
Chapter 9. Resonant Interaction and Quasilinear Systems

This chapter describes two extensions. First, we describe the resonant interaction of wave
trains with distinct phases. This is multiphase nonlinear geometric optics. Second, the
semilinear analysis is extended to the quasilinear case with the goal of discussing com-
pressible inviscid fluid dynamics.

§9.1. Introduction to resonance.

Even at the level of formal asymptotic expansions, resonance poses a challenge. It was
Majda and Rosales [1986] who got it right. The approach presented in this section is that
of Joly, Métivier, and Rauch in the Duke Math. J, 1994. The essence of the phenomenon
is illustrated by the following simple example.

Example 1. Consider the oscillatory semilinear initial value problem

(∂t + ∂x)u1 = 0

∂tu2 = u1u3

(∂t − ∂x)u3 = 0

u1

∣

∣

t=0
= a1(x) e

ix/ǫ

u2

∣

∣

t=0
= 0

u3

∣

∣

t=0
= a3(x) e

ix/ǫ

(9.1)

with initial amplitudes aj ∈ C∞
0 (R). The exact solution is given by

u1(t, x) = a1(x− t) e
i(x−t)/ǫ , u3(t, x) = a3(x+ t) ei(x+t)/ǫ , u2 =

∫ t

0

u1(t, x) u3(t, x) dt .

The key observation is that the phases, (x± t)/ǫ that appear in the integrand for u2 add
to 2ix/ǫ which is independent of t. The formula for u2 is,

u2 = ei2x/ǫ
∫ t

0

a1(x− t) a3(x+ t) dt . (9.2)

The oscillatory wave trains, u1 and u3 with phases

φ1 := (x− t)/ǫ, φ2 := (x+ t)/ǫ,

respectively, interact to generate a third wave u2 with phase

φ3 := 2x/ǫ.

The phases satisfy the resonance relation

φ1 + φ2 = φ3 .

The amplitude of the new wave is of the same order, ǫ0, as the waves from which it is
formed.
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The linear operator

L(∂t, ∂x) :=





1 0 0
0 1 0
0 0 1



 ∂t +





1 0 0
0 0 0
0 0 −1



 ∂x,

in the background has principal symbol,

L(iτ, iξ) := i





τ + ξ 0 0
0 τ 0
0 0 τ − ξ



 .

The characteristic variety of L has equation 0 = detL(τ, ξ) = τ(τ + ξ)(τ − ξ). The three
phases satisfy the eikonal equation

φt(φt + φx)(φt − φx) = 0 .

For the solutions with ∇t,xφ 6= 0, this is equivalent to exactly one of the equations

φt = 0, φt + φx = 0, or φt − φx = 0,

at all points (assuming the domain of definition is connected).

Variants of this example illustrate two properties of resonance.

Example 2. Suppose that the initial condition for u3 is changed to u3

∣

∣

t=0
= a3(x)e

iψ(x)

with dψ(x)/dx nowhere equal to 1. Then the integral defining u2 is an oscillatory integral
in time with phase (x − t + ψ(x + t))/ǫ. The time derivative of the phase is O(1/ǫ) so
the method of nonstationary phase shows that u2 = O(ǫ). The resonant interaction is
destroyed.

Exercise. More generally, if {x : ψ′(x) = 1} has measure zero, then u2 = o(1) as ǫ → 0.
Again the offspring wave is smaller than the parents.

For those who know about Young measures, it is interesting to note that the Young mea-
sures of the intitial data are independent of the function ψ so long as ψ′ 6= 0. Thus data

with the same Young measures yield solutions with different Young measures.

Introduce the symmetric form
∑

φj = 0 for resonance relations. If ψk satisfy
∑

nk ψk = 0,
then the phases φk := nkψk satisfy the symmetric form. The symmetric form is often easier
to manipulate.

Example. We find all triples of resonant linear eikonal phases with pairwise independent
differentials for L = ∂t + diag (λ1, λ2, λ3)∂x with λj distinct real numbers. Seek such φj
satisfying the resonance relation

∑

φj = 0. The independent differentials together with
the eikonal relation force (up to permutation),

φj(t, x) = αj(x− λj t), (α1, α2, α3) ∈ R3 \ 0.
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The α are determined up to scalar mulitplication by the resonance relation which is equiv-
alent to the pair of equations,

∑

j

αj = 0, and,
∑

j

αj λj = 0 .

Exercise. Show that if f, g, h ∈ C∞(R) each has nonvanishing derivative at the origin,
and at least one of them has nonvanishing second derivate, then the three phases

f(t), g(t− x), and h(t+ x)

cannot be resonant on a neighborhood of the origin. Discussion. This shows that linear
phases are the only possibilities for resonant triples with pairwise independent differentials.

The example and exercises show that the phenomenon of resonance is both rare and sen-

sitive when viewed from the perspective of perturbing the phases.

§9.2. The three wave interaction PDE.

Consider the system
(∂t + ∂x)u1 = c1 u3 u2 ,

∂tu2 = c2 u1u3 ,

(∂t − ∂x)u3 = c3 u1 u2 .

(9.3)

with real cj ∈ R \ 0. This equation and its relatives maximizes the intermode interaction.
The absence of a term in u2

1 in the first equation has a consequence that harmonics are
not generated in the first mode. Harmonic generation is absent in the other equations too.

Multiplying the first equation by a1 u1, the second by a2 u2, and the third by a3 u3, shows
that if a1, a2, and a3 are real numbers so that

∑

ajcj = 0 then for solutions one has the
differential conservation laws

∂

∂t

(

a1 u
2
1 + a2 u

2
2 + a3 u

2
3

)

+
∂

∂x

(

a1 u
2
1 − a3 u

2
3

)

=
(

2
∑

j

aj cj
)

u1u2u3 = 0 .

