
Chapter 10. Examples of Resonance in One Dimensional Space

§10.1. Resonance relations.

The examples in this chapter share a common spectral structure. The semilinear examples
have

A0 = I =




1 0 0
0 1 0
0 0 1


 , A1 = diag

{
1, 0,−1

}
=




1 0 0
0 0 0
0 0 −1


 .

The quasilinear examples have A0 = I and A′
1(0) = diag

{
1, 0,−1

}
. The operator

L := ∂t +




1 0 0
0 0 0
0 0 −1


 ∂x (10.1.1)

is equal to L(∂) in the first case and to L(0, ∂) in the second.

The profiles are 2π periodic in Y

U(y, Y ) =
∑

α∈Z2

aα e
iα.Y . (10.1.2)

The formal trigonometric series in §9.4 are Fourier series here. In the language of quasiperi-
odic profiles with reduced profile U described in §9.5, this corresponds to taking m = 2
and phases φµ(y) := yµ , µ = 0, 1. With the assumption of periodicity there is no need to
pass through the quasiperiodic detour. The profiles U already have a well defined sense. If
one were to consider ∂t + diag (λ1, λ2, λ3)∂x, the quasiperiodic setting would be necessary
in order to capture the triad of resonant phases.

Proposition 10.1.1. The small divisor hypothesis is satisfied.

Proof. The matrix

L(α.dφ) = L(α0, α1) =



α0 + α1 0 0

0 α0 0
0 0 α0 − α1




has eigenvalues α0 + α1, α0, α0 − α1. For α ∈ Z
2 the eigenvalues are integers.

When an eigenvalue is nonzero, it is bounded below by 1 in modulus. This proves that the
inequality of the small divisor hypothesis with N = 0 and C = 1.

Denote the standard basis elements of C3 by

r1 := (1, 0, 0) , r2 := (0, 1, 0) , r3 := (0, 0, 1) . (10.1.3)

The corresponding projectors are,

π1 :=




1 0 0
0 0 0
0 0 0


 , π2 :=




0 0 0
0 1 0
0 0 0


 , π3 :=




0 0 0
0 0 0
0 0 1


 .
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For α 6= 0, π(α0, α1) is nonzero in exactly three circumstances

α0 + α1 = 0 , in which case π(α) = π1 ,
α0 = 0 , in which case π(α) = π2 ,

α0 − α1 = 0 , in which case π(α) = π3 .
(10.1.4)

When α = 0, π(0) = I. Let

λ1 := +1 , λ2 := 0 , λ3 := −1 .

The characteristic variety of L is the union of the three lines

ℓj :=
{
α = (α0, α1) : α0 + λjα1 = 0

}
, j = 1, 2, 3 .

Figure 10.1 CharL and two resonant triads.

Since EU0 = U0, the Fourier coefficients Û0(y, α0, α1) vanish unless α ∈ ∪jℓj . The coeffi-
cients are polarized,

α ∈ ℓj \ 0 =⇒ π(α) = πj and πj Û0(y, α) = Û0(y, α) . (10.1.5)

Since the πj sum to I, one has

E =
3∑

1

Ej , where, Ej := πj E .

The definition of E yields,

Ej

∑

α∈Z2

aα(y) eiα.Y =
∑

α∈ℓj∩Z2

πj aα(y) eiα.Y .
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For n ∈ Z, define the scalar Fourier coefficients σ̂j encoding the spectra of Û0 from ℓj

σ̂1(y, n) :=
〈
Û0(y, (n,−n), r1

〉
,

σ̂2(y, n) :=
〈
Û0(y, (0, n), r2

〉
,

σ̂3(y, n) :=
〈
Û0(y, (n, n), r3

〉
.

The corresponding 2π periodic functions are

σj(y, φ) :=
∑

n∈Z

σ̂j(y, n) einφ , j = 1, 2, 3 . (10.1.6)

Then,

U0(y, Y0, Y1) =
(
σ1(y, Y0 − Y1) , σ2(y, Y1) , σ3(y, Y0 + Y1)

)
, (10.1.7)

and,

E1 U0 = r1
∑

n∈Z

σ̂1(y, n) ein(Y0−Y1) ,

E2 U0 = r2
∑

n∈Z

σ̂2(y, n) einY1 ,

E3 U0 = r3
∑

n∈Z

σ̂1(y, n) ein(Y0+Y1) ,

In general, the projection operators E have relatively simple integral forms. The next
proposition treats the special cases of this section.

