
Chapter 6. The Nonlinear Cauchy Problem

§6.1. Introduction.

Nonlinear equations are classified according to the strength of the nonlinearity. The key
criterion is what order terms in the equation are nonlinear.

A secondary condition is the growth of the nonlinear terms at infinity. When the functions
which enter the nonlinear terms are uniformly bounded in absolute value, the behavior at
infinity is not important.

Among the nonlinear equations in applications two sorts are most common. Semilinear

equations are linear in their principal part. First order semilinear symmetric hyperbolic
systems take the form

L(y, ∂y) u+ F (y, u) = f(y) , F (y, 0) = 0 (6.1.1)

where L is a symmetric hyperbolic operator, and the nonlinear function is a smooth map
from R1+d × CN → CN whose partial derivatives of all orders are uniformly bounded on
sets of the form R1+d ×K, with compact K ⊂ CN . The derivatives are standard partial
derivatives and not derivatives in the sense of complex analysis. A translation invariant
semilinear equation with principal part equal to the d’alembertian is of the form

u+ F (u, ut,∇xu) = 0 F (0, 0, 0) = 0 .

More strongly nonlinear, and typical of compressible inviscid fluid dynamics, are the quasi-
linear systems,

L(y, u, ∂y) u = f(y) , (6.1.2)

where

L(y, u, ∂y) =

d
∑

j=0

Aj(y, u) ∂j (6.1.3)

has coefficients which are smooth hermitian symmetric matrix valued functions with deriva-
tives bounded on R1+d ×K as above. A0 is assumed uniformly positive on such sets.

For semilinear equations there is a natural local existence theorem requiring data inHs(Rd)
for some s > d/2. The theorem gives solutions which are continuous functions of time with
values in Hs(Rd). This shows that the spaces Hs(Rd) with s > d/2, are natural configura-
tion spaces for the dynamics. Once a solution belongs to such a space, it is bounded and
continuous so that F (y, u) is well defined, bounded, and continuous. Nonlinear ordinary
differential equations are a special case, so for general problems one expects at most a local
existence theorem.

For quasilinear equations, the local existence theorem requires an extra derivative, that is
initial data in Hs(Rd) with s > 1 + d/2. Again the solution is a continuous functions of
time with values in Hs(Rd). The classic example is Burgers’ equation

ut + uux = 0 .
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We treat first the semilinear case. The quasilinear case is treated in §6.6. The key step
in the proof uses Schauder’s Lemma, which bounds the Hs(Rd) norm of the composition
F (y, u) in terms of the Hs(Rd) norm of u.

§6.2. Schauder’s Lemma and Sobolev embedding.

Consider the proof that u2 belongs to H2(R2) as soon as u does. One must show that u2,
∂(u2), and, ∂2(u2) are square integrable.

Since u ∈ L∞ and u ∈ L2, it follows that u2 ∈ L2. For the first derivative, write ∂(u2) =
2u∂u, which is the product of a bounded function and a square integrable function and so
is in L2.

The second derivative is more interesting. Write

∂2(u2) = u∂2u+ 2(∂u)2 .

The first is a product L∞ ×L2 so is L2. For the second, one needs to know that ∂u ∈ L4.
The simplest such Lp estimate for Sobolev spaces is the Sobolev embedding Theorem.

Theorem 6.2.1 Sobolev. If s > d/2, Hs(Rd) ⊂ L∞(Rd) and

‖w‖L∞(Rd) ≤ C ‖w‖Hs(Rd) . (6.2.1)

Proof. Inequality (6.2.1) for elements of the Schwartz space S(Rd) is an immediate con-
sequence of the Fourier Inversion Formula,

w(x) = (2π)−d/2

∫

Rd

e−ix.ξ ŵ(ξ) dξ = (2π)−d/2

∫

Rd

e−ix.ξ

< ξ >s
< ξ >s ŵ(ξ) dξ .

The Schwarz inequality yields

|w(x)| ≤
∣

∣

∣

∣

∣

∣

1

< ξ >s

∣

∣

∣

∣

∣

∣

L2(Rd)
‖w‖Hs(Rd).

The first factor on the right is finite if and only if s > d/2.

For w ∈ Hs, choose wn ∈ S with

wn → w in Hs , ‖wn‖Hs(Rd) ≤ ‖w‖Hs(Rd) .

Inequality (6.2.1), yields ‖wn − wm‖L∞(Rd) ≤ C ‖wn − wm‖Hs(Rd). Therefore the wn

converge uniformly on R
d to a continuous limit γ. Therefore wn → γ in D′(Rd) with

‖γ‖L∞ ≤ C ‖w‖Hs

However, wn → w in Hs and therefore in D′, so w = γ. This proves the continuity of w
and the estimate (6.2.1).
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For the more delicate Lp estimates we will give two proofs.

Theorem 6.2.2 Schauder’s Lemma. Suppose that G(x, u) ∈ C∞(Rd × CN ; CN ) such
that G(x, 0) = 0, and for all |α| ≤ s+1 and compact K ⊂ CN , ∂α

x,uG ∈ L∞(Rd×K). Then

the map w 7→ G(x, w) sends Hs(Rd) to itself provided s > d/2. The map is uniformly
lipschitzian on bounded subsets of Hs(Rd).

Proof of Schauder’s Lemma for integer s. Consider G = G(w). The case of G
depending on x is uglier but requires no additional ideas. The key step is to estimate the
Hs norm of G(w) assuming that w ∈ S, We prove that

∀R, ∃C = C(R), ∀w ∈ S(Rd), ‖w‖Hs(Rd) ≤ R =⇒ ‖G(w)‖Hs(Rd) ≤ C(R) .

This suffices to prove the first assertion of the theorem since for w ∈ Hs, choose wn ∈ S
with

wn → w in Hs , ‖wn‖Hs(Rd) ≤ ‖w‖Hs(Rd) .

Then Sobolev’s Theorem implies that wn converges uniformly on Rd to w, so G(wn)
converges uniformly to G(w). In particular, G(wn) → G(w) in D′(Rd).

However, G(wn) is bounded in Hs so passing to a subsequence we may suppose that
G(wn) → v weakly in Hs. Therefore G(wn) → v in D′(Rd). Equating the D′ limits proves
that G(w) ∈ Hs.

For w ∈ S, consider a derivative ∂α
xG(w(x)) with |α| ≤ s. Leibniz’ rule implies that it is a

finite sum of terms of the form

G(γ)(w) ΠJ
j=1 ∂

αj
x w (6.2.2)

where |γ| = J ≤ s, and α1 + · · ·+ αJ = α. This is proved by induction on |α|. Increasing
the order by one the additional derivative either falls on the G term yielding an expression
of the desired form with |γ| = J increased by one, or on one of the factors in Π ∂

αj
x w

yielding an expression of the desired form with the same value of γ.

Following [Rauch 1983] we use the Fourier transform to show that

‖G(γ)(ω) ΠJ
j=1 ∂

αj
x w‖L2 ≤ C(R) . (6.2.3)

Sobolev’s Theorem implies that

‖G(γ)(w)‖L∞(Rd) ≤ C(R) .

The key is the following estimate which is applied to (6.2.3).

Lemma 6.2.3. If s > d/2 there is a constant C = C(s, d) so that for all wj ∈ S(Rd) and
all multiindices αj with s′ :=

∑ |αj| ≤ s,

‖ΠJ
j=1∂

αj
x wj ‖L2(Rd) ≤ C ΠJ

j=1 ‖wj‖Hs(Rd) .
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Proof. By Plancherel’s theorem, it suffices to estimate the L2 norm of the Fourier trans-
form of the product. Set

gi := < ξ >s−|αi| F
(

∂αi
x wi

)

,

where < ξ >≡ (1 + |ξ|2)1/2, so ‖gi‖L2 ≤ c‖wi‖Hs . Denoting by F , the Fourier transform,

F
(

ΠJ
j=1∂

αj
x wlj

)

(ξ1) =
g1

< ξ >s−|α1|
∗ g2
< ξ >s−|α2|

∗ · · · ∗ gJ

< ξ >s−|αJ |
(ξ1)

=

∫

Rd(J−1)

g1(ξ1 − ξ2)

< ξ1 − ξ2 >s−|α1|

g2(ξ2 − ξ3)

< ξ2 − ξ3 >s−|α2|
· · · gJ(ξJ)

< ξj >s−|αJ |
dξ2 . . . dξJ .

(6.2.4)

For each ξ, at least one of the J numbers < ξ1 − ξ2 >, . . . , < ξJ−1 − ξJ >,< ξJ > is
maximal. Suppose it’s the bth number < ξb − ξb+1 > with the convention that ξJ+1 ≡ 0.
Then since

∑ |αi| ≤ s,

〈ξb − ξb+1〉s−|αb| ≥ 〈ξb − ξb+1〉
∑

j 6=b
|αj | ≥ Πj 6=b〈 ξj − ξj+1〉|αj|

which implies that

ΠJ
j=1〈ξj − ξj+1〉s−|αj| = 〈ξb − ξb+1〉s−|αb| Πj 6=b 〈ξj − ξj+1〉s−|αj| ≥ Πj 6=b〈ξj − ξj+1〉s .

Thus the integrand on the right side of (6.2.4) is dominated by

∣

∣

∣
gb(ξb − ξb+1) Πj 6=b

gj(ξj − ξj+1)

〈ξj − ξj+1〉s
∣

∣

∣
. (6.2.5)

Thus for any ξ1 ∈ Rd, the integrand in (6.2.4) is dominated by the sum over b of the terms
(6.2.5). Hence

‖F
(

ΠJ
j=1∂

αj
x wlj

)

‖L2(Rd) ≤ ‖
J

∑

b=1

|g1|
< ξ >s

∗ · · · ∗ |gb| ∗
|gb+1|
< ξ >s

∗ · · · ∗ |gJ |
< ξ >s

‖L2

≤
J

∑

b=1

∥

∥

∥

g1
< ξ >s

∥

∥

∥

L1
· · ·

∥

∥

∥

gb−1

< ξ >s

∥

∥

∥

L1

∥

∥gb

∥

∥

L2

∥

∥

∥

gb+1

< ξ >s

∥

∥

∥

L1
· · ·

∥

∥

∥

gJ

< ξ >s

∥

∥

∥

L1

where the last step uses Young’s inequality.

As in Sobolev’s Theorem, s > d/2 ⇒< ξ >−s∈ L2(Rd) and the Schwarz inequality yields

‖ gj

< ξ >s
‖L1 ≤ C1 ‖gj‖L2 ≤ C2 ‖wj‖Hs .

Plugging this in the previous estimate proves the lemma.
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To prove the Lipschitz continuity asserted in Schauder’s Lemma it suffices to show that
for all R there is a constant C(R) so that

wj ∈ S(Rd) for j = 1, 2 and ‖wj‖Hs(Rd) ≤ R

imply
‖G(w1) −G(w2)‖Hs(Rd) ≤ C ‖w1 − w2‖Hs(Rd) .

Taylor’s Theorem expresses

G(w1) −G(w2) =

∫ 1

0

G′(w2 + θ(w1 − w2)) dθ (w1 − w2) .

The estimates of the first part show that the family of functions G′(w2 + θ(w1 − w2))
parametrized by θ is bounded in Hs(Rd). Thus

∣

∣

∣

∣

∣

∣

∫ 1

0

G′(w2 + θ(w1 − w2)) dθ
∣

∣

∣

∣

∣

∣

Hs(Rd)
≤ C(R) .

Applying the Lemma to the expression for G(w1) − G(w2) as a product of two terms
completes the proof.