Integrating dx yields the integral conservation laws,

d

dt

∫

a1 u
2
1 + a2 u

2
2 + a3 u

2
3 dx = 0 .

This is a two dimensional space of conservation laws parameterized by the a.

We are interested in complex solutions. For complex solutions, conservation laws involving
|uj |

2 are more interesting than those involving u2
j as they yield L2 bounds. The complex

analogue of (9.3) with such conservation laws is,

(∂t + ∂x)u1 = c1 u2 u
∗
3

∂tu2 = c2 u1u3

(∂t − ∂x)u3 = c3 u
∗
1 u2 .

(9.4)
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with cj ∈ R \ 0.

Mutiplying the jth equation by aju
∗
j and taking the real part shows that if aj ∈ R satisfy

∑

aj cj = 0, then solutions satisfy

∂t

(

∑

j

aj|uj |
2
)

+ ∂x

(

a1 |u1|
2 − a3 |u3|

2
)

= 2
(

∑

j

aj cj

)

Re
(

u∗1 u2 u
∗
3

)

= 0 .

If the cj do not all have the same sign, then there are conservation laws of this type with
all the aj > 0. This yields an L2 bound on the solution. On the other hand, if the cj are
all positive then initial data with uj(0, x) real and positive yield real solutions such that
for all j, uj is nondecreasing along j characteristics. For sufficiently positive data there is
finite time blow up.

Proposition. Suppose that cj ≥ c > 0 and the real valued initial data satisfy

∀j, ∀|x| ≤ R, uj(0, x) ≥ A > 0.

i. If u(t, x) ∈ C∞([0, t∗[×R) is a solution, then uj(t, x) ≥ y(t) for t∗ > t ≥ 0 and |x| ≤ R−t,
where y = A/(1 − cAt) is the solution of y′ = c y2, y(0) = A.

ii. If T∗ := (cA)−1 is the blow up time for y, and R > T∗, then u blows up on or before
time T∗ in the sense that one must have t∗ ≤ T∗.

Proof. The second assertion follows from the first.

Since the speed of propagation is no larger than 1, the values of u in |x| ≤ R − t are
unaffected by the values of the Cauchy data for |x| > R. Therefore, it suffices to prove
that uj ≥ y(t) when the data satisfy uj(0, x) ≥ A for all x.

Define
m(t) := min

x∈R , j
uj(t, x) .

Since the uj are nondecreasing on j-characteritics, it follows that m(t) is nondecreasing.
And, m(0) ≥ A > 0. In addition one has the lower bound obtained by integration along j
characteristics,

uj(t, x) ≥ m(0) + c

∫ t

0

m(t)2 dt .

Taking the infinum on x yields

m(t) ≥ m(0) + c

∫ t

0

m(t)2 d ≥ A+ c

∫ t

0

m(t)2 dt .

The function y is characterized as the solution of

y(t) = A+ c

∫ t

0

y(t)2 dt .
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For ǫ > 0 small, let yǫ be the solution of (yǫ)′ = c(yǫ)2 with yǫ(0) = A− ǫ so

yǫ(t) = A− ǫ+ c

∫ t

0

yǫ(t)2 dt .

It follows that m(t) > yǫ(t) for all 0 ≤ t < t∗. For, if this were not so there would be a
smallest t ∈]0, t[∗ where m(t) = yǫ(t). Then

yǫ(t) = m(t) ≥ A+ c

∫ t

0

m(t)2 dt > A− ǫ+ c

∫ t

0

(yǫ(t))2 dt = yǫ(t) .

This contradiction establishes m > yǫ. Passing to the limit ǫ → 0 proves m ≥ y which is
the desired conclusion.

Only the signs of the cj play a roll in the qualitative behavior of the equation (9.4).

Proposition. There is exactly one positive diagonal linear transformation

u := (d1 v1 , d2 v2 , d3 v3) , dj > 0 ,

which transform the the system to the analogous system with interaction coefficients
{

c1, c2, c3
}

replaced by
{

c1
|c1|

,
c2
|c2|

,
c3
|c3|

}

.

Proof. The change of variables yields an anlogous system for v with the interaction
coefficients replaced by

{d2 d3

d1
c1 ,

d3 d1

d2
c2 ,

d1 d2

d3
c3

}

.

Need dj so that

d2 d3

d1
c1 =

c1
|c1|

,
d3 d1

d2
c2 =

c2
|c2|

,
d1 d2

d3
c3 =

c3
|c3|

.

Multiplying the jthe equation by d2
j yields the equivalent system,

d2
1

|c1|
=

d2
2

|c2|
=

d2
3

|c3|
= d1d2d3 .

The first two equalities hold if and only if,

(d2
1, d

2
2, d

2
3) = a(|c1|, |c2|, |c3|) with a > 0 .
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Then, the last equation holds if and only if

a = a3 |c1c2c3| .

This uniquely determines a, and therefore d.

Remark. For general dj 6= 0, the three quantities d1d2/d3 , d2d3/d1 , d3d1/d2 have the
same sign. Using dj 6= 0 allows us to multiply the three interactiion coefficients by −1 if
desired. Thus every system is transformed to one with interaction coefficients all equal to
+1 or two equal to +1. There are four equivalence classes, the last three depending on the
location of the coefficient −1.

Proposition. i. If the real interaction coefficients cj 6= 0 do not all have the same sign,
then the Cauchy problem for (9.4) has a unique global solution u ∈ ∩sH

s([0, s] × R) for
arbitrary Caucy data in ∩sH

s(R).

ii. If the cj have the same sign there are smooth compactly supported data so that the
solution of the Cauchy problem explodes in finite time.