Proposition 10.1.2. For g(Y ) ∈ ∩sH
s(T2), the operators Ej are given by the formulas

(E1g)(Y )
)

=

∫ 2π

0

π1g(ψ + (Y0 − Y1), ψ)
dψ

2π

(E2g)(Y ) =

∫
π2g(Y0, Y1)

dY0

2π

(E3g)(Y )
)

=

∫ 2π

0

π3g(−ψ + (Y0 − Y1), ψ)
dψ

2π
.

(10.1.8)

The expressions show that the integrals depend only on Y0−Y1, Y1 and Y0+Y1 respectively.

Proof. The case E2 is the easiest. One has

E2(a e
iα.Y ) =




π2a e

iα.Y when Y0 = 0

0 when Y0 6= 0.
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On monomials E2 agrees with
∫
. . . dY0/2π. By linearity and density

E2g(Y0, Y1) =

∫
π2g(Y0, Y1)

dY0

2π
,

proving the middle formula.

Consider next E1 for which the preserved monomials are of the form ein(Y0−Y1) with integer
n. These monomials are constant on the lines Y0 −Y1 = c. The general monomial is of the
form eimY0ein(Y0−Y1). To kill those with m 6= 0 it is sufficient to integrate over Y0−Y1 = c.
Parameterize {Y0 − Y1 = c} by Y1 to obtain,

E1g =

∫ 2π

0

π1g(Y1 + c, Y1)
dY1

2π
.

On the domain of integration, c = Y0 − Y1 and Y1 is a dummy variable yielding

E1g =

∫ 2π

0

g(ψ + (Y0 − Y1), ψ)
dψ

2π
.

For E3 the monomials eimY0ein(Y0+Y1) with m = 0 are the ones preserved. One singles
them out by integrating over Y0 + Y1 = c which can be parameterized by Y1 to yield

E3g =

∫ 2π

0

π3g(−Y1 + c, Y1)
dY1

2π
,

which is the third formula.

§10.2. Semilinear examples.

For initial data U0(0, x, Y ) = EU0 ∈ ∩sH
s(Rd × T1+1) the leading profile equation has a

unique smooth solution locally in time. Since the small divisor hypothesis is satisfied, the
corrector profiles Uj exist and are uniquely determined from the initial values of EUj

∣∣
t=0

.
The semilinear analogues of Theorems 9.5.3-9.5.4 imply that they yield infinitely accurate
approximate solutions.

The profile equation (9.4.14) has three components. The jth component asserts that

πj E
(
L(∂y)U0 + f(U0)

)
= 0 .

It generates an evolution equation for σj .

Compute using the diagonal structure of L and [E, ∂y] = [E, πj] = 0,

π1 EL(∂y)U0 = E1 π1L(∂y)U0 = E1 (∂t + ∂x) π1U0

= (∂t + ∂x)E1

(
σ1(y, Y0 − Y1) r1

)
= (∂t + ∂x) σj(y, Y0 − Y1) r1 .
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Thus,

(∂t + ∂x) σj(y, Y0 − Y1) +
〈
E1

(
f(U0)

)
, r1

〉
= 0 .

Equivalently,

(
∂t + ∂x

)
σ1(y, Y0 − Y1) +

〈
E1

(
f1

(
σ1(y, Y0 − Y1), σ2(y, Y1), σ3(y, Y0 + Y1)

)
r1

)
, r1

〉
= 0.

(10.2.1)
Similarly, the second and third equations are equivalent to

∂tσ2(y, Y1) +
〈
E2

(
f2

(
σ1(y, Y0 − Y1) , σ2(y, Y1) , σ3(y, Y0 + Y1)

)
r2

)
, r2

〉
= 0, (10.2.2)

(
∂t − ∂x

)
σ3(y, Y0 + Y1) +

〈
E3

(
f3

(
σ1(y, Y0 − Y1), σ2(y, Y1), σ3(y, Y0 + Y1)

)
r3

)
, r3

〉
= 0.