The standard proof of Schauder’s Lemma for integer s uses the Lp version of the Sobolev
Embedding Theorem. The general result of this sort is the following. Proofs can be found
in [Hörmander I.4.5, Taylor III.13.6.4] for example.

Sobolev Embedding Theorem 6.2.4. If 1 ≤ s ∈ R and α ∈ Nd is a multiindex with
0 < s− |α| < d/2, there is a constant C = C(α, s, d) independent of u ∈ Hs(Rd) so that

‖ ∂α
y u ‖Lp(α) ≤ C ‖ |ξ|s û(ξ) ‖L2(Rd) , (6.2.6)

where

p(α) :=
2d

d− 2s+ 2|α| . (6.2.7)

For s− |α| > d/2, ∂α
y u is bounded and continuous and

‖∂α
y u‖L∞ ≤ C‖u‖Hs(Rd) .

For s− |α| = d/2, one has

‖∂α
y u‖Lp(Rd) ≤ C(p, s, α) ‖u‖Hs(Rd)

for all 2 ≤ p <∞.

The formula for p(α) is forced by dimensional analysis. For a fixed nonzero ψ ∈ C∞
0 ,

consider uλ(x) := ψ(λx). The left hand side of (6.2.6) then is of the form cλa for some a.
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Similarly the right hand side is of the form c′λb for some b. In order for the inequality to
hold, one must have λa ≤ c′′λb for all positive λ so it is necessary that a = b.

Exercise. Show that a = b if and only if p is given by (6.2.7).

Another way to look at the scaling argument is that for dimensionless u the left hand
side of (6.2.6) has dimensions length(d−p|α|)/p while the right hand side has dimensions
length(d−2s)/2. The formula for p results from equating these two expressions.

Standard proof of Schauder’s Lemma. The usual proof for integer s uses the Sobolev
estimates. together with Hölder’s inequality. Hölder’s inequality yields

J
∑

k=1

1

pk
=

1

2
=⇒

∥

∥ ∂α1
x wl1 · · ·∂αJ

x wlJ

∥

∥

L2 ≤ ΠJ
k=1

∥

∥∂αk
x wlk

∥

∥

Lpk
.

Since each factor ∂αk
x wlk belongs to L2 it suffices to find qk so that

∂αk
x wlk ∈ Lqk and

∑ 1

qk
≤ 1

2
.

Let B denote the set of k ∈ {1, . . . , J} so that s− |αk| > d/2. For these indices the factor
in our product is bounded, and so for k ∈ B set qk := ∞.

Let A ⊂ {1, . . . , J} denote those indices i for which s − |αi| < d
2 . For k ∈ A, qk is chosen

as in Sobolev’s Theorem,

qk :=
2d

d− 2s+ 2|αk|
.

If s − |αk| = d
2 , the factor in the product belongs to Lp for all 2 ≤ p < ∞ and the choice

of qk in this range is postponed.

With these choices, the Sobolev embedding theorem estimates

‖∂αk
x wlk‖Lqk ≤ C‖w‖Hs(Rd) .

Then since
∑ |αi| ≤ s, and s > d/2,

∑

i∈A∪B

1

qi
=

∑

i∈A

1

qi
=

∑

i∈A

d− 2s+ 2|αi|
2d

≤ Jd− 2Js+ 2s

2d

=
Jd− 2(J − 1)s

2d
<

Jd− (J − 1)d

2d
=

1

2
.

This shows there is room to pick large qk corresponding to the case s− |αk| = d/2 so that
∑

1/qk < 1/2, and the proof is complete.
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Another nice proof of Schauder’s Lemma can be found in [Beals, pp 11-12]. Other argu-
ments can be built on Littlewood-Paley decomposition of G(w) as in [Bony, Meyer] and
presented in [Alinhac-Gerard, Taylor III.13.10], or, on the representation

G(u) =

∫

Ĝ(ξ) (eiuξ − 1) dξ .

The latter requires that one prove a bound on the norm of eiuξ−1 (see [Rauch-Reed 1982])
which grows at most polynomially in ξ. The last two arguments have the advantage of
working when s is not an integer.

§6.3. Basic existence theorem.

The basic local existence theorem follows from Schauder’s Lemma and the linear existence
theorem.

Theorem 6.3.1 Schauder. If s > d/2 and f ∈ L1
loc

(

[0,∞[ ; Hs(Rd)
)

, then there is
a T ∈]0, 1] and a unique solution u ∈ C([0, T ] ; Hs(Rd)) to the semilinear initial value
problem defined by the partial differential equation (6.2) together with the initial condition

u(0, x) = g(x) ∈ Hs(Rd). (6.3.1)

The time T can be chosen uniformly for f and g from bounded subsets of L1([0, 1] ; Hs(Rd))
and Hs(Rd) respectively. Consequently, there is a T ∗ ∈]0,∞] and a maximal solution
u ∈ C

(

[0, T ∗[ ; Hs(R)d)
)

. If T ∗ <∞ then

lim
t→T∗

‖u(t)‖Hs(Rd) = ∞ . (6.3.2)

Schauder proved a quasilinear second order scalar version, but his argument, which is
recalled in §10 of chapter 6 in [Courant], works without essential modification once you
add the linear energy inequalities of Friedrichs. The following existence proof is inspired by
Picard’s argument for ordinary differential equations. Note how Picard’s elegant bounds
(6.3.8) replace the usual contraction argument which is less precise.

Proof. The solution is constructed as the limit of Picard iterates. The first approximation
is not really important. Set

∀ t, x , u1(t, x) := g(x) .

For ν > 1, the basic linear existence theorem implies that the Picard iterates defined as
solutions of the linear initial value problems

L(y, ∂y) u
ν+1 + F (y, uν) = f(y) , uν+1(0) = g

are well defined elements of C([0,∞[ ; Hs(Rd) ) .
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Let C denote the constant in the linear energy estimate (2.2.2). Choose a real number

R > 2C ‖g‖Hs(Rd) . (6.3.3)

Schauder’s lemma implies that there is a constant B(R) > 0 so that

‖w(t, ·)‖Hs(Rd) ≤ R =⇒ ‖F (t, ·, w(·))‖Hs(Rd) ≤ B .

Thanks to (6.3.3) one can choose T > 0 so that

C
(

eCT ‖g‖Hs(Rd) +

∫ T

0

eC(T−σ)
(

B + ‖f(σ)‖Hs(Rd)

)

dσ
)

≤ R . (6.3.4)

Using (2.2.2) shows that for all ν ≥ 1 and all 0 ≤ t ≤ T

‖uν(t)‖Hs(Rd) ≤ R . (6.3.5)

Schauder’s Lemma implies that there is a constant Λ so that for all t,

‖wj‖Hs(Rd) ≤ R⇒ ‖F (t, x, w1(x)) − F (t, x, w2(x))‖Hs(Rd
x) ≤ Λ‖w1 − w2‖Hs(Rd

x) . (6.3.6)

Then for ν ≥ 2, (2.2.2) applied to the difference uν+1 − uν implies that

‖uν+1(t) − uν(t)‖Hs(Rd) ≤ C Λ

∫ t

0

eC(t−σ) ‖uν(σ) − uν−1(σ)‖Hs(Rd) dσ . (6.3.7)

Define
M1 := sup

0≤t≤T
‖u1(t) − u2(t)‖Hs(Rd) and M2 := C Λ eCT .

An induction on ν using (6.3.7) shows that for all ν ≥ 2

‖uν+1(t) − uν(t)‖Hs(Rd) ≤ M1
(M2t)

ν−1

(ν − 1)!
. (6.3.8)

Exercise. Prove (6.3.8).

Estimate (6.3.8) shows that the sequence {uν} is Cauchy in C([0, T ] ; Hs(Rd)). Let u be
the limit.

Exercise. Prove u satisfies the initial value problem (6.1.1), (6.3.1).

This completes the proof of existence.
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Uniqueness is a consequence of the integral inequality

‖u1(t) − u2(t)‖Hs(Rd) ≤ C1

∫ t

0

eC(t−σ) ‖u1(σ) − u2(σ)‖Hs(Rd) dσ , (6.3.9)

which is proved exactly as (6.3.7). Gronwall’s inequality implies that ‖u1 − u2‖ vanishes
identically.

Remarks. 1. Similar estimates show that there is continuous dependence of the solutions
when the data f and g converge in L1

loc(R ; Hs(Rd)) and Hs(Rd) respectively.

2. Approximating the data by smooth data, and therefore the solutions by smooth solu-
tions of approximating problems, the finite speed of propagation from §2.3 extends to the
solutions just constructed.

Exercise. Prove these two assertions. Discussion. Concerning the first, more precise
results are presented in §6.6.

Exercise. Show that if the source term f satisfies ∂k
t f ∈ L1

loc([0, T
∗[ ; Hs−k(Rd)) for

k = 1, 2, . . . , s as in Theorem 2.2.2, then u ∈ ∩k C
k
(

[0, T ∗[ ; Hs−k(Rd)
)

.

§6.4. Moser’s inequality and the nature of the breakdown.

The breakdown (6.3.2) could in principal occur in a variety of ways. For example, the
function might stay bounded and become more and more rapidly oscillatory. In fact
this does not occur. Where the domain of existence ends the maximal amplitude of the
solution must diverge to infinity. To prove this requires more refined inequalities than
those of Sobolev and Schauder.

The Schauder Lemma implies that

‖G(y, w)‖Hs(Rd
x) ≤ h(‖w‖Hs(Rd

x))

with a nonlinear function h which depends on G.

Theorem 6.4.1 Moser’s Inequality. With the same hypotheses as Schauder’s Lemma,
there is a smooth function h : [0,∞[→ [0,∞[ so that for all w ∈ Hs(Rd) and t,

‖G(x, w)‖Hs(Rd
x) ≤ h(‖w‖L∞(Rd

x)) ‖w‖Hs(Rd
x) . (6.4.1)

This is proved by using Leibniz’ rule and Hölder’s inequality as in the standard proof of
Schauder’s Lemma. However in place of the Sobolev inequalities one uses the Galiardo-
Nirenberg interpolation inequalities.

Theorem 6.4.2 Gagliardo-Nirenberg Inequalities. If w ∈ Hs(Rd) ∩ L∞(Rd) and
0 < |α| < s then

∂α
x w ∈ L2s/|α|(Rd)
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In addition, there is a constant C = C(|α|, s, d) so that

‖∂αw‖L2s/|α|(Rd) ≤ C ‖w‖1−|α|/s

L∞(Rd)

(

∑

|β|=s

‖∂βw‖L2(Rd)

)|α|/s
(6.4.2)

Remarks. 1. The second factor on the right in (6.4.2) is equivalent to the L2 norm of
the operator |∂x|s applied to u where |∂x|s is defined to be the Fourier multiplier by |ξ|s.
This gives the correct extension to non integer s.

2. The indices in (6.4.2) are nearly forced. Consider which inequalities

‖∂αw‖Lp(Rd) ≤ C ‖w‖1−θ
L∞(Rd)

(

∑

|β|=s

‖∂βw‖L2(Rd)

)θ

homogeneous of degree one in w might be true. The test functions w = eix.ξ/ǫψ(x) with
ǫ → 0 show that a necessary condition is |α| ≤ sθ. The idea is to use the L∞ norm as
much as possible and the s-norm as little as possible, which yields |α| = sθ. Considering
w = ψ(ǫx), or equivalently comparing the dimensions of the two sides forces p = 2s/α.

Proof. The following paragraphs lead you through the proof. The motor is a clever use
of integration by parts. To illustrate that, begin by proving the special case s = 2, p = 4,
which for real valued u ∈ C∞

0 (Rd), is

‖Du‖L4 ≤ C‖u‖1/2
L∞ ‖D2u‖1/2

L2 .