Proof. For real data, this equation reduces to the previous one and the explosive behavior
has already been treated.

To prove i., the results of section 6.4 show that it suffices to prove for every T > 0, an a

priori bound for the L∞([0, T ]× R) norm.

From the conservation law, one has

sup
t∈[0,T ]

∫

∑

j

|uj |
2 dx ≤ K < ∞ .

The equation for u2 yields,

|u2(t, x)| ≤ |u2(0, x) | +

∫ t

0

|u1 u3(t, x)| dt . (9.5)

The key idea is to estimate the integral on the right hand side using energy estimates for
u1 and u3.

For any x ∈ R integrate the identity

(

∂t + ∂x
)

|u1|
2 = 2 Re

(

u∗1
(

∂t + ∂x
)

u1

)

= 2 Re c1u
∗
1u2u3 ,

over the strip [0, t]× ] −∞, x] to find that

∫ t

0

|u1(t, x)|
2 dt ≤ K + 2|c1|

∫

[0,t]×R

|u1u2u3| dt dx .
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Estimate the integral dx on the right using the L∞ × L2 × L2 Hölder inequality to find

∫ t

0

|u1(t, x)|
2 dt ≤ K + 2|c1|

∫ t

0

K ‖u2(t)‖L∞(R) dt .

By symmetry,

∫ t

0

|u3(t, x)|
2 dt ≤ K + 2|c3|

∫ t

0

K ‖u2(t)‖L∞(R) dt .

The Cauchy-Schwarz inequality implies that

∫ t

0

|u1(t, x)) u2(t, x)| dt ≤ K + 2 max{|c1|, |c3|}

∫ t

0

‖u2(t)‖L∞(R) dt . (9.6)

Estimate the integral on the right in (9.5) using (9.6) to find

|u2(t, x)| ≤ C +

∫ t

0

C ‖u2(t)‖L∞(R) dt ,

with C independent of (t, x) ∈ [0, T ]× R. Taking the supremum of the left hand side over
x yields

‖u2(t)‖L∞(R) ≤ C +

∫ t

0

C ‖u2(t)‖L∞(R) dt , 0 ≤ t ≤ T .

Gronwall’s inequality bounds the sup norm of u2 over bounded time intervals.

To estimate u1 one needs L2 estimates for u2 and u3 on the speed one characteristics
x = x+ t. These are obtained by integrating ∂t|u2|

2 and (∂t − ∂x)|u3|
3 over {(s, x) : 0 ≤

s ≤ t, and x ≥ x+ s}.

A similar argument works for u3.

§9.3. The three wave interaction ODE.

For the three wave PDE, (9.4), and phases equal to the resonant triplet, waves of each pair
of families influence, by resonant interaction, the wave of the third. The simplest examples
showing this are solutions of the special form

u1 = A1(t) e
i(t−x)/ǫ , u2 = A2(t) e

−i2x/ǫ u3 := A3(t)e
−i(t+x)/ǫ , (9.7)

with amplitudes Aj independent of x. The oscillatory structure evolves in time, but is
uniform in space. Equation (9.4) is satisfied if and only if the amplitudes Aj satisfy the
three wave interaction equations

A′
1 = c1A2A

∗
3 , A′

2 = c2A1A3 , A′
3 = c3A

∗
1A2 . (9.8)

This is a nonlinear system of ordinary differential equation for three complex quantities
Aj . The phase space is C3, hence six dimensional as a real vector space.
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The equilibria are the points where (at least) two of the three {Aj} vanish. There are
three linear subspaces of equilibria, each with real dimension equal to 2,

{

A2 = A3 = 0
}

,
{

A3 = A1 = 0
}

, and,
{

A1 = A2 = 0
}

.

Each pair of planes intersect at the origin. The system (9.8) is highly symmetric.

Proposition. i. The quantity Im
(

A1(t)A
∗
2(t)A3(t)

)

, is constant on solutions of (9.8).

ii. If aj are real numbers so that
∑

aj cj = 0 then the quantity
∑

j aj |Aj(t)|
2 is constant

on solutions of (9.8).

iii. If A is a solution and θ ∈ R, then Ã obtained by each of the three gauge transformations

Ã :=
(

eiθ A1 , A2 , e
−iθ A3

)

, Ã :=
(

A1 , e
iθ A2 , e

iθ A3

)

, Ã :=
(

eiθ A1 , e
iθ A2 , A3

)

,

is also a solution. The conserved quantities in i,ii are invariant under the gauge transfor-
mations.

iv. If A is a solution and σ ∈ R \ 0, then Ã obtained by the scaling

Ãj(t) = σAj(σt) ,

is also a solution.

Proof. i. Compute

(A1A
∗
2A3)t = (A1)tA

∗
2A3 + A1(A

∗
2)tA3 + A1A

∗
2(A3)t

= c1A2A
∗
3A

∗
2A3 + c2A1A

∗
1A

∗
3A3 + c3A1A

∗
2A

∗
1A2

= c1|A2A3|
2 + c1|A1A3|

2 + c1|A2A1|
2 ∈ R .

ii. Compute
d

dt
|A1|

2 = 2ReA∗
1

d

dt
A1 = 2c1Re(A∗

1A2A
∗
3),

d

dt
|A2|

2 = 2ReA∗
1

d

dt
A1 = 2c2Re(A∗

2A1A3),

d

dt
|A3|

2 = 2ReA∗
1

d

dt
A1 = 2c3Re(A∗

1A2A
∗
3).

The real parts are of A1A
∗
2A3 or its complex conjugate, so are equal. Therefore one has

d

dt

(

∑

aj |Aj(t)|
2
)

=
(

2
∑

j

aj cj

)

Re(A∗
2A1A3) = 0 .