(10.2.3)
Equations (10.2.1)-(10.2.3) form a coupled system of three integrodifferential equations.
They are differential in the variables t, x and integral in the variables Y0, Y1 which lie on
a torus. The system is easy to approximate numerically. In dimension d = 1 the highly
oscillatory initial value problem is at the borderline of computable for times t ∼ 1 and
ǫ < 10−3. In higher dimensions, the border of computability comes at much larger ǫ.

Example 10.2.1. Consider the three wave interaction system (9.2.2). The transport
equation for σ2 is

∂t σ2(y, θ1) = c2

〈
E2

(
σ1(y, Y0 − Y1) σ3(y, Y0 + Y1) r2

)
, r2

〉
. (10.2.4)

The profile equations are best understood in Fourier. Exand to find

σ1(y, Y0 − Y1) σ3(y, Y0 + Y1) =
∑

m,n

σ̂1(y, n) ein(Y0−Y1) σ̂3(y,m) eim(Y0+Y1) .

The operator E2 selects the phases α.Y with α0 = 0. As the phase is equal to n(Y0−Y1)+
m(Y0 + Y1), this yields m = −n, so

E2

((
σ1(y, Y0 − Y1) σ3(y, Y0 + Y1) r2

)
=

∑

n

σ̂1(y, n) σ̂3(y,−n) e−2inY1 r2 .

The profile equation (10.2.4) for σ̂2(y, n) splits according to the parity of n,

∂t σ̂2(y,−2n) = c2 σ̂1(y, n) σ̂3(y,−n) , ∂t σ̂2(y,−2n+ 1) = 0 , n ∈ Z . (10.2.5)

The dynamics for σ1 is given by

(
∂t + ∂x

)
σ1(y, Y0 − Y1) = c1

〈
E1

(
σ2(y, Y1) σ3(y, Y0 + Y1) r1

)
, r1

〉
. (10.2.6)
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The third profile equation is,

(
∂t + ∂x

)
σ3(y, Y0 + Y1) = c3

〈
E3

(
σ2(y, Y1) σ1(y, Y0 − Y1)r3

)
, r3

〉
. (10.2.7)

For (10.2.6) use,

σ3(y, φ) =
(∑

n

σ̂3(y, n) einφ
)∗

=
∑

n

σ̂3(y, n)∗ e−inφ ,

σ2(y, Y1) σ3(y, Y0 + Y1) =
∑

m,n

σ̂2(y,m) eimY1 σ̂3(y, n)∗ e−in(Y0+Y1) .

The phase of the product of the exponentals is −nY0 +(m−n)Y1. The operator E1 selects
only those phases α.Y with α0 + α1 = 0. In this case,

−n + (m− n) = 0, ⇐⇒ m = 2n.

Therefore,

(
∂t + ∂x

)
σ3(y, Y0 + Y1) = c3

∑

n

σ̂2(y, 2n) σ̂3(y, n) e−in(Y0−Y1) .

In terms of the Fourier coefficients this is equivalent to,

(∂t + ∂x)σ̂1(y, n) = c3 σ̂2(y,−2n) σ̂3(y,−n)∗ . (10.2.8)

An analgous computation shows that the third profile equation is equivalent to

(∂t − ∂x)σ̂3(y,−n) = c3 σ̂1(y, n)∗ σ̂2(y,−2n) . (10.2.9)

Exercise. Verify (10.2.9).

The equations (10.2.5), (10.2.8), (10.2.9) show that the nonlinear interactions are localized
in the triads {

σ̂1(y, n) , σ̂2(y,−2n) , σ̂3(y,−n)
}
. (10.2.10)

The corresponding Fourier coefficients of U0 are

Û0(y, n,−n), Û0(y, 0,−2n) Û0(y,−n,−n) .

