that the eigenfunction is rotationally symmetric so 

(x) = f(Ixl). Using this fact the Lemma is reduced to 

showing 

~{f, 2 t 2 Cr/rRf2 SUBLEMMA. (t) dt > -- (t)t 2 dt 
- 3 

R 
f £ cl[r,R] satisfying f(r) = 0. 

for all 

The sublemma is a consequence of the inequality 

jr (%) f2(t)$ (t)dt _< $ (t)dt t (f' (t))2$(t)dt 

with ~ (t) = t 2. One proof of this inequality can be 

found in [9; Lemma 4.5]. We present an argument due to 
t 

Jim Ralston. Write f(t) = fr g(s)ds with g = f'. 

Then 

)/r l • -- ds <- (s)} (s)ds TT-7, ds f2(t) : g(s)/~(s} ~(6~s) Jr 9ts~ 

and (%) follows immediately. 

We then have 
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< [V~ex t IE/B! cr E~B ~2 I 2 -> V~ext 12 >- ~3 
x 1 i 

c' ~2 c nr ~2 
M nR 3 > - ~ nr 

ext 

From the inequality for the Lions reflection defining 
we have ext 

+ c - > 3 IV~ext I 
n n 

which yields the estimate 

~ IVy, 2 -> C<M--~ nr - c) ~ 2 
n n 

proving the lower bound for -i I. D 
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The subject of scattering theory, as treated by 

mathematicians, is usually concerned with interactions 

with one target object. For example we have potential 

scattering in quantum mechanics and the problems of 

acoustic scattering by macroscopic obstacles. 

However, one of the most commonly encountered situa- 

tions is the scattering by many similar small targets. 

For example in the classical Rutherford experiment alpha 

particles (Helium nuclei) are scattered by a thin foil 

containing an enormous number of individual targets 

(atoms). In this case a very satisfactory treatment can 

be given by treating the scattering by a single atom and 

just adding up the results assuming that the various 

scattering events are independent (incoherent scattering). 

An adequate mathematical explanation for this success is 

still lacking. In this paper we focus attention on the 

opposite situation where the presence of many obstacles 

leads to qualitatively new phenomena. The most striking 

examples are when the many obstacles behave as if they 
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were a solid object or in the opposite extreme case 

where because of their small size many tiny obstacles 

may have negligible effect on incident waves. We call 

the first solidification and the second fading. 

EXAMPLE 1. Dust particles in the atmosphere have a 

negligible effect on the propagation of sound waves. 

EXAMPLE 2. A cloud of small conductors sprayed into the 

air appears solid on a radar screen. 

EXAMPLE 3. The water droplets in a cloud give a solid 

appearance while those in the atmosphere are essentially 

invisible. Here you can clearly see that it is a balance 

between number and size that determines whether there is 

fading or solidification. 

EXAMPLE 4. The atomic nature of crystalline matter is 

not apparent in its interaction with macroscopic objects. 

This is perhaps the most common example of solidification. 

EXAMPLE 5. It is well-known that a region enclosed by 

walls made of conductors will have no electric field on 

the inside. In practice it is observed that a screen 

made of conductors has essentially the same effect as a 

solid conductor. On the other hand if the wire is suf- 

ficiently thin it is clear that this screening effect 

will not be present. The conventional explanation (see, 

for example [2; Ch. 7, §i0]) does not take this into 

account. The problem of electrostatic screening is dis- 

cussed in a forthcoming paper by M. Taylor and myself. 
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BASIC PROBLEM. What values of the relevant physical 

parameters correspond to solidifying obstacles and which 

correspond to fading? 

We will study one situation in which a substantial 

first step toward solving the basic problem can be made. 

The obstacles are assumed to lie in a nice bounded open 

set ~. The obstacles will be n spheres 

<i ' <2 ..... < of radius r (depending on n) and 
n n 

centers x I , x 2 ,..., x ; and as before K = o <. 
n n i=l 1 

is the effective obstacle. We will consider two problems 

simultaneously: 

(I) u = Au 
tt 

(2) u = iAu 
t 

in 3 \ Kn , u = 0 on SK n 

in 3 \ Kn , u = 0 on 8K n 

The first corresponds to acoustic scattering by soft 

spheres and the second quantum mechanical scattering by 

impenetrable spheres. The solutions are defined for 

(t,x) ~ ]R x (JR S \ K ) and we consider them to be 
n 

extended as zero inside K . We will consider the limit 
n 

as n ÷ ~, r ÷ 0. Solidifying obstacles means that the 

solutions (for fixed initial data) converge to solutions 

= 3 
(i) utt Au in \ ~ , u = 0 on $~ , 

= ]R 3 (2) u t iAu in \ ~ , u = 0 on ~ . 