The assertions iii,iv are immediate.

Remarks. 1. When the cj 6= 0 do not all have the same sign one can choose the aj > 0.
In this case, the three wave interaction system is globally solvable.

8



2. When the three cj have the same sign, there exist solutions which blow up in finite
time. This is proved by comparison with an explosive Ricatti equation as for the three
wave interaction PDE.

Exercise. Suppose that the cj are strictly positive and the initial data of the Aj are
strictly positive. Denote by T∗ < ∞ the blow up time. Prove that all three components
Aj(t) blow up as t→ T∗.

3. The gauge transformations commute. The third gauge transformation is the product of
the preceding two. The abelian group of gauge transformations is a two dimensional torus
of mappings

A 7→
(

eiθ1 A1 , e
iθ2A2 , e

iθ2 e−iθ1 A3

)

.

Proposition. For i, j, k distinct, the equilibrium Ai = Aj = 0 , Ak 6= 0 of (9.8), is
unstable if the interaction coefficients ci and cj have the same sign. The stable and
unstable manifolds have real dimension equal to 2.

When ci and cj have opposite signs, orbits of the linearized equation are bounded. For
initial data starting close to the equilibrium, the solutions of the nonlinear system exist
for all time and Ai(t), Aj(t) and |Ak(t)| stay close to their initial values uniformly in time.
If Ak is real then the equilibrium is stable for the restriction of the dynamics to A ∈ R3.

The equilibrium (0, 0, 0) is unstable if and only if the three cj have the same sign.

Proof. For ease of reading consider the equilibrium (0, 0, A3) 6= 0. The linearized equation
at this equilibrium is

B′ =





0 c1A
∗
3 0

c2A3 0 0
0 0 0



B .

The eigenvalues of the coefficient matrix are the solutions λ of

λ(λ2 − c1c2|A3|
2) = 0 .

If c1 and c2 have the same sign, then the roots are 0,±|c1c2|
1/2|A3|. The positive eigenvalue

implies that the equilibrium is unstable. The stable and unstable manifolds have complex
dimension equal to 1 and real dimension equal to 2.

If c1, c2 have opposite signs then |c2||B1|
2 + |c1||B2|

2 is constant on orbits of the linearized
equation. It follows that each orbit of the linearized equation is uniformly bounded in
time.

In the case of opposite signs, the functional |c2|
2|A1|

2 + |c1||A2|
2 is constant on orbits of

(9.8). For initial data which start near (0, 0, A3) the components A1(t), A2(t) stay close to
zero for all time.

The conserved quantity a1|A1|
2 + a2|A2|

2 + |A3|
2 together with the control of A1(t), A2(t)

implies that |A3(t)| stays close to |A3(0)|. In particular, the orbit exists for all time.
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The stability of the origin when the cj do not have the same sign follows from the con-
servation of

∑

aj |Aj|
2 with positive aj . The instability is proved using explosive positive

(resp. negative) solutions when the cj are positive (resp. negative).

This Proposition falls short of determining the stability in C3 of the equilbrium (0, 0, Ak)
when ci and cj have opposite signs.

For any triple of interaction coefficients, there exists i 6= j so that ci and cj have the same
sign. Then the equilibria defined by Ai = Aj = 0 is unstable. The unstable equilibrium
exists even in the globally solvable case where the cj do not all have the same sign. For
example, if c1 and c2 have the same sign and c3 the opposite, then their is a conserved
Euclidean norm

∑

aj|Aj |
2. On the other hand, most orbits starting near A1 = 0, A2 =

0, A3 = 1 stray far from this state. This situation is described as saying oscillations on
the third mode generate frequency conversion to modes one and two. The solution cannot
grow, but it can wander far from its initial state. The energy originally localized nearly
entirely on mode 3, moves substantially away. An appreciable portion of the energy passes
to modes 1,2.

The analysis of the interactions in the highly oscillatory family (9.4) reduces to the analysis
of a system of nonlinear ordinary differential equations This is a special case of a general
phenomenon for homogeneous oscillations, that is oscillations which in a sense are the same
at all positiions of space. Proving general results of this sort is one of our goals. Another
is to extend our semilinear analysis of Chapters 7 and 8 to the quasilinear case. We take
up the construction of high frequency asymptotic solutions, this time with several phases
and in the quasilinear case.

§9.4. Formal asymptotic solutions for resonant quasilinear geometric optics.

We give a self contained, but rapid derivation of the equations of quasilinear geometric
optics. Consider the quasilinear system of partial differential operators,

L(u, ∂)u :=

d
∑

µ=0

Aµ(u) ∂µu .

Suppose that the system is symmetric in the sense of the first paragraph of §6.6. We will
study solutions whose values are close to 0. As explained in the last paragraph of §6.6,
one can, by a change dependent variable, u := A0(0)1/2v, reduce to the system

d
∑

µ=0

Ãµ(v) ∂µv = 0, Ãµ(v) := A0(0)−1/2 Aµ(A0(0)1/2v) A0(0)−1/2 ,

with
Ãµ = Ã∗

µ , and, Ã0(0) = I .

We suppose that such a change has been performed and suppress the tildes.

For u ≈ 0 approximate
Aµ(u) ≈ Aµ(0) + A′

µ(0)u

10



to find that the nonlinear terms are of the form
(

A′
µ(0)u

)

∂µu + higher order terms.