Two such triads are indicated in Figure 10.1. The interaction comes about through the
resonance relation

−2x = (t− x) − (t+ x) , (0,−2n) = (n,−n) + (−n,−n) .
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For each n, the triple (10.2.10) satisfies the three wave interaction pde decoupled from
the other Fourier coefficients. The initial data for the triad of Fourier coefficients are
indpendent of ǫ and not rapidly oscillating. The fact that the triads are isolated shows
that there is no possibility of interactions moving far in the scale of wave numbers.

Consider three special cases. For the initial value problem (9.1.1), c1 = c3 = 0, and the
intial data are

σ1(0, x, φ) = a1(x) e
iφ , σ2(0, x, φ) = 0 , σ3(0, x, φ) = a3(x) e

−iφ .

The initial data ignite the single resonant triad {1,−2,−1}. The function σ(y, φ) is given
by

σ1 = a1(t− x)eiφ , σ2 = e−2iφ

∫ t

0

a1(t− x) a3(t+ x) dt , σ3 = a1(t+ x)e−iφ .

In this particular case, the approximation of nonlinear geometric optics gives the exact
solution.

Modify the third initial datum to

u3(0, x) = a3(x)e
inx/ǫ , n ∈ Z \ {−1} , (10.2.11)

to find σ3(t, x, φ) = a3(t+ x) einφ and,

E2(σ1(y, Y0 − Y1) σ3(y, Y0 + Y0)r2 = E2

(
a1(t− x) a3(t+ x) ei{(t+x)+n(t−x)}r2

)
= 0 .

The product inside E2 always oscillates in time so is annihilated by E2 to give ∂tσ2 =
0. The oscillations in the second component of U0 do not change in time and there
is no interaction with the oscillations in the other components. This agrees with the
nonstationary phase analysis in in §9.1.

Consider the real initial data

σ1(0, x, φ) = a1(x) sinφ , σ2(0, x, φ) = 0 , σ3(0, x, φ) = a3(x) sin(−φ) .

In this case the initial data ignite two resonant triads

{
(0,−2n), (n, n), (−n,−n)

}
, and,

{
(0, 2n), (−n,−n), (n, n)}.

Each triad of coefficients,

σ̂1(t, x, 1) , σ̂1(t, x,−2) , σ̂1(t, x,−1) , and σ̂1(t, x,−1) , σ̂1(t, x, 2) , σ̂1(t, x, 1) ,

solves the three wave interaction pde. All other coefficients vanish identically.

In the last two cases, the approximate solution is not an exact solution.
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Proposition 10.2.11. Consider the system of profile equations for the three wave inter-
action system with cj ∈ R \ 0. The following are equivalent.

i. For arbitrary initial data σ(0, x, φ) ∈ ∩sH
s(R × T) there is a unique global solution

σ(t, x, φ) ∈ ∩sC
s
(
R ; Hs(R × T)

)
.

ii. The coefficients cj do not have the same sign.

Proof. The explosive behavior is proved by considering a single resonant triad which
blows up in finite time T∗.

For existence it suffices to observe that the L∞([0, T ]×R) bound for solutions of the three
wave system with cj not all of the same sign proves an estimate

‖σ̂(t, x, n)‖L∞([0,T ]×R) ≤ C
(
‖σ̂(0, x, n)‖L2(R) , T

) ∥∥σ̂(0, x, n)
∥∥

L∞(R)
,

with the function C(·, ·) independent of n. Summing on n, this suffices to establish an
apriori estimate

‖σ(t, x, φ)‖L∞([0,T ]×R×T) ≤ C
(
‖σ(0, x, φ)‖Hs(R×T) , s , T

)
, s > 1 .

This implies global solvability using Moser’s inequality as in §6.4.

When the profiles exist globally in time, Theorem 9.4 shows that the approximation of
resonant nonlinear geometric optics is accurate on arbitrary long time intervals 0 ≤ t ≤ T .
In particular the interval of existence of the exact solution grows infinitely long in the limit
ǫ → 0. In the present case we know more, namely that the solutions exist globally. Note
that the approximation is not justified on the infinite time interval 0 < t <∞. One must
exercise care in drawing conclusions about the large time behavior of exact solutions from
the large time behavior of the profiles.