Disappearance would mean that the solutions converge to 

the solutions of the wave equation or Schr~dinger 

of 
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equations on all of ~3, that is, without obstacles. If 

we view the solutions as functions of t with values in 

L2(~ 3) the notion of convergence that is natural is 

uniform convergence on compact time intervals, that is 

convergence in C((-~, ~) ; L2(~3)). 

We have the following result. 

If nr ÷ 0 the obstacles fade. 

If nr + ~ and the spheres are euenly spaced in 

the obstacles solidify. 

Thus the critical combination of parameters is nr. 

In order to show the flavor of our method and the con- 

nection with crushed ice a proof of the solidification 

half of the above statement will be given in detail. 

This proof is extracted from [9] where one may also find 

a proof of the fading assertion (Theorem 4.2) and many 

other results in the spirit of this lecture. 

NOTATIONS: 

(i) A is the selfadjoint operator on L2(~ 3 \ K ) 
n n 

defined by Dirichlet conditions on ~K . That 
n 

is, D(A n) = {u c H2(~ n) I u = 0 on ~Kn }' 
3 ~2 u 

and A u = 
n i=l ~xi2 

(ii) A is the selfadjoint operator on L2(~ 3 \ ~) 

with Dirichlet conditions on ~9. 

(iii) If v e L2(U) for some set U c ~{ 3 we con- 

sider v ~ L2(Z{ 3) by setting v equal to 

zero on the complement of U. Thus for 

L 2 v E (U), ~ 6 L 2(U) we may consider 

llv- ll 2 
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The solution u to problem (i) is given by 

sin/-A t 
u(t) = ~n ut(O) + (cOS~n t)u~O) 

n 

adjoint operators. 

smooth function on 

we have 

where u(0), ut(0) • L2(~ 3 \ K n) are the initial posi- 

tion and velocity and objects like cos/-A t are 
n 

operators defined by the functional calculus for self- 
sin t-/~x 

(Note: A ~ 0 and is a 
n 

(-~,0].) Similarly for problem (2) 

itA 
n 

u(t) = e u(0) . 

With these formulas in mind we see that the solidifica- 

tion result is a consequence of the 

THEOREM. Suppose 
distributed in ~. 

tion F on (-~,0] 

nr ÷ ~ and the obstacles are evenly 

For every bounded continuous func- 

we have 

(3) F(A )f ÷ F(A )f 
n 

for all f e L2(]R 3 \ ~). 

in L2(]R 3 ) 

Note that f ~ L2(~ 3 \ ~) implies 

that the assertion makes sense. 

f e L2(•3\K ) 
n 

so 

EXERCISE. This theorem shows that the solutions of (i), 

(2) converge to the solutions of (i) , (2) for fixed 

Show that the convergence is automatically uniform on 

compact time intervals. (Hint: Show that the conver- 

gence in (3) must be uniform over compact sets of F 
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(in BC (-~, 0] ). ) 

PROOF OF THE THEOREM. The idea of the proof is to infer 

"resolvent convergence" from some elementary estimates, 

a compactness argument and the lower bound for -I 
1 

found in Lecture #2. A dose of soft analysis then 

finishes the job. 

STEP #i. If f ~ L2(]{3\ 9) then (I-£)-if ÷ (i_£)-if 
n 

in Hl(]R3 ) (only convergence in L2~]R 3) will be needed.) 

To prove this we show first that { (1-An)-lfl n:l,2 .... } 

i s  a bounded  s u b s e t  o f  Hl(]{3).  As u s u a l  we e x t e n d  
(I-A)-if to ]{3 by setting it equal to zero on K • 

n n -1  
Since (I-£) is an operator of norm 1 we have 

n 
II(1-£n)-lflIL2(]{3) _< IIfI~2(]{3). Let v = (1-A)-lf n n ' 

- l f .  v = (1-£) Then 
co oo 

9 
II~ H ~3\~ : ((1-A)v , v ) llVnll2Hl (jR3) = IlVn 1 n) n n n L2(]{3\~)n 

-- (f,Vn) -< llfllL2(]{3)llVnll" , L2(]{ 3 ) L2(]{ 3 ) 

which proves the desired boundedness. We next show that 

v converges weak ly  to  v i n  Hl(]{3),  s y m b o l i c a l l y  
n 

v ~v . By the weak compactness of the unit ball in a 
n 

{ } is weakly compact. Hilbert space we see that v n 

Suppose that w is a weak limit point and that 

v ~ w. We will show that w : v which establishes 
n. 