We assess the time of nonlinear interaction for an oscillatory wave of the form ǫp eiφ(x)/ǫ

with the goal of choosing p. Assume that A′
µ(0) 6= 0 for some µ, so that the leading

nonlinear terms are quadratic. The analysis when the leading Taylor polynomial is higher
order can be carried out as in earlier sections. For the important examples from inviscid
fluid dynamics, the hypothesis of quadratic nonlinearity is usually verified. The nonlinear
terms have amplitude O(ǫ2p−1). For phases satisfying the eikonal equation these should
yield a response which is of size O(ǫ2p−1) for t ∼ O(1). We choose the amplitudes so that
the time of nonlinear interaction is O(1) so we want ǫ2p−1 ∼ ǫp which yields the critical
power

p = 1 ,

Consider the interaction of waves with linear phases φj(y) which by nonlinear interaction
yield possible phases

∑

njφj with nj ∈ Z. Each of these candidate phases is a linear
function α.y with α ∈ R1+d. Thus an expression

ǫ U(y, y/ǫ) with U(y, Y ) ∼
∑

α∈Rd

Uα(y) eiα.Y

is of the critical amplitude and includes all the anticipated terms. In a formal trigonometric
sum over α it is understood that there are at most a countable number of nonvanishing
coefficients Uα.

Each term in the sum has amplitude ∼ ǫ. The Lρloc norms of first derivatives of each term
are ∼ 1.

For the scalar Burgers equation ut + uux = 0, solutions with compactly supported initial
data with ‖∂xu(0, x)‖L1 ∼ 1 break down at times t ∼ 1. This shows that the estimate
for the time of nonlinear interaction is not too large. It shows that expression ǫ U(y, y/ǫ)
should not be viewed as small since initial data of this size can lead to blow up in finite
time for quasilinear problems. Our analysis will show that nonlinear effects are present for
times t ∼ 1. This is also shown by the fact that initial data with of this structure lead to
blow in time O(1) for Burgers equation.

The exact structure of the function of Y given by U(y, Y ) is left unspecified for the moment.
Equivalently, consider U(y, Y ) as a formal trigonometric series in Y with coefficients which
are smooth functions of y. To solve the profile equations and prove accuracy will require
supplementary hypotheses. These hypotheses do not play a role in the derivation of the
profile equations.

Pose the ansatz

uǫ = ǫ U ǫ(y, y/ǫ) , (9.9)

U ǫ(y, Y ) ∼
∞
∑

j=0

ǫj Uj(y, Y ) ∼ U0(y, Y ) + ǫ U1(y, Y ) + · · · , (9.10)

Uj(y, Y ) ∼
∑

α∈Rd

Uj,α(y) eiα.Y . (9.11)
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Write
L(uǫ, ∂)uǫ = L(ǫU ǫ, ∂)

(

ǫ U ǫ(y, y/ǫ)
)

. (9.12)

Expanding in a Taylor series shows that

Aµ
(

ǫU ǫ(y, Y )
)

∼ A(0) + ǫA′
µ(0)U0 + · · · , (9.13)

to find

L(ǫU(y, Y ) , ∂y) ∼ L0 + ǫL1 + · · · =
∞
∑

j=0

ǫj Lj(y, Y, ∂y) .

The Lj are operators whose coefficients are functions of y, Y involving the derivatives
∂βuAµ(0) and the profiles Uk with k ≤ j−1. The most important come from the two terms
in (9.13),

L0 = L(0, ∂y) , and, L1 =
∑

µ

A′
µ(0)U0(y, Y ) ∂µ .

The chain rule shows that

∂

∂yµ
U ǫ(y, y/ǫ) =

( ∂

∂yµ
+

1

ǫ

∂

∂Yµ

)

U(y, Y )ǫ
∣

∣

∣

Y=y/ǫ
. (9.14)

So
L(uǫ, ∂)uǫ = W (ǫ, y, Y )

∣

∣

∣

Y=y/ǫ
, (9.15)

where

W (ǫ, y, Y ) = L
(

ǫU(y, Y ) ,
∂

∂yµ
+

1

ǫ

∂

∂Yµ

)

ǫ U(y, Y )

Expand to find

W (ǫ, y, Y ) ∼

( ∞
∑

j=0

ǫjLj

(

y, Y,
∂

∂yµ
+

1

ǫ

∂

∂Yµ

)

)

(

ǫ

∞
∑

k=0

ǫkUk(y, Y )
)

∼

( ∞
∑

j=0

[

ǫjLj

(

y, Y,
∂

∂yµ

)

+ ǫj−1Lj

(

y, Y,
∂

∂Yµ

)]

)

(

ǫ
∞
∑

k=0

ǫkUk(y, Y )
)

∼
∞
∑

j=0

ǫjWj(y, Y ) .

In particular,
W0(y, Y ) = L(0, ∂Y )U0(y, Y ) , (9.16)

and
W1(y, Y ) = L(0, ∂y)U0 + L1(y, Y, ∂Y )U0 + L(0, ∂Y )U1

= L(0, ∂y)U0 +
∑

µ

A′
µ(0)U0 ∂Yµ

U0 + L(0, ∂Y )U1 .
(9.17)
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This expression involves both U0 and U1 which is typical of multiscale methods. Note
the quadratically quasilinear terms A′

µ(0)U0 ∂Y U0 which involve derivatives in the fast
variables Y . For j ≥ 2 the formula for Wj is

Wj =
∑

k+ℓ=j

(

Lk(y, Y, ∂y) + Lk+1(y, Y, ∂Y )
)

Uℓ

= L(0, ∂y)Uj + L1(y, Y, ∂Y )Uj + L(0, ∂Y )Uj+1 + terms in U0, U1, . . .Uj−1 .

The strategy is to choose profiles Uj so that Wj(y, Y ) = 0 for all y, Y, not just on the
d+ 2 dimensional subset {Y = y/ǫ} parameterized by (ǫ, y) = (ǫ, t, x).