The centerpiece of the proof is the following case of the product rule for derivatives

D
(

u (Du)3
)

= (Du)4 + 3 (u) (Du)2 (D2u) .

Since u is compactly supported,

0 =

∫

Rd

D
(

u (Du) (Du)2
)

dx .

Combining these two observations yields

∫

Rd

|Du|4 dx = −3

∫

Rd

|u (D2u) (Du)2| dx .

Applying Hölder’s inequality to estimate the right hand side yields

∫

Rd

|Du|4 dx ≤ 3 ‖u‖L∞

(

∫

Rd

|D2u|2 dx
)1/2 (

∫

Rd

|Du|4 dx
)1/2

.
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If u 6= 0 the last factor is nonzero so dividing both sides by this term yields,

(

∫

Rd

|Du|4 dx
)1/2 ≤ 3 ‖u‖L∞

(

∫

Rd

|D2u|2 dx
)1/2

.

Equivalently,

‖Du‖L4 ≤
√

3 ‖u‖1/2
L∞ ‖D2u‖1/2

L2 ,

which is the desired estimate.

Exercise. Prove the general s = 2, |α| = 1 estimate by a similar argument. Hint. Use
the primitive cpt|t|p−1 of tp in a product rule argument.

To see how to go to higher derivatives, consider the case s = 3 in which case (6.4.2) asserts
that D2u ∈ L3 and Du ∈ L6. This is proved by appealing twice to Gagliardo-Nirenberg
estimates with s = 2. Namely, one estimates

‖Du‖L6 ≤ C‖u‖1/2
L∞ ‖D2u‖1/2

L3 and ‖D2u‖L3 ≤ C‖Du‖1/2
L6 ‖D3u‖1/2

L2 .

Using the second in the first yields the desired estimate for Du. Using that in the second,
yields the desired estimate for D2u. The second inequality is not a special case of (6.4.2).
One needs the more general inequality

‖Du‖Lp ≤ C ‖u‖1/2
Lq ‖D2u‖1/2

Lr , where
2

p
:=

1

q
+

1

r
.

Exercise. Prove this Gagliardo-Nirenberg estimate

Exercise. Prove that (6.4.2) follows from these estimates. Hint. This takes artful index
juggling. An alternative way of using the basic integrations by parts is given in [Taylor
III.10.3].

Proof of Moser’s Inequality. For w ∈ S(Rd), G independent of x, and σ := |α| ≤ s,
the quantity ∂α

x (G(w)) is a sum of terms of the form

G(γ)(w) ΠJ
j=1 ∂

αj
x w (6.4.3)

where |γ| = J , and α1 + · · ·+αJ = α. The first factor in (6.4.3) is bounded with L∞ norm
bounded by a nonlinear function of the L∞ norm of w.

For the second factor, Hölder’s inequality yields

‖ ∂α1
x w · · ·∂αJ

x w ‖L2 ≤ ΠJ
k=1 ‖∂αk

x w‖L2/λk

provided the nonnegative λk satisfy
∑

λk = 1.
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The Gagliardo-Nirenberg inequalities yield

‖∂αk
x w‖L2σ/|αk| ≤ ‖w‖(σ−|αk|)/σ

L∞ ‖w‖|αk|/σ
Hσ .

With these choices
∑

λk =
∑ |αk|

σ
= 1 ,

and one has
‖ ∂α1

x w · · ·∂αJ
x w ‖L2 ≤ C(R) ‖w‖Hs .

Exercise. Carry out the proof for G which depend on x.

Theorem 6.4.3. If T ∗ <∞ in Theorem 6.3.1, then

lim sup
t→T∗

‖u(t)‖L∞ = ∞ . (6.4.4)

Proof. It suffices to show that it is impossible to have T ∗ < ∞ and |u| ≤ R < ∞ on
[0, T ∗[×Rd. The strategy is to show that if |u(t, x)| ≤ R < ∞ on [0, T ∗[×Rd, then (6.3.2)
is violated.

Use the linear inequality for 0 ≤ t < T ,

‖u(t)‖Hs(Rd) ≤ C
(

‖u(0)‖Hs(Rd) +

∫ t

0

‖(Lu)(σ)‖Hs(Rd) dσ
)

. (6.4.5)

Then use Moser’s inequality to give

‖(Lu)(σ)‖Hs(Rd) = ‖F (σ, x, u(σ, x))− f(σ, x)‖Hs(Rd) ≤ C(R)
(

‖u(σ)‖Hs(Rd) + 1
)

.

(6.4.6)

Insert (6.4.5) in (6.4.6) to find

‖u(t)‖Hs(Rd) ≤ C

(

‖u(0)‖Hs(Rd) +

∫ t

0

(

‖u(σ)‖Hs(Rd) + 1
)

dσ

)

. (6.4.7)

Gronwall’s inequality shows that there is a constant C′′ <∞ so that for t ∈ [0, T ∗[

‖u(t)‖Hs(Rd) ≤ C′′ . (6.4.8)

This violates (6.3.2), and the proof is complete.

A mild sharpening of this argument (due to Yudovich) shows that weaker norms than L∞,
for example the BMO norm, must also blow up at T ∗.
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Corollary 6.4.4. If the data f and g in Theorem 6.4 belong to ∩s L
1
loc

(

[0,∞[ ; Hs(Rd)
)

and ∩s H
s(Rd) respectively, then the maximal solution belongs to C

(

[0, T ∗[ ; Hs(Rd)
)

for
all s.

Proof. For s > d/2 denote by T ∗(s) the time of exisitence of the maximal solution
constructed in Theorem 6.4 and by us(t, x) the corresponding maximal solution. Suppose
that d/2 < s < s̃. By uniqueness of Hs valued solutions, one must have

us = us̃ for 0 ≤ t ≤ min{T ∗(s), T ∗(s̃)} . (6.4.9)

It follows that T ∗(s) is nonincreasing in s.

On the other hand if T ∗(s) > T it follows that us ∈ L∞([0, T ] × Rd) so by (6.4.9),
us̃ ∈ L∞([0, T ]×R

d). Then Theorem 6.4.1 implies that T ∗(s̃) ≥ T . This proves that T ∗(s)
is nondecreasing in s and is therefore independent of s. Equation (6.4.9) completes the
proof.

§6.5. Perturbation theory and smooth dependence.

In this section the dependence of solutions on data is investigated. The first result yields
two versions of lipschitz dependence.

Theorem 6.5.1. i. If u and v are two solution in C([0, T ] ; Hs(Rd)), then there is a
constant C depending only on sup[0,T ] max{‖u(t)‖s, ‖v(t)‖s} so that

∀ 0 ≤ t ≤ T, ‖u(t) − v(t)‖s ≤ C ‖u(0) − v(0)‖s . (6.5.1)

ii. If u ∈ C([0, T ] ; Hs(Rd)) is a solution then there are constants C, δ > 0 so that if
‖u(0) − h‖s < δ then the solution v with v(0) = h belongs to C([0, T ] ; Hs(Rd)) and
sup0≤t]≤T ‖v(t) − u(t)‖s < C δ.

Proof. i. Choose Λ so that for w1 and w2 in Hs with

‖wj‖s ≤ sup
[0,T ]

max{‖u(t)‖s, ‖v(t)‖s} ,

and 0 ≤ t ≤ T

‖F (t, x, w1(x)) − F (t, x, w2(x))‖Hs(Rd
x) ≤ Λ‖w1 − w2‖Hs(Rd

x) .

Then subtracting the equations for u and v yields

‖u(t) − v(t)‖Hs(Rd) ≤ ‖u(0) − v(0)‖s + Λ

∫ t

0

eC(t−σ) ‖u(σ) − v(σ)‖Hs(Rd) dσ .

Gronwall’s inequality completes the proof of i..
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To prove ii it suffices to consder δ < 1. Write v = u + w so the initial value problem is
equivalent to

Lw + F (u+ w) − F (u) = 0 , w(0) = h .

So long as
sup
[0,t]

‖w(s)‖ ≤ 2 ,

one estimates ‖F (w + u) − F (u)‖s ≤ K‖w‖s to find

‖w(t)‖s ≤ ‖h‖s +

∫ t

0

K ‖w(σ)‖s dσ .

Gronwall implies that
‖w(t)‖s ≤ ‖h‖s e

Kt .

Choose C := eKT and consider only δ so small that δC < 2. It follows that a local solution
w ∈ C([0, t] , Hs) with t < T satisfies

sup
[0,t]

‖w(t)‖s < min
{

Cδ , 2
}

.

Therefore the maximal solution is defined at least on [0, T ], and on that interval satisfies
‖w(t)‖s ≤ 2 ‖h‖s which completes the proof of ii.

Given a solution u we compute a perturbation expansion for the solution with initial data
u(0) + g with small g. To simplify the notation, consider the semilinear equation

L(y, ∂) u + F (u) = 0 , F (0) = 0 .

Consider the map, N : u(0) 7→ u from Hs to C([0, T ] ; Hs(Rd)). At the end we will
show that this map is smooth. For the moment we simply compute the Taylor expan-
sion, assuming that it exists. Assuming smoothness, the solution with data u(0) + g has
expansion

N (u(0) + g) ∼ u+M1(g) +M2(g) + . . . ∼
∞
∑

j=1

Mj(g) , (6.5.1)

where the Mj are continuous symmetric j-linear operators from Hs to C([0, T ] ; Hs(Rd)).

To compute them, fix g and consider the initial data equal to u(0) + δg. The resulting
solution has an expansion in δ

N (u+ δg) ∼ u+ δu1 + δ2u2 + · · · . (6.5.2)

However,

N (u+ δg) ∼ u+M1(δg) +M2(δg) + . . . ∼ u+

∞
∑

j=1

δj Mj(g) .
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Comparing with (6.5.2) one sees that

uj = Mj(g, g, · · · , g) , j copies of g .

To compute uj plug the expansion (6.5.2) into the equation

L(y, ∂)
(

u+
∑

j≥1

δjuj

)

+ F
(

u+
∑

j≥1

δjuj

)

∼ 0 .

The initial condition yields

u1(0) = g , uj(0) = 0 , j ≥ 2 . (6.5.3)

Expanding the left hand side in powers of δ, the terms uj are determined by setting the
coefficients of the successive powers of δ equal to zero. Introduce the compact notation for
the Taylor expansion

F (v + h) ∼ F (v) + F1(v; h) + F2(v; h, h) + . . . ,

where for v ∈ CN , Fj(v ; ·) is a symmetric j linear map from (CN )j → CN .

Also introduce the linearized operator

Lw := L(y, ∂)w + F1(u;w)

at the solution u. One has

L(u+ δw) + F (u+ δw) = δ Lw +O(δ2) ,

so L(u+ δw) + F (u+ δw) = O(δ2) , if and only if Lw = 0. Setting the coefficients of δj

equal to zero for j = 1, 2, 3 yields the initial value problems

L u1 = 0 , u1(0, x) = g , (6.5.4)

L u2 + F2(u; u1, u1) = 0 , u2(0, x) = 0 , (6.5.5)

L u3 + F2(u; u2, u1) + F2(u; u1, u2) + F3(u; u1, u1, u1) = 0 , u3(0, x) = 0 , (6.5.6)

which determine uj for j = 1, 2, 3. The pattern is clear. The initial value problem deter-
mining uj is linear in uj with source terms which are nonlinear functions of u1, . . . , uj−1.