3 
the convergence v - w. 

n 
First we show that in the sense of distributions 

(l-£)w = f in ]{3 \ ~. For } { C0(]{ 3 \ ~) we have 
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(w, (I-A)%) = lim(v , (I-A)%). 
n. 
3 

Furthermore 
n. 
J 

(f,~), proving the assertion. 

(l-A)v : f so the right hand side is 

Next we show that w = 0 in 

VVnl 
~\K 3 

n 

v = 0 on ~K so 
n. n 
3 

v 
n. 

9 \K  J 
n 

9. We know that 

_< -l 
i 

We have a uniform bound on IlV~IHl(~{3 ) , so the numerator 

is bounded as j ÷ ~. Since -X 1 ÷ ~ we must have 

IIL2 ÷ 0 as j ÷ ~ and therefore w = 0 in ~. 
]~nj (9) 

The three conditions 

w e HI(jR3), (I-A)w = f in jR3 \ ~, w = 0 in 

identify w as (1-6) -f. 

Having established weak convergence the norm conver- 

÷ fly Jr . we gence is a consequence of [IVnIIHl( 3 ) HI(jR3 ) 

2 
have shown that llvnll l( 3 ) 

weak convergence this approaches 

is equal to llv II 2 
HI(3~ 3 ) ' 

: (f,Vn) Because of 
L2(m 3 ) 

(f,v)L2(]R3 
• which 

and Step #i is complete. 



RAUCH 387 

STEP #2. (Proof of the theorem for bounded continuous 

functions on (-~,0] which vanish at -~). Let A be 

the algebra of bounded continuous functions on (-~,0] 

which vanish at -~. Let J c A be the set of func- 

tions for which the assertion of the theorem is true. A 

is a Banach space under the sup norm and J is easily 

seen to be a closed linear subspace of A. In addition 

J is a subalgebra. To see this suppose F,G 6 A; then 

for f 6 L2(~3\~) 

(FG) (A)f = F(A )G(A )f 
n n n 

= F(A )G(Aoo)f + F(A ) [G(A )f-G(A )f]. n n n oo 

Since F 6 J the first term converges to F(A )G(A )f. 

The second term has norm dominated by 

sup • II (a ) f  - G(Aoo)f[I 
(-~, 0] n L2(]R 3 ) 

which goes to zero sznce G ~ J. Thus FG 6 J. The 
-i 

assertion of Step #i is that F(x) = (l-x) { A and 

clearly F separates points. By the Stone-Weierstrauss 

Theorem, A = A. 

STEP #3. (Endgame) What we are proving is that 

F(A ) converges strongly to F(A ) as operators from 
n 

L2(~3\~) to L2(~3). Since we have a uniform bound on 

,. ,,lIF(An)ll it suffices to show that F(An )f ÷ F(A )f for 

a dense set of f, for example for f of the form 
nA nA 

e g for g E L2(~3\~) and q > 0. (Note: e g ÷ g 

as N ÷ 0.) Now 
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HA nA 
co oo 

F(A )e g -F(A )e g 
n 

nA nA n oo 
= [F(A )e  g - F ( A  )e  

n co  

nAoo ~A 
n 

F(A )[e g - e 
n 

g] + 

g] • 

By the result of Step #I applied to the functions 
~x qx 

F(x)e and e the vectors in brackets tend to zero. 

The proof is complete. 

A final remark is in order on the interpretation of 

this result. It says that for fixed initial data the 

solutions of (i), (2) converge to those of (i)~ , (2) 

provided nr ÷ ~. How large nr must be before the 

convergence is evident will depend on the initial data. 

For example, consider the acoustic equation. No matter 

how large n is we may pose initial data which is an 

incoming wave of extremely high frequency , I. If the 

wavelength is high enough the geometrical optics 

approximation becomes valid and one will not observe 

solidification. The solidification is intimately rela- 

ted to the failure of geometrical optics. It is caused 

by an overdose of diffraction. 

A quantitative guess of how large 1 must be can be 

made by dimensional considerations. It is evident both 

physically and mathematically that solidification does 

not depend on the size of ~ or the absolute number n 

of obstacles but on the density nIQl -I For evenly 

spaced spheres if R is a measure of the distance 

between obstacles then nR 3 ~ I~l. Thus in terms of 

r R the number n191-I -3 • r is essentially rR , which 
-2 

has the dimensions (length) A reasonable 
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dimensionless quantity to replace nr is rh 2 R -3 , 

where ~ is a measure of the wavelength of the incident 

wave. In practical considerations I believe that this 

is the absolute number which must be large. Perhaps in 

the future this idea will find expression in concrete 

estimates. 
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