There is similar caution for the case of explosive profiles. It is tempting to conclude from
profile blowup that there is a parallel blowup of exact solutions. This is not justified.
Thoerem 9.4 justifies the approximation on arbitrary intervals of smoothness, 0 < T < T∗.
One can draw some conclusions which have the flavor of explosion. Denote by vǫ the exact
solution with the same intial data as the approximate solution uǫ. Choosing T very close
to T∗ on shows that

lim
T→T∗

lim inf
ǫ→0

∥∥vǫ(T, x)
∥∥

L∞(Rx)
= ∞

This asserts that the family of exact solutions vǫ is unbounded, but it does not assert that
any given member of the family explodes.

Example 10.2.2. Consider the modification of equation (9.1.1) where the equation for
u2 is changed to a general real quadratic interaction

∂tu2 =
∑

1≤i≤j≤3

Ai,j ui uj (10.2.12)
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The profile equation for σ2 is

∂tσ2(y, Y1) =
〈
E2

( ∑

1≤i≤j≤3

Ai,j σi(y, hi(Y )) σj(y, hj(Y ))r2

)
, r2

〉
, (10.2.13)

with
h1(Y ) := Y0 − Y1, h2(Y ) := Y1, h3(Y ) := Y0 + Y1 .

Write U0 as in (10.1.7). The contribution of the term A1,3 σ1 σ3 to the profile equation is
computed exactly as before and yields

E2

(
A1,3 σ1(y, Y0 − Y1) σ3(y, Y0 + Y1) r2

)
= = A1,3

∑

n

σ̂1(y, n) σ̂3(y,−n) e−2inY1 r2

= A1,3

(
σ1 ∗ σ̌3

)
(y,−2Y1) r2 .

Denoting with an underline the mean value of a 2π periodic function one then computes
the formulas

E2

(
A1,2 σ1(y, Y0 − Y1) σ2(y, Y1) r2

)
= A1,2 σ1 σ2(y, Y1) r2 ,

E2

(
A2,3 σ2(y, Y1) σ3(y, Y0 + Y1) r2

)
= A2,3 σ2(y, Y1) σ3 r2 ,

E2

(
A2,2 σ2(y, Y1) σ2(y, Y1) r2

)
= A2,2 σ2(y, Y1)

2 r2 .

Combining yields the profile equation

∂tσ2 = A2,2 σ
2
2(y, φ)+A1,2 σ2(y, φ) σ1+A2,3 σ2(y, φ) σ3+A1,3 (σ1 ∗ σ̌3)(y,−2φ) . (10.2.14)

Notice that the first three terms are local in y, φ while the quadratic convolution interaction
term which comes from the resonance is local in Fourier and not in φ. For the initial data
from (9.1.1), σ1 = σ3 = 0 and the profile equation simplifies to

∂tσ2(y, φ) = A2,2 σ
2
2 +A1,3 a1(t− x) a3(t+ x) e−2iφ . (10.2.15)

Only one Fourier component of σ2 is affected by the resonant term. There is only one
resonant triad active in this particular example. The A2,2 σ

2
2 broadens the spectrum of σ2.

With general quadratic interactions in all the equations, one finds coupled integrodifferen-
tial equations with quadratic self interaction terms for all j. The resulting three by three
systems are analogous to

∂tσ = a σ2 + b σ ∗ σ , σ = σ(t, φ) . (10.2.16)

It would be interesting to understand well the competition between the two quadratic
terms on the right of (10.2.16). Note that the term that is local in φ is a convolution in n
while the convolution in φ is local in n.

§10.3. Quasilinear examples.
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The next examples resemble the semilinear examples. An important difference is that the
amplitudes of the approximate solutions are smaller. One has

uǫ(t, x) = ǫ U0(t, x, t/ǫ, x/ǫ) .