Exercise. Suppose that the uj are determined by solving these initial value problems.
Then define uapprox(δ) using Borel’s theorem so that

uapprox(δ) ∼
∑

j≥1

δj uj , in C([0, T ] ; Hs(Rd)) .
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Prove that for δ sufficiently small the exact solution of the initial value problem exists on
[0, T ] and uexact)(δ) − uapprox(δ) ∼ 0 in C([0, T ] ; Hs(Rd)). Hint. Compute a nonlinear
equation for the error which has source terms O(δ∞). Use the method of Theorem 6.5.1.ii.
Discussion. The key element is the stability argument at the end which shows that a
nonlinear problem with infinitely small sources has a solution which is infinitely small. In
science texts it is routine to overlook the need for such stability arguments.

The next result is stronger than that of the exercise.

Theorem 6.5.2. If u ∈ C([0, T ] ; Hs(Rd)) is a solution then the map N from initial data
to solution is smooth from a neighborhood of u(0) to C([0, T ] ; Hs(Rd)). The derivative is
given by N1(u(0), g) = u1 from (6.5.4). Derivatives of each order are uniformly bounded
on the neighborhood.

Proof. The preceding computations show that if N is differentiable then N1(u(0), g) = u1

from (6.5.4). It suffices to show that this is the derivative of N and that the map from u(0)
to N1(u(0), ·) is locally bounded and smooth with values in the linear maps from Hs(Rd)
to C([0, T ] ; Hs(Rd)).

To prove differentiability let u := N (u(0)) be the base solution and v := u+u1 be the first
approximation. Then

Lu+ F (u) = 0 , L v + F (v) = F (u+ u1) − F1(u, u1) .

Schauder’s lemma together with Taylor’s theorem shows that

∥

∥F (u+ u1) − F1(u, u1)
∥

∥

C([0,T ] ; Hs)
≤ C

∥

∥u1

∥

∥

2

C([0,T ] ; Hs)

Since the initial values of u and v are equal, the basic linear energy estimate proves that

∥

∥u− v
∥

∥

C([0,T ] ; Hs)
≤ C

∥

∥u1

∥

∥

2

C([0,T ] ; Hs)
.

This proves that N is differentiable and the formula for the derivative. The formula implies
that the derivative is locally bounded.

The derivative is computed by solving (6.5.4). Since u is a differentiable function of
u(0) with locally bounded derivative. Then F1(u, ·) is differentiable with locally bounded
derivative. As in the proof of differentiability, it follows that N1(u(0), ·) is a differentiable
function of u(0) with locally bounded derivative. The higher differentiability follows by an
inductive argument.

§6.6 The Cauchy problem for quasilinear symmetric hyperbolic systems.

Since most quasilinear systems which occur in practice are real, we will present only that
case. The equations have the form

L(u, ∂)u :=

d
∑

µ=0

Aµ(u) ∂µu = f , (6.6.1)
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where the coefficient matrices Aµ are smooth symmetric matrix valued functions of u
defined on an open subset of Rd. The leading coefficient, A0(u), is assumed to be strictly
positive. The leading coefficient, A0(u), is assumed to be strictly positive. One can almost
as easily treat coefficients which are function of y and u.

The existence theorem is local in time, and for small times the values of u are close to
values of the initial data. Thus for convenience we can modify the coefficients outside a
neighborhood of the values taken by the initial data to arrive at a system with everywhere
defined smooth matrix valued coefficients. Even more we may suppose that the coefficients
take constant values outside a compact subset of u space.

In contrast to the linear case, one cannot reduce to the case A0 = I. However, if one is
interested only in solutions which take values near a constant value u, changing variable
to v := A0(u)

1/2u one can reduce to the case A0(u) = I. This is useful for quasilinear
geometric optics.

§6.6.1. Existence of solutions.

Local existence is analogous to Theorem 6.4, except that it is important that the coefficients
Aµ(u(x)) be lipschitz continuous functions of y. For this reason we work in Sobolev spaces
Hs(Rd) with s > 1+d/2. The importance of the Lipschitz condition is seen from the basic
L2(Rd) energy law when f = 0,

d

dt

(

A0(u) u(t) , u(t)
)

=
(

(

∑

µ

∂µ(Aµ(u))
)

u(t) , u(t)
)

, divA :=
∑

µ

∂µ(Aµ(u)). (6.6.2)

To control the growth of the L2 norm uses the lipschitz bound. It is not obvious but is true,
that the same bound suffices to control the growth of higher derivatives. The existence
part of the following Theorem is essentially due to Schauder [Sch].

Theorem 6.6.1. If N ∋ s > 1 + d/2, f ∈ L1
loc

(

[0,∞[ ; Hs(Rd)
)

, and g ∈ Hs(Rd), then
there is a T > 0 and a unique solution

u ∈ ∩s
j=0 C

j([0, T ] ; Hs−j(Rd))

to the initial value problem

L(u, ∂)u = f , u(0, x) = g(x) . (6.6.3)

The time T can be chosen uniformly for f, g belonging to bounded subsets of L1
loc

(

[0,∞[ ;

Hs(Rd)
)

and Hs(Rd) respectively. Therefore, there is a T∗ ∈]0,∞] and a maximal solution
in ∩jC

j([0, T∗[ ; H
s−j(Rd)). If T∗ < ∞ then limtրT∗

‖u(t)‖Hs(Rd) = ∞. A more precise
result is

lim sup
tրT∗

‖u(t),∇yu(t)‖L∞(Rd) = ∞ . (6.6.4)
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Remark. If we had not modified the coefficients to be everwhere defined and smooth,
the blow up criterion would be that either (6.6.4) occurs or, the values of u approach the
boundary of the domain where the coefficients are defined.

This is so since if one has a solution of the original system whose values are taken in
a compact subset K of the domain of definition of the coefficients, one can modify the
coefficients outside a compact neighborhood of K. Theorem 6.6.2 implies that there is a
solution on a larger time interval.

The standard proof of Theorem 6.6.1 proceeds by considering the sequence of approximate
solutions satisfying

L(uν , ∂)uν+1 = f , uν+1
∣

∣

t=0
= g .

The linear equation satisfied by uν+1 has coefficients Aµ(uν) depending on uν for which
one has only Hs control. The key to the proof is to derive a priori estimates for solutions
of linear symmetric hyperbolic intitial value problems with coefficient matrices having only
Hs regularity (see [Metivier, Lax]).

Schauder’s approach was to approximate the functions Aµ by polynomials in u and the
data f, g by real analytic functions and to use the Cauchy-Kowalsekaya Theorem (see
[Courant-Hilbert]). A priori estimates are used to control the approximate solutions on
an fixed, possibly small, time interval. We solve the equation by the method of finite
differences. A disadvantage of this method is that it reproves the linear existence theorem.
An advantage is that the basic a priori estimate for the difference scheme allows one to
prove existence and the sharp blowup criterion at the same time.

Proof. For ease of reading, we present the case f = 0. The approximate solution uh is
the unique local solution of the ordinary differential equation in Hs(Rd)

A0(u)∂tu
h +

∑

j

Aj(u
h) δh

j u
h = 0 , uh(0, x) = g(x) . (6.6.5)

For each fixed h > 0, the map

w 7→ A0(u)
−1

∑

j

Aj(u
h) δh

j w
h

from Hs(Rd) to itself is uniformly lipschitzean on bounded subsets. It follows that there
is a unique maximal solution

uh ∈ C1([0, Th
∗ [ ; Hs(Rd)) , Th

∗ ∈]0,∞] .

If Th
∗ <∞, then limtրT h

∗
‖uh(t)‖Hs(Rd) = ∞.

The heart of the existence proof are uniform estimates for uh on an h independent interval.
The starting point is an L2(Rd) estimate,

d

dt

(

A0(u
h) uh(t) , uh(t)

)

=
(

(

∂t(A0(u
h)

)

uh , uh
)

+
∑

j

(

(

Ajδ
h
j + (Ajδ

h
j )∗

)

uh , uh
)

.

18



Thanks to the symmetry of Aj and the antisymmetry of δh
j ,

Ajδ
h
j + (Ajδ

h
j )∗ = [Aj(u

h) , δh
j ] .

There is a constant, C = C(Aµ), so that

‖∂tA0(u
h)‖Hom(L2(Rd)) + ‖Ajδ

h
j + (Ajδ

h
j )∗‖Hom(L2(Rd)) ≤ C ‖∇yu

h(t)‖L∞(Rd) . (6.6.6)

For |α| ≤ s and ∂ = ∂x, compute

d

dt

(

A0(u
h) ∂αuh(t) , ∂αuh(t)

)

=
(

A0(u
h)∂α∂tu

h , ∂αuh
)

+
(

A0(u
h)∂αuh , ∂α∂tu

h
)

+
(

(

∂tA0(u
h)

)

∂αuh , ∂αuh
)

:=
(

A0(u
h)∂α∂tu

h , ∂αuh
)

+
(

A0(u
h)∂αuh , ∂α∂tu

h
)

+ E1 ,

(6.6.7)

beginning the collection of terms which we will prove are acceptably large.

The first term on the right of (6.6.7) is equal to

(

∂αA0(u
h)∂tu

h , ∂αuh
)

+
(

[A0(u
h), ∂α]∂tu

h, ∂αuh
)

:=
(

∂αA0(u
h)∂tu

h , ∂αuh
)

+ E2 .

(6.6.8)
Analogously, the symmetry of A0 shows that the second term in (6.6.7) is equal to

(

∂αuh , A0(u
h)∂α∂tu

h
)

=
(

∂αuh , ∂αA0(u
h)∂tu

h
)

+
(

∂αuh, [A0(u
h), ∂α]∂tu

h
)

:=
(

∂αuh , ∂αA0(u
h)∂tu

h
)

+ E3 .

(6.6.9)

Using the differential equation, the sum of the nonerror terms in (6.6.8-9) is equal to the
sum on j of

(

∂αuh , ∂αAj(u
h) δh

j u
h
)

+
(

∂αAj(u
h) δh

j u
h , ∂αuh

)

=
(

∂αuh , Aj(u
h) δh

j ∂
αuh

)

+
(

Aj(u
h) δh

j ∂
αuh , ∂αuh

)

+ E4

=
(

(

Aj(u
h) δh

j + (Aj(u
h)δh

j )∗
)

∂αuh , ∂αuh
)

+ E4

:= E5 + E4 ,

(6.6.10)

where
E4 :=

(

∂αuh , [∂α, Aj(u
h)] δh

j u
h
)

+
(

[∂α, Aj(u
h)] δh

j u
h , ∂αuh

)

.

Denote by

E(w) :=
∑

|α|≤s

(

A0(w)∂α
xw , ∂

α
xw

)

.
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Since A0 is strictly positive, there is a constant C independent of w so that

1

C

∑

|α|≤s

‖∂α
xw(t)‖2

L2(Rd) ≤ E(w) ≤ C
∑

|α|≤s

‖∂α
xw‖2

L2(Rd) . (6.6.11)

Summing over all |α| ≤ s yields

dE(uh(t))

dt
=

5
∑

j=1

Ej . (6.6.12)

Lemma 6.6.2. For all R > 0, 1 ≤ j ≤ 5, and 0 < h < 1, there is a constant C(R)
depending only on L and R so that

∥

∥uh(t),∇yu
h(t)

∥

∥

L∞(Rd)
≤ R =⇒ |Ej| ≤ C(R)

∑

|α|≤s

‖∂α
xu

h(t)‖2
Hs(Rd) .

Proof of Lemma. The cases j = 1 and j = 5 follow from (6.6.6). The remaining three
cases are similar and we present only j = 3 which is the worst. It suffices to show that

‖[∂α, Aj(u
h)] ∂tu

h‖2
L2(Rd) ≤ C(R)

∑

|α|≤s

‖∂α
xu

h(t)‖2
Hs(Rd) . (6.6.13)

The quantity on the left of (6.6.13) is a linear combination of terms

∂β(Aj(u
h)) ∂γ

(

(A−1
0 Aj)(u

h)δh
j u

h
)

, β + γ = α, β 6= 0 .