Setting W0 in (9.16) shows that W0 must lie in the kernel of L(0, ∂Y ). For (9.17), the
profile U1 is as yet undetermined. However, in order that it is possible to choose a U1 so
that (9.17) holds, requires the second of the equations,

U0 ∈ KernelL(0, ∂Y ) , and, L(0, ∂y)U0+
∑

µ

A′
µ(0)U0 ∂Yµ

U0 ∈ ImageL(0, ∂Y ) . (9.18)

To understand (9.18) requires a study of the operator L(0, ∂Y ). This is straight forward
using the Fourier representation,

L(0, ∂Y )U = L(0, ∂Y )
∑

α

Uα(y) eiα.Y = i
∑

α

L(0, α)Uα(y) eiα.Y . (9.19)

As an operator acting on formal trigonometric series, L(0, ∂Y ) has kernel consisting of
those series whose αth coefficient belongs to the kernel of L(0, α). Recall the definition of
π(α) as the projection onto the kernel of L(0, α) along its range. The kernel of L(0, ∂Y ) is
then the set of trigonometric series such that π(α)Uα = Uα. The image is the set of series
with Uα belonging to the image of L(0, α). Equivalently, π(α)Uα = 0.

Define an operator E from formal trigonometric series to themselves by

E
∑

α

Uα(y) eiα.Y :=
∑

α

π(α)Uα(y) eiα.Y . (9.20)

The previous remarks show that on formal trigonometic series the operator E projects
along the image of L(0, ∂Y ) onto its kernel. Therefore, the two conditions in (9.18) are
equivalent to the pair of equations

EU0 = U0 , (9.21)

and

E
(

L(0, ∂y)U0 +
∑

µ

A′
µ(0)U0 ∂Yµ

U0

)

= 0 . (9.22)

These are the fundamental equations of resonant quasilinear geometric optics. They are
analogues of (7.26) and (7.27).
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Since A(0) = I equation (9.22) is equivalent to

∂tU0 + E
(

∑

j

Aj(0) ∂jU0 +
∑

µ

A′
µ(0)U0 ∂Yµ

U0

)

= 0 . (9.23)

Written this way, the equation looks like an evolution equation for U0. Since the operator
E does not depend on t one has, at least formally,

∂t
(

I − E)U0 = 0

so the constraint (9.21) is satisfied as soon as it is satisfied at t = 0. It is reasonable to
expect that U0 can be determined from its initial data required to satisfy EU0(0, x, Y ) =
U(0, x, Y ).

The equation W1 = 0 is equivalent to the pair of equations EW1 = 0 and (I −E)W1 = 0.
The first, EW1 = 0, is the second equations in (9.22).

Introduce the operator Q on trigonometric series by

Q
∑

α

Uα(y) eiα.Y :=
∑

α

Q(α)Uα(y) eiα.Y , (9.24)

where Q(α) is the partial inverse of L(0, α) defined by

Q(α) π(α) = 0, Q(α)L(0, α) = I − π(α) .

Q is a partial inverse to L(0, ∂Y ). It is determined by

QE = 0, QL(0, ∂Y ) = I − E . (9.25)

Since Q(α) commutes with L(0, α), it follows that Q commutes with L(0, ∂Y ).

The second part, (I − E)W1 = 0, of the equation W1 = 0 is equivalent to QW1 = 0.
Multiplying (9.17) by Q shows this is equivalent to

(

I − E
)

U1 = −Q
(

L(0, ∂y)U0 +
∑

µ

A′
µ(0)U0 ∂Yµ

U0

)

. (9.26)

Once U0 is determined, his determines (I − E)U1.

Multiplying Wj−1 = 0 by Q and Wj = 0 by E shows that the equations (I −E)Wj−1 = 0
together with EWj = 0 are equivalent to a pair of equations

(

I − E
)

Uj = Q
(

terms in U0, U1, . . .Uj−1

)

, (9.27)

and

E
(

L(0, ∂y)Uj +
∑

µ

A′
µ(0)U0 ∂Yµ

Uj

)

= E
(

terms in U0, U1, . . .Uj−1

)

. (9.28)
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Note that once U0, . . . , Uj−1 are determined, equations (9.27) and (9.28) will serve to
determine Uj from initial values EUj(0, x, Y ).

§9.5. Solvability of quasiperiodic profiles equations and small divisors.

The present multidimensional quasilinear case is a special case of the analysis in Duke
Math J. 1994. An essential step is to pass from formal trigonometric series in Y to a more
manageable class.

One class which will serve us well is to consider profiles U0(y, Y ) which are periodic in Y .
Though this suffices for the most interesting examples we construct, it is inadequate. Con-
sider, for example, the one dimensional problem with leading part ∂t + diag (λ1, λ2, λ3)∂x
considered in the last example of §9.1. It is important to be able to treat functions oscil-
lating with resonant trio of phases αj(x − λjt) as in that example. For the phases n.y/ǫ
which appear for periodic profiles the ratio of the coefficients of t and x are rational. Thus
one could only treat the case of λ ∈ Q. to be a rational multiple of α. Quasiperiodic
functions as in the next definition are sufficient to treat a wide class of problems including
general λ.

Notation. Suppose that the real linear functions {φj(Y )}mj=1 are linearly independent
over the rationals. To a function U(y, θ1, . . . , θm) smooth and 2π multiply periodic in
θ, associate the quasiperiodic profile U(y, Y ) := U

(

y, φ1(Y ), . . . , φm(Y )
)

. An induced
operator E mapping periodic functions to themselves is defined by

E
(

∑

n∈Zm

Un(y)ein.θ
)

:=
∑

n∈Zm

π
(

∑

k

nkdφk
)

Un(y)e
in.θ ,

so that (EU)(y, φ(Y )) := EU(y, Y ). Similarly define the partial inverse,

QU :=
∑

n∈Zm

Q
(

∑

k

nkdφk
)

Un(y)e
in.θ .