The prefactor of ǫ was absent in the semilinear case. For profiles periodic in Y , equation
(9.5.1) simplifies to,

EU0 = U0 , E
(
L(0, ∂y)U0 +

1∑

µ=0

A′
µ(0)U0

∂U0

∂Yµ

)
= 0 . (10.3.1)

Example 10.3.1 Consider the 3 × 3 sytem of quasilinear conservation laws

(∂t + ∂x)u1 = 0

∂tu2 + ∂x(u1u3) = 0

(∂t − ∂x)u3 = 0

(10.3.2)

The small divisor hypothesis is satisfied and equations (10.1.1) through (10.1.7) are un-
changed. And, A0(u) = I. The second component of the profile satisfies

∂t σ2 +
〈
E2

(
A′

1(0)U0
∂U0

∂Y1

)
, r2

〉
= 0 . (10.3.3)

Equation (10.1.7) yields

∂U0

∂Y1
=

(
− σ′

1(y, Y0 − Y1) , σ
′
2(y, Y1) , σ

′
3(y, Y0 + Y1)

)
. (10.3.4)

For (10.3.2),

A1(U) =




1 0 0
0 0 0
0 0 −1


 +




0 0 0
U3 0 U1

0 0 0


 = A1(0) + A′(0)U

so

A′
1(0)U0 =




0 0 0
σ3(y, Y0 + Y1) 0 σ1(y, Y0 − Y1)

0 0 0


 .

Suppressing the y dependence,

A′
1(0)U0

∂U0

∂Y1
=

(
− σ3(Y0 + Y1) σ

′
1(Y0 − Y1) + σ1(Y0 − Y1)σ

′
3(Y0 + Y1)

)
r2

= r2
∂

∂Y1

(
σ1(Y0 − Y1)σ3(Y0 + Y1)

)
.
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E2 commutes with ∂/∂Yµ
and E2 applied to the product is computed as earlier to find,

∂tσ2(t, x, Y1) =
∂

∂Y1

(∑

n

e−2inY1 σ̂1(t, x, n) σ̂3(t, x,−n)
)

(10.3.5)

The odd Fourier coefficients of σ2 are stationary and the even ones evolve according to

∂tσ̂2(y,−2n) = −2in σ̂1(y, n) σ̂3(y,−n) . (10.3.6)

The profile equations read

(
∂t + ∂x

)
σ1 = 0 ,

∂tσ2 = ∂φ

((
σ1 ∗ σ̌3

)
(t, x,−2φ)

)
,

(
∂t − ∂x

)
σ3 = 0 .

(10.3.7)

The interaction equations (10.3.5) are in conservation form. This is a general phenomenon.
If the original system is in conservation form,

d∑

µ=0

∂µAµ(u) = 0 , (10.3.8)

then the terms of the equation are A′
µ(u)∂µu. The coefficients, A′

µ(u), have the special
structure of being derivatives.

Exercise. If the original system is real and in conservation form (10.30) then the profile
equation (9.4.14) can be written in the conservation form

∂tU0 +

d∑

j=1

∂

∂xj

(
E

(
Aj(0)U0

))
+

d∑

µ=0

N∑

j,k=1

∂

∂θk

(
E
∂2Aµ(0)

∂uj∂uk
UjUk

)
= 0 . (10.3.9)

For complex equations there are more terms because of the derivatives with respect to the
conjugate variables but the conservation form persists.

Equation (10.3.9) implies that in the case of conservation laws a profile as in Theorem 9.1
that has mean zero with respect to θ at {t = 0} remains mean zero throughout its maximal
interval of existence. As in Example 10.2.2, the profile equations in the mean zero case
simplify.

Proposition 10.3.1. Consider a real 3 × 3 system of conservation laws in 1 − d,

∂u

∂t
+

∂

∂x
A(u) = 0 , A(u) =

(
A1(u), A2(u), A3(u)

)
, (10.3.10)
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satisfying A′(0) = diag
{
1, 0,−1

}
. Introduce σj as in (10.1.7) and six interaction constants

bj :=
∂2Aj(0)

∂u2
j

, j = 1, 2, 3 , c1 :=
∂2A1(0)

∂u2∂u3
, c2 :=

∂2A2(0)

∂u1∂u3
, c3 :=

∂2A3(0)

∂u1∂u2
.