Since β 6= 0 this is equal to

(∂βAj(u
h) −Aj(0)) ∂γ

(

(A−1
0 Aj(u

h) − A−1
0 Aj(0))δh

j u
h
)

+ ∂β(Aj(u
h) − Aj(0)) (A−1

0 Aj)(0)∂γδh
j u

h .

Estimate

‖Aj(u
h) −Aj(0)‖L∞ + ‖(A−1

0 Aj)(u
h) − (A−1

0 Aj)(0)‖L∞ ≤ C(R) ,

and from Moser’s inequality,

‖Aj(u
h) − Aj(0)‖Hs + ‖(A−1

0 Aj)(u
h) − (A−1

0 Aj)(0)‖Hs ≤ C(R) ‖uh‖1/2
Hs .

The Gagliardo-Nirenberg estimates then imply (6.6.13).
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The local solution is constructed so as to take values in the set

W :=
{

w ∈ Hs(Rd) ; E(w) ≤ E(g) + 1
}

.

Choose R > 0 so that

w ∈ W =⇒ ‖w‖L∞ + ‖∇xw‖L∞ + ‖
∑

j

Aj(w)δh
j w‖L∞ < R .

So long as uh(t) stays in W, one has

dE(uh(t))

dt
≤ C(R)C E(uh(t)) ≤ C(R)C

(

E(g) + 1
)

.

with C from (6.6.11) Therefore,

E(uh(t)) − E(g) ≤ T C(R)C
(

E(g) + 1
)

.

Define T by

T C(R)C
(

E(g) + 1
)

=
1

2
.

If follows that for all h, uh takes values in W for 0 ≤ t ≤ T .

Using this uniform bound one can pass to a subsequence which converges weakly in
L∞([0, T ] ; Hs(Rd)) and stongly in Cj([0, T ] ; Hs−j(Rd)) for 1 ≤ j ≤ s.

The limit satisfies the initial value problem and also

dE(u(t))

dt
≤ C(R) E(u(t)) . (6.6.14)

This together with the uniform continuity of u implies that ‖u(t)‖H(Rd) is continuous. It

follows that u ∈ C([0, T ] ; Hs(Rd)). That ∂j
tu ∈ C([0, T ] ; Hs−j(Rd)) follows by using the

differential equation to express these derivatives in terms of spatial derivatives as in the
semilinear case.

Uniqueness is proved by deriving a linear equation for the difference w := u − v of two
solutions u and v. Toward that end compute

Aµ(u)∂µu− Aµ(v)∂µv = Aµ(u)∂µ(u− v) + (Aµ(u) −Aµ(v))∂µv .

Write Aµ(u) −Aµ(v) = Gµ(u, v) (u− v) , to find

Aµ(u)∂µu− Aµ(v)∂µv = Aµ∂w + Bµw,

Aµ(y) := Aµ(u(y)), Bµ(y) := Gµ(u(y), v(y)) ∂µv(y).
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Therefore
L(y, ∂)w = 0 , L(y, ∂y) :=

∑

(

Aµ∂µ + Bµ

)

. (6.6.15)

The energy method yields

d

dt

(

A0w(t), w(t)
)

≤ C
(

A0w(t) , w(t)
)

, (6.6.16)

Since w|t=0 = 0, it follows that w = 0 which is the desired uniqueness.

All that remains is the proof of the precise blow up criterion (6.6.4). This is immediate
since if the lipschitz norm does not blow up, then (6.6.14) implies that the Hs(Rd) norm
does not blow up. This completes the proof of Theorem 6.6.1.

§6.6.2. Examples of breakdown.

In this section we exhibit a simple mechanism, wave breaking, for the breakdown of solu-
tions with u bounded and ∇xu diverging to infinity as tր T ∗. The method of proof leads
to two Liouville type theorems.

The classic example is Burgers’ equation

ut + uux = 0 . (6.6.17)

For a smooth solution on [0, T ]×Rd the equation shows that u is constant on the integral
curves of ∂t + u ∂x. Therefore those integral curves are straight lines.

For the solution of the initial value problem with

u(0, x) = g(x) ∈ C∞
0 (R) , (6.6.18)

the value of u on the line (t, x+g(x)t) must be equal to g(x). This is an implicit equation,

u(t, x+ tg(x)) = g(x) , (6.6.19)

uniquely determining a smooth solutions for t small.

However, if g is not monotone increasing, consider the lines starting from two points
x1 < x2 where g(x1) > g(x2). The lines intersect in t > 0 at which point the conditions
that u take value g(x1) and g(x2) contradict. Thus the solution must break down before
this time. While the solution is smooth, u(t) is a rearrangement of u(0) so the sup norm
of u does not blow up. The existence theorem shows that the gradient must explode.

That the gradient explodes can also be proved by differentiating the equation to show that
v := ∂xu satisfies

vt + u ∂xv + v2 = 0 .

This equation is exactly solvable since

d

dt
v(t, x+ g(x)t) = vt + u ∂xv = − v2 .
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Therefore,

v(t, x+ g(x)t) =
g′(x)

1 − g′(x)t
.

Proposition 6.6.2. The maximal solution of the initial value problem (6.6.4-5) satisfies

T∗ =
1

−min g′(x)
. (6.6.20)

Proof. The preceding computations shows that T∗ can be no larger than the right hand
side of (6.6.20). On the other hand, the implicit function theorem provides a smooth
solution of (6.6.18) so long as the map x 7→ x+ tg(x) is a diffeomorphism from R to itself.
This holds exactly for t smaller than the right hand side of (6.6.20).

The method of proof yields the following results of Liouville type.

Theorem 6.6.3. i. The only global solutions u ∈ C1(R1+d) of Burgers’ equation 6.6.5
are the constants.

ii. The only global solutions ψ(x) ∈ C3(Rd) of the eikonal equation |∇xψ| = 1 are affine
functions.

Proof. i. Denote g(x) := u(0, x). If there is a point with g′(x) < 0 the above proof
shows that ux(t, x+ g(x)t) diverges as t ր T ∗. If there is a point with g′(x) > 0 then an
analogous argument shows that ux(t, x+ g(x)t) diverges as t ց −1/g′(x). Therefore g is
constant and the result follows.

ii. Denote by

V := 2
∑

∂jψ ∂j ,

a C1 vector field. Differentiating
∑

(∂jψ)2 = 1, yields for each partial derivative ∂ψ,

V ∂ψ = 0 , 0 = V ∂2ψ + 2
∑

j

(∂j∂ψ)2 ≥ V ∂2ψ + (∂2ψ)2 . (6.6.21)

The first implies that ∇xψ is constant on the integral curves of V . Therefore the integral
curves are stationary points or straight lines x+ s∇xψ(x).

If ψ is not linear, there is a point x at which the matrix of second derivatives at x is not
equal to zero. The same holds on a neiborhood of x so we can choose x so that ∇xψ(x) 6= 0.
A linear change of coordinates yields ∂2

1ψ(x) 6= 0.

Then

h(s) := ∂2
1ψ(x+ 2s∇xψ(x)) , satisfies

dh

ds
≤ −h(s)2 .

If h(0) < 0 then h diverges to −∞ at a finite positive value of s. Similarly if h(0) > 0 then
h diverges to +∞ at a finite negative value of s. Thus ψ cannot be globally C2.

23



§6.6.3. Dependence on initial data.

Theorem 6.6.1 shows that the map from u(0) to u(t) maps Hs(Rd) to itself and takes
bounded sets to bounded sets. In contrast to the case of semilinear equations, this mapping
is not smooth. It is not even lipschitzean. It is lipschitzean as a mapping from Hs(Rd) to
Hs−1(Rd).

Suppose that v ∈ C([0, T ] ; Hs(Rd)) with s > 1+d/2 solves (6.6.1). Denote by N the map
u(0) 7→ u(·) from initial data to solution. It is defined on a neighborhood, U , of v(0) in
Hs(Rd) to ∩jC

j([0, T ] ; Hs−j(Rd)).

Theorem 6.6.4. Decreasing the neighborhood U ⊂ Hs(Rd) if necessary, the map

U ∋ u(0) 7→ u(·) ∈ ∩{j : s−j−1>d/2} C
j([0, T ] ; Hs−1−j(Rd))

is uniformly lipschitzean.

Proof. The assertion follows from the linear equation (6.6.15) for the difference of two
solutions. The coefficients Aµ belong to Cj([0, T ] : Hs−j(Rd)) for 0 ≤ j ≤ s. On the
other hand, the coefficients Bµ ∈ Cj([0, T ] : Hs−j−1(Rd)) for 0 ≤ j ≤ s − 1 have one less

derivative. For this linear equation, the change of variable w̃ = A−1/2
0 w reduces to the

case A0 = I.

The estimate is proved by computing

d

dt

∑

|α|≤s−1

(∂αw̃(t) , ∂αw̃) .

The restriction to s− 1 comes from the fact that B is only s− 1 times differentiable.

Exercise. Carry out this proof using the proof of Theorem 6.6.1 as model.

We next prove differentiable dependence by the perturbation theory method of §6.5. Sup-
pose that

L(v, ∂) v = 0 ,

and consider the perturbed problem

L(u, ∂)u = 0 , u|t=0 = v(0) + g , (6.6.22)

with g small. To compute the Taylor expansion, introduce the auxiliary problems

L(ũ, ∂)ũ = 0 , ũ|t=0 = v(0) + δg , ũ ∼ u0 + δu1 + δ2u2 + · · · . (6.6.23)

Then L(ũ, ∂)ũ has expansion in powers of δ computed from the expression

0 =
∑

µ

(

Aµ(u0) + δA′
µ(u0)(u1) + δ2A′′

µ(u0)(u1, u1) + · · ·
)

∂µ

(

u0 + δu1 + δ2u2 + · · ·
)

.
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The O(δ0) term yields

L(u0, ∂)u0 = 0 , u0|t=0 = u(0) , (6.6.24)

yielding, u0 = v, is the unperturbed solution.

The O(δ) term yields

∑

µ

Aµ(v)∂µu1 +
∑

µ

[

A′
µ(v)u1

]

∂µv = 0 , u1|t=0 = g . (6.6.25)

Introduce the linearization of L at the solution v by

Lw :=
∑

µ

Aµ(v)∂µw +
∑

µ

[

A′
µ(v)(w)

]

∂µv . (6.6.26)

The equation of first order perturbation theory becomes

Lu1 = 0 , u1|t=0 = g . (6.6.27)

In the zero order term of L, the coefficient depends on ∂v so in general u1 will be one
derivative less regular than v.

The O(δ2) terms yield

Lu2 +
∑

µ

[

A′
µ(v)(u1)

]

∂µu1 +
∑

µ

[

A′′
µ(v)(u1, u1)

]

∂µv = 0 , u2|t=0 = 0 . (6.6.28)

There is a source term depending on ∂u1 so typically, u2 will be one derivative less regular
than u1 and therefore two derivatives less regular than v.

Continuing in this fashion yields initial value problems determining uj as symmetric j-
multilinear functionals of g provided that v is sufficiently smooth.

Theorem 6.6.5. Suppose that s > 1 + d/2, and v ∈ C([0, T ] : Hs(Rd)) satisfies (6.6.1).
Then the map, N , from initial data to solution is a differentiable function from a neigh-
borhood of v(0) in Hs(Rd) to C([0, T ] ; Hs−1(Rd)). The derivative is locally bounded. If
s− j > d/2 then N is j times differentiable as a map with values in C([0, T ] ; Hs−j(Rd)).
The derivatives are locally bounded.