Introduce the shorthand, n.dφ :=
∑

k nkdφk.

To write (9.21)-(9.22) as an equation for U note that

∂

∂Yµ
U(y, φ1(Y ) . . . , φm(Y )) =

m
∑

k=1

∂φk
∂Yµ

∂U0

∂θk
.

The profile equation for U0 are equivalent to,

E U0 = U0 , E
(

L(0, ∂y)U0 +
∑

µ

A′
µ(0)U0

∑

k

∂φk
∂Yµ

∂U0

∂θk

)

= 0 , (9.29)

for U0. This equation has the form

∂tU0 + G(U0, ∂y,θ)U0 = 0 ,

15



where

G(U , ∂y,θ) := E
(

d
∑

j=0

Aj(0) ∂yj
+

∑

µ

A′
µ(0)U

∑

k

∂φk
∂Yµ

∂

∂θk

)

U := E K(U , ∂y,θ)U .

The notation is chosen to suggest a quasilinear hyperbolic system. But, the operator E
is nonlocal in θ. However, E is an orthogonal projection operator in L2(Rdx × Tmθ ) which
commutes with ∂y,θ.

Theorem 9.2 (JMR, Duke J. 1994). Suppose that H0(y, θ) ∈ ∩s(H
s(Rd × Tm) satisfies

the constraint EH0 = H0. Then there is T∗ > 0 and a unique maximal local solution

U0 ∈ ∩s C
s
(

[0, T∗[ ; H
s(Rd × Tm)

)

satisfying (9.29) together with the intitial condition U
∣

∣

t=0
= H0. If T∗ <∞ then

lim sup
tրT∗

∥

∥U0(t)
∥

∥

Lip(Rd×Tm)
= ∞ .

Sketch of Proof. The key idea is to derive a priori estimates as in the case of quasilinear
hyperbolic systems. One differentiates the equation applying ∂βx,θ, and takes the real part

of the L2(Rd × Tm) scalar product with ∂βx,θU0 (suppressing the subscript 0) to find

d

dt

(1

2

∥

∥∂βx,θU
∥

∥

2

L2(Rd×Tm)

)

= Re
(

∂βx,θU , ∂
β
x,θEK(U , ∂y,θ)U

)

L2(Rd×Tm)
.

Using the commutation and symmetry properties of E yields

(

∂βx,θU , ∂
β
x,θEK(U , ∂y,θ)U

)

L2(Rd×Tm)
=

(

E ∂βx,θU , ∂
β
x,θK(U , ∂y,θ)U

)

L2(Rd×Tm)

=
(

∂βx,θU , ∂
β
x,θK(U , ∂y,θ)U

)

L2(Rd×Tm)
,

the last equality using E U = U . The last is a quasilinear hyperbolic expression. Using
Gagliardo-Nirenberg estimates as in the treatment of the quasilinear Cauchy problem, one
has

Re
(

∂βx,θU , ∂
β
x,θK(U , ∂y,θ)U

)

L2(Rd×Tm)
≤ C

(

‖U‖Lip(Rd×Tm

)

‖U‖2
H|β|(Rd×Tm) .

Summing on |β| ≤ s ∈ N yields

d

dt

∥

∥U(t)
∥

∥

2

Hs(Rd×Tm)
≤ C(‖U‖Lip(Rd×Tm)‖U‖2

Hs(Rd×Tm) .

Local well-posedness in Hs for N ∋ s > 1 + (d+m)/2 so that Hs ⊂ Lip is then proved as
for quasilinear hyperbolic systems.
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To find the higher order profiles Uj with j ≥ 1 the equations involve the operator Q, for
example (9.26). Without further hypotheses, Q may be very ill behaved. The matrices Q(α)
may grow very rapidly as α grows. This has two consequence. First, Q may not even map
smooth profiles in θ to distributions in θ. In that case the equations for the higher profiles
do not make sense. Second, there are known examples where the error of approximation
by the leading term is o(ǫp) but is not O(ǫp+δ) for any δ > 0 (see [JMR 1992]).

What is needed in order to get a reasonably well behaved operator Q is that the matrices
Q(n.dφ) grow no faster than polynomially in |n|. The trouble spots for Q are eigenvalues
of L(0, n.dφ) which though not equal to zero, are very close to zero.

Small divisor hypothesis. There is a C > 0 and an integer N so that for all n ∈ Zm \0,
if λ 6= 0 is an eigenvalue of L(0,

∑

k nkdφk) 6= 0 then

|λ| ≥
C

|n|N
.

In [JMR, Duke M. J], it is proved that this hypothesis is generically satisfied. It is often
not difficult to verify this hypothesis as examples in the next sections show.

Proposition. If the small divisor hypothesis is satisfied then there is a constant C > 0
and an integer M so that for all n ∈ Zm,

‖Q(n.dφ)‖ ≤ C 〈n〉M .

Proof. From the small divisor hypothesis, one knows that the nonzero eigenvalues of
Q(n.dφ) lie in an annulus 2c/〈n〉N ≤ |z| ≤ 〈n〉N/2. Define a larger annulus containing the
eigenvalues strictly in its interior by

D(n) :=
{

z : c/〈n〉N ≤ |z| ≤ 〈n〉N
}

.

Then

Q(n.dφ) =
1

2πi

∮

∂D(n)

1

z

(

zI − L(0, n.dφ)
)−1

dz .

For z ∈ ∂D(n), ‖zI − L(0, n.dφ)‖ ≤ C〈n〉N . The nearest eigenvalue is no closer than
C〈n〉−N . Therefore ‖(zI − L(0, n.dφ))−1‖ ≤ C〈n〉N

′

, and the Proposition follows.