(10.3.11)
The profile equation (9.5.1) for periodic profiles (10.1.1) of mean zero is equivalent to the
system of equations for the Fourier coefficients,

(
∂t + ∂x

)
σ̂1(t, x,m) = b1 im (̂σ2

1)(t, x,m) + c1 im σ̂2(t, x, 2m) σ̂3(t, x,−m) ,

∂t σ2(t, x, 2m) = b2 2im (̂σ2
2)(t, x, 2m) + c2 2im σ̂1(t, x,m) σ̂3(t, x,m) ,

(
∂t − ∂x

)
σ̂3(t, x,m) = b3 im (̂σ2

3)(t, x,m) + c3 im σ̂2(t, x, 2m) σ̂1(t, x,−m) ,

∂tσ̂2(t, x, 2m+ 1) = b3 2im (̂σ2
2)(t, x, 2m+ 1) .

(10.3.12)

Exercise. Prove Proposition 10.3.1.

The next goal is to analyse more closely the resonance terms. First consider the case where
all the bj vanish so the profile equations have only resonant interaction terms.

Example 10.3.2. Consider the case where b1 = b2 = b3 = 0. Then for each m ∈ Z,
the three Fourier components {σ̂1(y,m), σ̂2(y,−2m), σ̂3(y,−m)} evolve independent of the
other Fourier components according to the laws

(
∂t + ∂x

)
σ̂1(t, x,m) = −c1 im σ̂2(t, x,−2m) σ̂3(t, x,∓m) ,

∂t σ̂2(t, x, 2m) = −c2 2im σ̂1(t, x,m) σ̂3(t, x,−m) ,
(
∂t − ∂x

)
σ̂3(t, x,−m) = −c3 im σ̂2(t, x,−2m) σ̂1(t, x,m) .

(10.3.13)

The odd components of σ2 belong to no such triad and are stationary,

∂tσ̂2(t, x, 2m+ 1) = 0 . (10.3.14)

For fixed m 6= 0, the triple (iσ1, iσ2, iσ3) satisfies the three wave interaction pde which
we understand well. In addition to the information already gleaned, one has the following
invariance properties.

Proposition 10.3.2. The profile equations (10.3.13) have the following properties.

1. The set of σ so that for a fixed m ∈ Z, and ∀x, φ ,

σ1(t, x,m) = −σ1(t, x,−m) , σ2(t, x, 2m) = −σ2(t, x,−2m) ,

σ3(t, x,m) = −σ3(t, x,−m) ,

is invariant. Imposing this condition for all m shows that the set of σ so that σ̂(y,m) is
odd in m is invariant under the dynamics. These are exactly the functions σ(y, φ) which
are odd in φ.
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2. The set of σ so that for a fixed m ∈ Z, {σ̂1(y,m), σ̂2(y,−2m), σ̂3(y,−m)} are purely
imaginary for all x, φ is invariant. Therefore the set of σ so that σ̂(y,m) is purely imaginary
for all m, x ∈ Z × R is invariant.

3. The set of σ so that for a fixed m ∈ Z, {σ̂1(t, x,m), σ̂2(t, x,−2m), σ̂3(t, x,−m)} do not
depend on x is invariant. Imposing this for all m shows that the set of σ which do not
depend on x is invariant.

Global solvability of the profile equations when b = 0 is completely resolved by our analysis
of the three wave interaction pde.

Proposition 10.3.3. If b1 = b2 = b3 = 0 and the three constants c1, c2, and c3 do not
have the same sign, then the profile equations (10.3.13) are globally solvable in the sense
that for arbitrary initial data σ(0, x, φ) ∈ ∩sReHs(R×T) there is a unique global solution
σ(t, x, φ) ∈ ∩sC

s
(
R ; Hs(R × T)

)
. The norms ‖σ(t)‖Hs(R×T) are bounded independent of

t ∈ R. In contrast, if the bj vanish, and c1, c2, and c3 have the same sign, then the profile
equations (10.3.13) have solutions with finite blowup time 0 < T∗ <∞.

This blowup is quite striking. Consider for example the case of a profile whose Fourier
series is supported on a single pair of resonant triads as in Figure 10.1,

U0(t, x, Y ) = −
(
ζ1(t) sinm(Y0 − Y1) , ζ2(t) sin(−2mY1) , ζ3(t) sin(−m(Y0 + Y1))

)
.