Sketch of Proof. The linear equation determining u1 has coefficient which involve the
first derivative of v. As a result u1 will in general be one derivative less regular than v.
That is as bad as it gets. It is not difficult to show using an estimate as in Theorems 6.5.2,
6.6.4 that

∥

∥

∥
N (u(0) + g) −

(

N (u(0)) + u1

)
∥

∥

∥

C
(

[0,T ] ; Hs−1(Rd)
) ≤ C

∥

∥g
∥

∥

2

Hs(Rd)
.

This yields differentiability, the formula for the derivative, and local boundedness.
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Similarly, the calculations before the Theorem show that if N is twice differentiable then
one must have

N2(v(0), g, g) = u2 ,

where u2 is the solution of (6.6.28). It is straight forward to show that N2 so defined is a
continuous quadratic map from Hs 7→ C

(

[0, T ] ; Hs−2(Rd)
)

.

A calculation like that in Theorem 6.5.2 shows that

∥

∥

∥
N (u(0) + g) −

(

N (u(0)) + u1 + u2

)
∥

∥

∥

C
(

[0,T ] ; Hs−2(Rd)
) ≤ C

∥

∥g
∥

∥

3

Hs(Rd)
.

This is not enough to conclude that N is twice differentiable. What is needed is a formula
for the variation of N1(v(0), g) when v(0) is varied. The derivative N1(v(0), g) = u1 is
determined by solving the linear Cauchy problem (6.6.27) which has the form

L(v, ∂) u1 +B(v, ∂v) u1 = 0 , u1(0) = g .

The map from v(0) to the coefficients in (6.6.26) is differentiable and locally bounded from
Hs → C([0, T ] ; Hs−1). Provided that s − 1 > d/2 + 1 it follows from a calculation like
that used to show that N is differentiable, that the map from v(0) to u1 is differentiable
from Hs to C([0.T ] ; Hs−2(Rd)), that N is twice differentiable, and the second derivative
is locally bounded. The straight forward but notationally challenging computations are
left to the reader.

The inductive argument for higher derivatives is similarly passed to the reader.

We next show by example that the loss of one derivative expressed in Theorems 6.6.4 and
6.6.5 is sharp.

The example is Burgers’ equation, vt + v vx = 0, with initial data

v(0, x) = (x+)2 , x+ := max{x, 0} .

Since the initial data is nondecreasing and C1 it follows that there is a solution v ∈
C1([0,∞[×R). The data is piecewise smooth with jump in second derivative at x = 0.

The characteristic through the initial singularity is the t axis. It follows from the descrip-
tion using characteristics, that v = 0 in {t ≥ 0 , x < 0}. And v is smooth up the the
boundary of the positive octant {t ≥ 0 , x > 0}. Thus, v is piecewise smooth in t ≥ 0 with
singularities confined to {x = 0} where vxx jumps.

In this case, equation (6.6.27) is

∂tu1 + v ∂xu1 + vxu1 = 0, u1(0) = g . (6.6.29)

Consider a smooth initial function, for example a function g which is equal to one on a
neighborhood of x = 0. Since v ∈ C1 it follows that the solution is continuous. The
method of characteristics shows that u1 is equal to one on the left side of the t axis.
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On the other hand, differentiating with respect to x and letting x tend to zero from above
shows that the function

J(t) := ∂xu1(t, 0+) := lim
xց0

∂xu1(t, x)

satisfies
dJ

dt
= vxx(0+) = 1 .

Therefore the first derivative of u1 jumps across the t axis. While the solution is piecewise
smooth with jumps in second derivatives, u1 is piecewise smooth with jumps in the first
derivative. This is exactly the loss of one derivative in Theorems 6.6.4-6.6.5.

§6.7. Global small solutions for maximally dispersive nonlinear systems.

In dimensions greater than one, solutions of linear constant coefficient hyperbolic systems
with constant coefficients and no hyperplanes in their characteristic variety tend to zero
as t → ∞. The maximally dispersive systems decay as fast as is possible, consistent with
L2 conservation. Consider a nonlinear system

L(∂) u+G(u) = 0 , G(0) = 0 , ∇uG(0) = 0 .

Solutions with small initial data, say u
∣

∣

t=0
= ǫ f are approximated by solutions of the

linearized equation
L(0, ∂)u = 0 ,

with the same initial data. On bounded time intervals, the error is O(ǫ2). When solutions
of Lu = 0 decay in L∞, G(u) is even smaller. There is a tendency to approach linear
behavior for large times. For G = O(|u|p) at the origin, the higher is p the stronger is the
tendency. The higher is the dimension, the more dispersion is possible and the stronger
can be the effect.

We prove that for maximally dispersive systems in dimension d ≥ 4 with p ≥ 3, the
Cauchy problem is globally solvable for small data. This line of investigation has been
the subject of much research. The CBMS lectures of Strauss present a nice selection
of topics. The important special case of perturbations of the wave equation was the
central object of a program of F. John in which the contributions of S. Klainerman were
capital. I recommend the books of Sogge, Hörmander, Shatah-Struwe, and Strauss for
more information. The analysis we present follows ideas predating the John-Klainerman
revolution. A quasilinear version including refined estimates for scattering operators can
be found in [Satoh, Kajitani-Satoh] . The sharp result in the spirit of John-Klainerman is
that there is global existence of small solution in d ≥ 4 and p ≥ 2. Estimates sufficient for
the sharp result are proved in [Georgiev, Lucente, Ziliotti].

The global existence result is in sharp contrast to the example

∂u

∂t
+

∂u

∂x1
− u2 = 0 , u(0, x) = ǫ φ(x) , 0 ≤ φ ∈ C∞

0 (Rd) \ 0 ,
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for which solutions blow up in time O(ǫ−1) independent of dimension. The associated
linear problem is completely nondispersive.

Assumtion 1. L(∂) is a maximally dispersive symmetric hyperbolic system with constant
coefficients as in §3.4.

Assumption 2. G(u) is a smooth nonlinear function whose leading Taylor polynomial at
the origin is homogeneous of degree p ≥ 3.

Theorem 6.7.1. Suppose that d ≥ 4, p ≥ 3, and σ is an integer greater than (d+ 1)/2.
For each δ1 > 0, there is a δ0 > 0 so that if

‖f‖Hσ(Rd) + ‖f‖W σ,1(Rd) ≤ δ0 ,
(

‖f‖W σ,1(Rd) :=
∑

|α|≤σ

‖∂α
x f‖L1(Rd)

)

, (6.7.1)

then the solution of the Cauchy problem

Lu + G(u) = 0 , u
∣

∣

t=0
= f , (6.7.2)

exists globally and satisifes for all t ∈ R,

‖u(t)‖L∞(Rd) ≤ 〈t〉−(d−1)/2 δ1 , and ‖u(t)‖Hσ(Rd) ≤ δ1 . (6.7.3)

There is a c > 0, so that for δ1 small one can take δ0 = c δ1.

Proof. We treat the case of t ≥ 0. For simplicity we treat only the case of G equal
to a homogeneous polynomial. The modifications for the general case are outlined in an
exercise after the proof.

Decreasing δ1 makes the task more difficult. If δ1 ≤ 1 is given, choosing δ0 sufficiently
small, the solution satisfies (6.7.3) on some maximal interval [0, T [, T ∈]0,∞]. The proof
relies on a priori estimates for the solution on this maximal interval.

Denote by S(t) := e
−it

∑

j
Aj∂j the unitary operator on Hs(Rd) giving the time evolution

for the linear equation Lu = 0,

‖S(t)‖Hs(Rd) = ‖f‖Hs(Rd) . (6.7.4)

The Theorem in §3.4.2 yields the estimate

‖S(t) f‖L∞(Rd) ≤ C0 〈t〉−(d−1)/2
(

‖f‖Hs(Rd) +

∞
∑

j=−∞

∥

∥ |D|(d+1)/2fj

∥

∥

L1

)

≤ C1〈t〉−(d−1)/2 δ0 .

(6.7.5)

Duhamel’s formula reads

u(t) = S(t) f +

∫ t

0

S(t− s) G(u(s)) ds . (6.7.6)
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For the homogeneous polynomial G we have Moser’s inequality (Exercise. Verify.)

‖G(u)‖Hσ(Rd) ≤ C2 ‖u‖p−1
L∞(Rd)

‖u‖Hσ(Rd) . (6.7.7)

Use this to estimate

‖u(t)‖Hσ ≤ δ0 +

∫ t

0

C2

(

〈t− s〉−(d−1)/2 δ1
)p−1

δ1 ds

≤ δ0 + C3 δ
2
1 , C3 := C2

∫ ∞

0

〈t〉−(d−1)/2 dt .

(6.7.8)

The L∞ norm satisfies,

‖u(t)‖L∞ ≤ C1 〈t〉(d−1)/2 δ0 +

∫ t

0

∥

∥S(t− s) G(u(s))
∥

∥

L∞ ds . (6.7.9)

Use the dispersive estimate (3.4.8-3.4.9) to find

∥

∥S(t− s)G(u(s))
∥

∥

L∞ ≤ C6 〈t− s〉−(d−1)/2 ‖G(u(s))‖W σ,1 . (6.7.10)

Lemma 6.7.2. There is a constant C so that for all u one has

‖G(u)‖W σ,1 ≤ C ‖u‖p−2
L∞ ‖u‖2

Hσ . (6.7.11)

Proof of Lemma. Leibniz’ rule shows that it suffices to show that if |α1+. . .+αp| = s ≤ σ
then

∥

∥∂α1u ∂α2u · · · ∂αpu
∥

∥

L1 ≤ C ‖u‖p−2
L∞ ‖u‖L2‖ |D|su‖L2 .

Both sides have the dimensions ℓd−s.

Define θi := |αi|/s so
∑

θi = 1. The Gagliardo-Nirenberg estimate interpolating between
u ∈ L∞ and |D|su ∈ L2 is

‖∂αiu‖Lpi ≤ C ‖u‖1−θi

L∞ ‖ |D|su‖θi

L2 ,
1

pi
=

1 − θi

∞ +
θi

2
=
θi

2
.

Define θ := 1/(p− 1) and interpolate between ∂αiu ∈ Lpi and ∂αiu ∈ L2 to find

‖∂αiu‖Lri ≤ ‖∂αiu‖1−θ
Lpi ‖∂αiu‖θ

L2 ,
1

r1
=

1 − θ

pi
+
θ

2
.

Therefore,

‖∂αiu‖Lri ≤ ‖u‖(1−θi)(1−θ)
L∞ ‖u‖(1−θi)θ

L2 ‖ |D|su‖θi

L2 , 1 =
∑

1/ri .
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Hölder’s inequality implies

∥

∥∂α1u ∂α2u · · · ∂αpu
∥

∥

L1 ≤ Πp
i=1‖∂αiu‖Lri ≤ C ‖u‖p−2

L∞ ‖u‖L2 ‖ |D|su‖L2 ,

which completes the proof.

Estimates (6.7.10-11) together with the hypothesis that p ≥ 3 yield

∫ t

0

∥

∥S(t− s)G(u(s))
∥

∥

L∞ ds ≤ C7

∫ t/2

0

〈t− s〉−(d−1)/2 〈s〉−(p−2)(d−1)/2 δ21 ds

≤ C8 〈t〉−(d−1)/2 δ21 .

(6.7.12)

Combining yields

‖u(t)‖L∞ ≤
(

C1 δ0 + C8 δ
2
1

)

〈t〉−(d−1)/2

Decreasing δ1 if necessary we may suppose that

C3 δ
2
1 <

δ1
2
, and C8 δ

2
1 <

δ1
2
.

Then, choose δ0 > 0 so that

δ0 + C3 δ
2
1 <

δ1
2
, and C1δ0 + C8 δ

2
1 <

δ1
2
.