The Proposition implies that when the small divisor hypothesis is satisfied, Q maps
∩sH

s(Rd × Tm) continuously to itself. The next Theorem is linear and easier than the
previous one.

Theorem 9.3. Suppose that the small divisor hypothesis is satisfied and that U0 is as
in Theorem 9.1 and for j ≥ 1 initial profiles Hj(y, θ) ∈ ∩s(H

s(Rd × Tm) satisfy EHj =
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Hj . Then higher order profiles Uj ∈ ∩sC
s([0, T∗[ ; H

s(Rd × Tm)) for j ≥ 1 are uniquely
determined by the initial conditions E Uj = Hj and the transcriptions of (9.27) and (9.28)
to the reduced profiles.

Suppose that the profiles Uj of all orders are determined as in Theorems 9.2 and 9.3.
Borel’s Theorem constructs

C∞
(

[0, 1] × [0, T∗[ : ∩sH
s(Rd)

)

∋ U(ǫ, y, θ) ∼
∑

j

ǫj Uj(y, θ) . (9.30)

Define approximate solutions

uǫ(t, x) := ǫU(ǫ, t, x, φ1(t, x)/ǫ, . . . , φm(t, x)/ǫ) ∈ ∩sC
s([0, T∗[ ; H

s(Rd)) . (9.31)

Theorem 9.4. With the above definitions, the residual

rǫ := L(uǫ, ∂) uǫ (9.32)

is infinitely small in the sense that

∀T ∈ [0, T∗[ , γ ∈ Nd+1 , N ∈ N , ∃c > 0 , ∀ǫ ∈]0, 1], ‖∂γy r
ǫ‖L2([0,T ]×Rd) ≤ c ǫN (9.33)

§9.6. Stability and accuracy of the approximate solutions.

The approximate solutions are of size O(ǫ) but taking a derivative costs a power of ǫ. Thus
(ǫ∂y)

γ applied to the approximate solutions which is O(ǫ). The next theorem implies that
the approximate solutions are infinitely close to the exact solutions with the same initial
values.

The result differs from Theorem 8.6 in two ways. First it is on Rd rather than local in
ΩT . Much more important it is quasilinear instead of semilinear and that requires some
changes in the proof. The reader is referred to [JMR 1995-96] for a presentation of two
related stability results where the changes required to pass from the simpler semilinear
case to the quasilinear case are presented.

Stability Theorem 9.5. Suppose that T > 0 and that uǫ is a family of smooth approxi-
mate solutions to L(u, ∂) u = 0 which are O(ǫ) in the sense that for all γ ∈ N1+d , ∃c(γ) >
0 , ∀ǫ ∈]0, 1]

‖ (ǫ∂y)
γuǫ ‖L∞([0,T ]×Rd) ≤ c(γ) ǫ . (9.34)

Suppose that the residuals rǫ := L(uǫ, ∂) uǫ are infinitely small in the sense that

∀γ ∈ Nd+1 , N ∈ N , ∃c > 0 , ∀ǫ ∈]0, 1], ‖∂γy r
ǫ‖L2([0,T ]×Rd) ≤ c ǫN . (9.35)
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Define vǫ ∈ C∞([0, T∗(ǫ)[×Rd) to be the maximal solution of the initial value problem

L(vǫ, ∂) vǫ = 0 , vǫ(0, x) = uǫ(0, x) . (9.36)

Then there is an ǫ0 > 0 so that for ǫ < ǫ0, the time of existence satisfies T∗(ǫ) > T , and
the approximate solution uǫ is infinitely close to the exact solution vǫ in the sense that for
all integers s and N

‖uǫ − vǫ‖Hs([0,T ]×Rd) ≤ c(s,N) ǫN .

§9.7. Semilinear resonant nonlinear geometric optics.

The simplest examples, like those in §9.2, are semilinear. The first examples in §10 are
semilinear. In this section we simply state the form of the ansatz and profile equations
in the semilinear case. The precise theorem statements and proofs closely resemble the
quasilinear case and can be found in the references.

For a semilinear system

L(∂) u+ f(u) = 0 , L(∂) :=
d

∑

µ=0

Aµ ∂µ ,

recall that π(α) is orthogonal projection on the kernel of L(α) and E is the operator on
formal trigonometric series E

∑

aα(y) eiα.θ :=
∑

π(α) aα(y) eiα.θ. The critical size for
semilinear problems is amplitudes O(ǫp) with p = 0. The approximate solutions have the
form

uǫ ∼ U ǫ0(y, y/ǫ) , (9.37)

U0(y, Y ) ∼
∑

α∈Rd

U0,α(y) eiα.Y . (9.38)

The amplitudes are O(1) as ǫ→ 0 in contrast to the quasilinear case where the amplitudes
where O(ǫ) but in agreement with the one phase semilinear theory.

The profile equations for U0 are

EU0 = U0 , (9.39)

E
(

L(∂y)U0(y, θ) + f
(

U0(y, θ)
)

)

= 0 . (9.40)

Solutions of the profile equation of the quasiperiodic form

U(ǫ, y, Y ) = U(ǫ, y, φ1(Y ), . . . , φm(Y )) ∈ C∞([0, ǫ0] ; ∩sH
s([0, T ]× Rd × Tm) ,

with

U(ǫ, y, θ1, . . . , θm) ∼
∞
∑

j=0

ǫj Uj(y, θ) ,

in the sense of Taylor series exist provided the small divisor hypthesis of the preceding
section holds with L(n.dφ) in place of L(0, n.dφ). They yields approximate solutions with
infinitely small residual. The accuracy of these solutions follows from the stability result
of Chapter 8.

19