(10.3.15)
The exact solution is described by

uǫ(t, x) ∼ −ǫ
(
ζ1(t) sin

m(t− x)

ǫ
, ζ2(t) sin

−2mt

ǫ
, ζ3(t) sin

−m(t+ x)

ǫ

)
. (10.3.16)

Suppose that ζ(t) is a solution of the three wave interaction ode. whose components have
the same sign and blow up at time T∗ <∞ so that

lim
t→T∗−

∣∣ζ(t)
∣∣ = ∞ . (10.3.17)

The initial data and solutions are periodic in x. The data are bounded in BV (I) for any
bounded interval, and are O(ǫ) in L∞(R). For the exact solutions, Theorem 9.4 together
with finite speed of propagation yields the following result of unbounded amplification.

Proposition 10.3.4 Suppose that the system (10.3.12) satifies b = 0 and that c1, c2,
and c3 have the same sign. Choose ζ(t) an real solution of the profile equation which
explodes at time 0 < T∗ < ∞ and define the profile U0 by (10.3.15). Let uǫ be the exact
solution with the initial data U0(0, 0, x/ǫ) = U0(t, t/ǫ, x/ǫ)|{t=0}. Then for any T ∈]0, T∗],
uǫ smooth on [0, T ]× R for ǫ small. The data is bounded in the sense that

‖uǫ(0)‖L∞({|x|≤T∗+1}) ≤ C ǫ , ‖uǫ(0)‖BV ({|x|≤T∗+1}) ≤ C . (10.3.18)
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The family of solutions explodes in BV in the sense that

lim
T→T∗

−

lim
ǫ→0+

∣∣∣
∫

{|x|≤T∗+1−T}

uǫ(T, x) sin
m(x+ t)

ǫ
dx

∣∣∣ = ∞ . (10.3.19)

The solutions are small in L∞ with data bounded in BV . The BV norm is amplified by as
large a constant as one likes in the following sense. For any large M > 0 and small δ > 0
one can chose T ∈ [0, T ∗[ and ǫ0 > 0 so that for 0 < ǫ < ǫ0 , uǫ is smooth on [0, T ]× R,

∥∥uǫ
∥∥

L∞([0,T ]×R)
< δ , (10.3.20)

and ∥∥uǫ(T )
∥∥

BV {|x|≤T∗+1−T}
≥ M

∥∥uǫ(0)
∥∥

BV {|x|≤T∗+1−T}

∥∥ . (10.3.21)

Proof. Theorem 9.4 implies that

lim
ǫ→0+

∫

{|x|≤T∗+1}

uǫ
3(T, x) sin

m(x+ t)

ǫ
dx =

T ∗ + 1

π
ζ3(T,m) .

An exercise in Chapter 9 showed that each component of ζ must explode as T → T ∗, and
(10.41) follows.

To prove the last assertion of the proposition, choose T < T ∗ and then ǫ0 so that

|ζ(T )| > M , and sup
t∈[0,T ]

ǫ0
∣∣ζ(t)

∣∣ < δ .

Theorem 9.4 does the rest.

A weakness of this result demonstrating unbounded amplification of the BV norm of a
family of solutions with sup norm tending to zero and initial BV norms bounded is that
the hypothesis b = 0 implies that the system is not genuinely nonlinear. In [JMR 1994], it
is verified that for b sufficiently small, the profile equations have explosive solutions near
those just constructed. In this way one has examples of families of solutions of a fixed
genuinely nonlinear system which are uniformly small in L∞, uniformly bounded in BV
and for which the BV norm at time t = 1 is as large a multiple of the BV norm at t = 0
as one likes. This shows that desirable estimates of the form

∥∥u(1)
∥∥

BV
≤ C

∥∥u(0)
∥∥

BV

are not true for L∞ small solutions of genuinely nonlinear 3 × 3 systems. Such estimates
for the scalar case were proved by Conway-Smoller and Kruzskov while Glimm and Lax
proved such estimates for 2 × 2 systems when d = 1. The above examples show that the
Glimm-Lax result cannot be extended to general genuinely nonlinear 3× 3 systems. After
its discovery using nonlinear geometric optics, alternate constructions of such amplification
were found ([Bressan], [Temple]).
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