With these choices, the estimates show that on the maximal interval [0, T [, one has

‖u(t)‖L∞(Rd) ≤ 〈t〉−(d−1)/2 δ1
2
, and ‖u(t)‖Hs(Rd) ≤ δ1

2
. (6.7.13)

If T were finite, the solution would satisfy (6.7.3) on the interval [0, T+ǫ] for small positive ǫ
violating the maximality of T . Therefore T = ∞. The estimate (6.7.13) on [0, T [ completes
the proof.

Exercise. For the case of G which are not homogeneous show that there are smooth
functions Hα and functions Gα homogeneous of degree p so that

G(u) =
∑

Gα(u) Hα(u) ,

the sum being finite. Modify the Moser inequality arguments appropriately to prove the
general result.

§6.8. The subcritical nonlinear Klein-Gordon equation in the energy space.

§6.8.1. Introductory remarks.
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The mass zero nonlinear Klein-Gordon equation is

1+du + F (u) = 0 . (6.8.1)

where
F ∈ C1(R) , F (0) = 0 , F ′(0) = 0 . (6.8.2)

The classic examples from quantum field theory are the equations with F (u) = up with
p ≥ 3 an odd integer. For ease of reading we consider only real solutions.

The equation (6.8.1) is Lorentz invariant and if

G′(s) = F (s) , G(0) = 0 , (6.8.3)

The local energy density is defined as

e(u) :=
u2

t + |∇xu|2
2

+ G(u) . (6.8.4)

Solutions u ∈ H2
loc(R

1+d) satisfy the differential energy law,

∂te− div
(

ut ∇xu
)

= ut

(

u + F (u)
)

= 0 . (6.8.5)

The corresponding integral conservation law for solutions suitably small at infinity is,

∂t

∫

Rd

u2
t + |∇xu|2

2
+ G(u) dx = 0 , (6.8.6)

is one of the fundamental estimates in this section. Solutions are stationary for the La-
grangian,

∫ T

0

∫

Rd

u2
t − |∇xu|2

2
−G(u) dt dx .

When F is smooth, the methods of §6.3-6.4 yield local smooth existence.

Theorem 6.8.1. If F ∈ C∞, s > d/2, f ∈ Hs(Rd), and g ∈ Hs−1(Rd), then there is a
unique maximal solution

u ∈ C
(

[0, T∗[ ; Hs(Rd)
)

∩ C1
(

[0, T∗[ ; Hs−1(Rd)
)

.

satisfying
u(0, x) = f , ut(0, x) = g .

If T∗ <∞ then
lim sup

t→T∗

‖u(t)‖L∞(Rd) = ∞ .
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In favorable cases, the energy law (6.8.6) gives good control of the norm of u, ut ∈ H1×L2.
Controling the norm of the difference of two solutions is, in contrast, a very difficult problem
for which many fundamental questions remain unresolved.

An easy first case is nonlinearities F which are uniformly lipschitzean. In this case, there
is global existence in the energy space.

Theorem 6.8.2. If F satisfies F ′ ∈ L∞(R) , then for all Cauchy data f, g ∈ H1×L2 there
is a unique solution

u ∈ C
(

R ; H1(Rd)
)

∩ C1
(

R ; L2(Rd)
)

.

For any finite T , the map from data to solution is uniformly lipschitzean from H1 ×L2 to
C([−T, T ; H1) ∩ C1([−T, T ] ; L2). If f, g ∈ H2 ×H1 then

u ∈ L∞
(

R ; H2(Rd)
)

, ut ∈ L∞
(

R ; H1(Rd)
)

.

If f, g ∈ Hs ×Hs−1 with 1 ≤ s < 2, then

u ∈ C
(

R ; Hs(Rd)
)

, ut ∈ C
(

R ; Hs−1(Rd)
)

.

Sketch of Proof. The key estimate is the following. If u and v are solutions then

(u− v) = F (v) − F (u), |F (u) − F (v)| ≤ C|u− v| .

Multiplying by ut − vt yields

d

dt

∫

(ut−vt)
2+|∇x(u−v)|2dx = 2

∫

(ut−vt)
(

F (v)−F (u)
)

dx ≤ C ‖ut−vt‖2
L2 ‖u−v‖2

L2 .

It follows that for any T there is an a priori estimate

sup
|t|≤T

(

‖u(t)− v(t)‖H1 + ‖ut − vt‖L2

)

≤ C(T )
(

‖u(0)− v(0)‖H1 + ‖ut(0)− vt(0)‖L2

)

.

This estimate exactly corresponds to the asserted Lipschitz continuity of the map from
data to solutions.

Applying the estimate to v = u(x + h) and taking the supremum over small vectors h,
yields an a priori estimate

sup
|t|≤T

(

‖u(t)‖H2 + ‖ut‖L2

)

≤ C(T )
(

‖u(0)‖H2 + ‖ut(0)‖H1

)

,

which is the estimate correponding to the H2 regularity.

Higher regularity for dimensions d ≥ 10 is an outstanding open problem. For example,
for d ≥ 10, smooth compactly supported initial data, and F ∈ C∞

0 or F = sinu, it is not
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known if the above global unique solutions are smooth. For d ≤ 9 the result can be found in
[Brenner-vonWahl 1982]. Smoothness would follow if one could prove that u ∈ L∞

loc. What
is needed is to show that the solutions do not get large in the pointwise sense. Compared
to the analogous regularity problem for Navier-Stokes this problem has the advantage that
solutions are known to be unique and depend continuously on the data.

§6.8.2. The ordinary differential equation and nonlipshitzean F.

Concerning global existence for functions F (u) which may grow more rapidly than linearly
as u → ∞, the first considerations concern solutions which are independent of x and
therefore satisfy the ordinary differential equation,

utt + F (u) = 0 . (6.8.7)

Global solvability of the ordinary differential equation is analysed using the energy con-
servation law

(u2
t

2
+ G(u)

)′

= ut

(

utt + F (u)
)

= 0 .

Think of the equation as modeling a nonlinear spring. The spring force is attractive, that
is pulls the spring toward the origin when

F (u) > 0 when u > 0 and, F (u) < 0 when u < 0 .

In this case one has G(u) > 0 for all u 6= 0. Conservation of energy then gives a pointwise
bound on ut uniform in time

u2
t (t) ≤ u2

t (0) + 2G(u(0)) , |ut(t)| ≤
(

u2
t (0) + 2G(u(0))

)1/2
.

This gives a pointwise bound

|u(t)| ≤ |u(0)| + |t|
(

u2
t (0) + 2G(u(0))

)1/2
.

In particular the ordinary differential equation has global solutions.

In the extreme opposite case consider the replusive spring force F (u) = −u2 and G(u) =
−u3/3. The energy law asserts that u2

t/2 − u3/3 := E is independent of time. Consider
solutions with

u(0) > 0, ut(0) > 0 so E > −u
3(0)

3
.

For all t > 0,

|ut| =
∣

∣

u3

3
+ E

∣

∣

1/2
,

At t = 0 one has

ut(0) =
(u3(0)

3
+ E

)1/2

> 0 .
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Therefore u increases and u3/3 +E stays positive and one has for t ≥ 0

ut(t) =
(u3(t)

3
+ E

)1/2

> 0 .

Both u and ut are strictly increasing.

Since
du

(

u3

3
+ E

)1/2
= dt ,

u(t) approaches ∞ at time

T :=

∫ ∞

u(0)

du
(

u3

3 + E
)1/2

.

Exercise. Show that if there is an M > 0 so that G(s) < 0 for s ≥M and

∫ ∞

M

1
√

|G(s)|
ds < ∞

then there are solutions of the ordinary differential equation which blow up in finite time.

Proposition 6.8.3 [J.B. Keller 1957]. If

a, δ > 0, d ≤ 3, E := δ2/2 − a3/3, T :=

∫ ∞

a

∣

∣

u3

3
+ E

∣

∣

−1/2
du ,

and φ, ψ ∈ C∞(Rd) satisfy

φ ≥ a and ψ ≥ δ for |x| ≤ T ,

the the smooth solution of

1+du − u2 , u(0) = φ, ut(0) = ψ

blows up on or before time T .

Proof. Denote by u the solution of the ordinary differential equation with initial data
u(0) = a, ut(0) = δ.

If u ∈ C∞
(

[0, t] × Rd
)

, then finite speed of propagation and positivity of the fundamental
solution of 1+d imply that

u ≥ u on
{

|x| ≤ T − t
}

.

Since u diverges as t→ T it follows that t ≤ T
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In the case of attractive forces where G ≥ 0 one can hope that there is global smooth
solvability for smooth initial data. This question has received much attention and is very
far from being understood. For example even in the uniformly lipschitzean case where
solutions H2 in x exist globally, higher regularity is unknown in high dimensions.

§6.8.3. Subcritical nonlinearities.

In the remainder of this section we will study solvability in the energy space defined by
u, ut ∈ H1 × L2. This regularity is suggested by the basic energy law. For uniformly
lipschitzean nonllinearities the global solvability is given by Theorem 6.8.2. The interest
is in attractive nonlinearities with superlinear growth at infinity.

A crucial role is played by the rate of growth of F at infinity. There is a critical growth rate
so that for nonlinearities which are subcritical and critical there is a good theory based on
Strichartz estimates. The analysis is valid in all dimensions.

To concentrate on essentials, we present the family of attractive (repulsive) nonlinearities
F = u|u|p−1 (F = −u|u|p−1) with potential energies given by ±

∫

|u|p+1/(p+ 1)dx. Start
with four natural notions of subcriticality. They are in increasing order of strength. One
could expect to call p subcritical when

1. H1(Rd) ⊂ Lp(Rd) so the nonlinear term makes sense for elements of H1.

2. H1(Rd) ⊂ Lp+1(Rd) so the potential energy makes sense for elements of H1.

3. H1(Rd) is compact in Lp+1
loc (Rd) so the potential energy is in a sense small compared to

the kinetic energy.

4. H1(Rd) ⊂ L2p(Rd) so the nonlinear term belongs to L2(Rd) for elements of H1.

The Sobolev embedding is

H1(Rd) ⊂ Lq(Rd) , for, q =
2d

d− 2
. (6.8.8)

The above conditions then read (with the values for d = 3 given in parentheses),

1. p ≤ 2d/(d− 2), (p ≤ 6) ,

2. p+ 1 ≤ 2d/(d− 2),
(

equiv. p ≤ (d+ 2)/(d− 2)
)

, (p ≤ 5),

3. p < (d+ 2)/(d− 2), (p < 5),

4. p ≤ d/(d− 2), (p ≤ 3).

The correct answer is 3. Much that will follow can be extended to the critical case p =
(d+ 2)/(d− 2). The case 1 in contrast is supercritical and comparatively little is known.
It is known that in the supercritical case, solutions are very sensitive to initial data. The
dependence is not lipschitzean, and it is lipschitzean in the subcritical and critical cases.
The books of Sogge, and Shatah-Struwe and the orignal 1985 article of Ginibre and Velo
are good references. The sensitive dependence is a recent result of Lebeau.
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Notation. Denote by Lq
tL

r
x([0, T ]) the space Lq

tL
r
x([0, T ] × R

d), Denote with an open
interval

Lq
tL

r
x([0, T [) := ∪0<T<T Lq

tL
r
x([0, T ]) .

Theorem 6.8.4. i. If p is subcritical for H1, that is p < (d + 2)/(d − 2), then for any
f ∈ H1(Rd) and g ∈ L2(Rd) there is T∗ > 0 and a unique solution

u ∈ C([0, T∗[ H
1(Rd)) ∩ C1([0, T∗[ ; L

2(Rd)) ∩ Lp
tL

2p
x ([0, T∗[) (6.8.9)

of the repulsive problem

u − u|u|p−1 = 0 , u(0) = f, ut(0) = g . (6.8.10)

If T∗ <∞ then
lim inf
tրT∗

‖∇t,xu‖L2(Rd) = ∞ . (6.8.11)

The energy conservation law (6.8.6) is satisfied.

ii. For the attractive problem

u + u|u|p−1 = 0 , u(0) = f, ut(0) = g . (6.8.12)

one has the same result with T∗ = ∞ and with u ∈ Lp
tL

2p
x (R). For any T > 0, the map

from Cauchy data to solution is uniformly lipschitzean

H1 × L2 → C([−T, T ] ; H1) ∩ C([−T, T ] ; L2) ∩ Lp
tL

2p
x ([0, T ])) .

In the proof of this result and all that follows a central role is played by the linear wave
equation and its solution for which we recall the basic energy estimate

‖∇t,xu(t)‖L2(Rd) ≤ ‖∇t,xu(0)‖L2(Rd) +

∫ t

0

‖ u(t)‖L2(Rd) dt .

This is completed by the L2 estimate

‖u(t)‖L2(Rd) ≤
∫ t

0

‖ut(t)‖L2(Rd) dt .

In particular, for h ∈ L1
loc

(

R ; L2(Rd)
)

there is a unique solution

u ∈ C
(

R ; H1(Rd)
)

∩ C1
(

R ; L2(Rd)
)

,
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to
u = h , u(0) = 0 , ut(0) = 0 .

This solution is denoted
−1h .

In order to take advantage of this we seek solutions so that

Fp(u) := ±u|u|p−1 ∈ L1
tL

2
x .

Compute

‖Fp(u)‖L1
tL2

x
=

∫ T

0

(

∫

|up|2 dx
)1/2

dt ,

where
(

∫

|u|2p dx
)1/2

=
[(

∫

|u|2p
)1/2p]p

= ‖u‖p
L2p(Rd)

,

so

‖Fp(u)‖L1
tL2

x
=

∫ T

0

‖u‖p

L2p
t Rd

x

dt = ‖u‖p

Lp
t L2p

x
. (6.8.13)

The above calculation proves the first part of the next lemma.

Lemma 6.8.5. The mapping u 7→ Fp(u) takes Lp
tL

2p
x ([0, T ] to L1

tL
2
x([0, T ]). It is uniformly

Lipshitzean on bounded subsets.

Proof. Write

Fp(v) − Fp(w) = G(v, w)
(

v − w
)

, |G(v, w)| ≤ C
(

|v|p−1 + |w|p−1
)

.

Write
∥

∥G(v, w)(v − w)
∥

∥

2

L2
x

=

∫

|G|2 |v − w|2 dx .

Use Hölder’s inequality for L
p/(p−1)
x × Lp

x to estimate by

≤
(

∫

|G(v, w)|2p/(p−1)dx
)

p−1
p

(

∫

|v − w|2pdx
)

1
p

.

Then
‖Fp(v) − Fp(w)‖L2 ≤ C ‖v, w‖p−1

L2p
x

‖v − w‖L2p
x
.

Finally estimate the integral in time using Hölder’s inequality for L
p/(p−1)
t × Lp

t .

It is natural to seek solutions u ∈ Lp
tL

2p
x ([0, T ]). With that as a goal we ask when it is

true that
−1

(

L1
tL

2
x

)

⊂ Lp
tL

2p
x .
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This is exactly in the family of questions addressed by the Strichartz inequalities. The
next Lemma gives the inequalities adapted to the present situation.

Lemma 6.8.6. If

q > 2 , and
1

q
+

d

r
=

d

2
− 1 , (6.8.14)

then there is a constant C > 0 so that for all T > 0, h, f, g ∈ L1
t (L

2
x)×H1×L2 the solution

of
u = h , u(0) = f , ut(0) = g ,

satisfies

∥

∥u
∥

∥

Lq
t Lr

x([0,T ])
≤ C

(

∥

∥h‖L1
t L2

x([0,T ]) +
∥

∥∇xf
∥

∥

L2(Rd)
+

∥

∥g
∥

∥

L2(Rd)

)

. (6.8.15)

Proof. 1. Rewrite the wave equation as a symmetric hyperbolic pseudodifferential system
motivated by D’Alembert’s solution of the 1 − d wave equation. Factor,

∂2
t − ∆ = (∂t + i|D|) (∂t − i|D|) = (∂t + i|D|) (∂t − i|D|) .

Introduce
v± := (∂t ∓ i|D|)u , V := (v+, v−) ,

so

Vt +

(

1 0
0 −1

)

i|D|V =

(

h
h

)

.

Lemma 3.4.8 implies that for σ = d − 1, q > 2, (q, r) σ- admissible, and h, f, g with
spectrum in {R1 ≤ |ξ| ≤ R2} one has

‖u‖Lq
t Lr

x
≤ C ‖∇t,xu‖Lq

t Lr
x

≤ C ‖V ‖Lq
t Lr

x
≤ C

(

‖h‖L1
t L2

x
+ ‖|D|f‖L2 + ‖g‖L2

)

.

2. Denote by ℓ the dimensions of t and x. With dimensionless u , the terms on right of
this inequality have dimension ℓd/2−1.

The dimension of the term on the left is equal to

(

ℓdq/r ℓ
)1/q

= ℓ
d
r + 1

q .

The two sides have the same dimensions if and only if

d

r
+

1

q
=

d

2
− 1 . (6.8.16)

Under this hypothesis it follows that the same inequality holds, with the same constant C
for data with support in λR1 ≤ |ξ| ≤ λR2.
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Comparing (6.8.16) with σ-admissibility which is equivalent to

d

r
+

1

q
≤ d

2
− 1

2
− 1

r
,

shows that (6.8.16) implies admissibility since r ≥ 2.

3. Lemma 6.8.6 follows using Littlewood-Paley theory as at the end of §3.4.3.

We now answer the question of when −1 maps L1
tL

2
x to Lp

tL
2p
x . This is the crucial

calculation. In Lemma 6.8.6, take r = 2p to find

1

q
+

d

2p
=

d− 2

2
,

so,
1

q
=

d− 2

2
− d

2p
=

p(d− 2) − d

2p
, q = p

(

2

p(d− 2) − d

)

.

We want q ≥ p, that is

2

p(d− 2) − d
≥ 1 , ⇔ p(d− 2) − d ≤ 2 ⇔ p ≤ d+ 2

d− 2
.

The critical case is that of equality, and the subcritical case that we treat is the one with
strict inequality. For d = 3 the critical power is p = 5 and for d = 4 it is p = 3. In the
subcritical case the operator has small norm for T << 1.

The strategy of the proof is to write the solution u as a perturbation of the solution of the
linear problem, at least for small times. Define u0 to be the solution of

u0 = 0 , u0(0) = f,
∂u0

∂t
(0) = g . (6.8.17)

Write
u = u0 + v (6.8.18)

with the hope that v will be small at least for t small.

Lemma 6.8.7. If u = u0 + v with v ∈ Lp
tL

2p
x

(

[0, T ]
)

satisfying

v = ± −1Fp(u0 + v) . (6.8.20)

then
u ∈ C([0, T ] ; H1(Rd)) ∩ C1([0, T ] ; L2(Rd)) ∩ Lp

tL
2p
x ([0, T ]) (6.8.21)

satisfies
u ± Fp(u) = 0 , u(0) = f, ut(0) = g , (6.8.22)
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Conversely, if u satisfies (6.8.21)-(6.8.22) then v := u − u0 ∈ Lp
tL

2p
x ([0, T ]) and satisfies

(6.8.21)

Proof. The Strichartz inequality implies that u0 ∈ Lp
tL

2p
x and by hypothesis the same is

true of v. Therefore u0 + v belongs to Lp
tL

2p
x so Fp(u0 + v) ∈ L1

tL
2
x.

Therefore v = ± −1Fp is C(H1) ∩ C1(L2). The differential equation and initial condition
for v are immediate.

The converse is similar, not used below, and left to the reader.

Proof of Theorem 6.8.4. ForK > 0 arbitrary but fixed, we prove unique local solvability
with continuous dependence for 0 ≤ t ≤ T with T uniform for all data f, g with

‖f‖H1 + ‖g‖L2 ≤ K .

Choose R = R(K) so that for such data,

‖u0‖Lp
t L2p

x ([0,1]) ≤ R

2
.

Define
B = B(T ) :=

{

v ∈ Lp
tL

2p
x ([0, T ]) : ‖v‖Lp

t L2p
x ([0,T ]) ≤ R

}

.

We show that for T = T (K) sufficiently small, the map v 7→ −1Fp(u) is a contraction
from B to itself.

This is a consequence of three facts.

1. Lemma 6.8.5 shows that Fp is uniformly lipschitzean from B to L1
tL

2
x([0, T ]) uniformly

for 0 < T ≤ 1.

2. Lemma 6.8.6 together with subcriticality shows that there is an r > p so that −1 is
uniformly lipshitzean from L1

tL
2
x to Lr

tL
2p
x uniformly for 0 < T < 1.

3. The injection Lr
tL

2p
x 7→ Lp

tL
2p
x has norm which tends to zero as T → 0.

This is enough to carry out the existence parts of Theorem 6.8.4.

If there are two solutions u, v with the same initial data, compute

(u− v) = G(u, v)(u− v) .

Lemma 6.8.6 together with subcriticality shows that with r slightly larger than p,

‖u− v‖Lr
t L2p

x
≤ C ‖G(u, v)(u− v)‖L1

tL2
x

≤ C ‖u− v‖Lp
t L2p

x
.

Use this estimate for 0 ≤ t ≤ T << 1 noting that Hölder’s inequality shows that for T → 0,

‖u− v‖Lp
t L2p

x
≤ C T ρ ‖u− v‖Lr

t L2p
x

≤ C T ρ‖u− v‖Lp
t L2p

x
, ρ > 0 ,

to show that the two solutions agree for small times. Thus the set of times where the
solutions agree is open and closed proving uniqueness.
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To prove the energy law note that Fp(u) ∈ L1
tL

2
x so the linear energy law shows that

∫ |ut|2 + |∇xu|2
2

dx

∣

∣

∣

∣

t

t=0

= ∓
∫ t

0

∫

ut Fp(u) dx dt . (6.8.23)

Now
ut ∈ L∞

t L
2
x , and Fp(u) ∈ L1

tL
2
x .

Hölder’s inequality shows that

∫

|ut Fp(u)|dx ≤ ‖ut(t)‖L2
x
‖Fp(u(t)‖L2

x
.

The latter is the product of a bounded and an integrable function so

∀T, ut Fp(u) ∈ L1([0, T ] × R
d) .

Let

w :=
|u|p+1

p+ 1
.

Since p is subcritical, one has for some 0 < ǫ,

‖w(t)‖L1
x

≤ C‖u(t)‖H1−ǫ(Rd) ∈ L∞([0, T ]) .

In particular w ∈ L1([0, T ]× Rd) and the family {w(t)}t∈[0,T ] is precompact in L1
loc.

Formally differentiating yields

wt = utFp(u) ∈ L1([0, T ]× R
d) . (6.8.24)

Using the above estimates, it is not hard to justify (6.8.24).

It then follows that w ∈ C([0, T ] ; L1(Rd)) and

∫

w(t, x) dx

∣

∣

∣

∣

∣

t=T

t=0

=

∫ T

0

∫

ut Fp(u)dx dt .

Together with (6.8.23) this proves the energy identity.

Once the energy law is known, one concludes global solvability in the attractive case since
the blow up criterion (6.8.11) is ruled out by energy conservation.
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