FOCUSING OF SPHERICAL NONLINEAR PULSES IN R!*3
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ABSTRACT. This paper describes the behavior of spherical pulse solutions of
semilinear wave equations in the limit of short wavelength. In three space
dimensions we study the behavior of solutions which are described by nonlinear
geometric optics away from the focal point. With a natural subcriticality
hypothesis on the nonlinearity we prove that the possibly nonlinear effects
at the focal point do not affect the usual description in terms of the Maslov
index. That is one has nonlinear geometric optics before and after the focal
point with only the usual phase shift of -1. The reason is that the nonlinear
effects occur on too small a set. We obtain a global asymptotic description
which includes an approximation near the caustic, which is a solution of the
free wave equation.

1. INTRODUCTION

Many recent works have investigated the algorithms of nonlinear geometric optics
(see [8] for a survey). These algorithms construct approximate solutions which are
accurate when the wavelength denoted by € tends to zero. Most of these articles are
valid for wave trains, satisfying the so-called slowly varying envelope approzimation.
It has been known for a long time that the slowly varying envelope approximation
can be violated when studying ultrashort laser pulses (see e.g. [11]). In that case,
wave trains are replaced with pulses with length O(g). The mathematical study
of such pulses is recent, and the construction of correctors and justification of the
approximation are different from the analogous problem for the propagation of wave
trains (see [1], [2]).

In the present article, we give a first result analyzing what happens when short
pulses pass through a focal point. We study semilinear wave equations in three
space dimensions, with a subcritical nonlinearity. For wavetrains it is known that
the caustic does not change the leading order wave train asymptotics away from the
caustic (see [7], [10], [9], [3]). We analyse spherical pulses (Figurel), and show that
nonlinear geometric optics, as constructed in [2], is valid away from the caustic.
At the focus, the approximation is not good, since the exact solution is a regular
function, whereas the profile of geometric optics is singular. However, this phenom-
enon occurs in so small a region that the approximation is valid before and after
the caustic. As in [6] or in [4], the leading term of the approximation satisfies a
nonlinear transport equation away from the focal point. In a small neighborhood of
the focal point, the exact solution is approximated by a solution of the linear wave
equation. In this sense we have nonlinear propagation and a linear caustic. The
phenomena in the case of pulses are similar to those which are encountered in the
case of wave trains ([3]). The detailed description, Theorem 2, in the immediate
neighborhood of the caustic is sharper than existing results for wave trains. The
analysis is also different.

The case of subcritical nonlinearities is particularly pertinent for nonlinear optics.
This is so because the subcriticality hypothesis bears on the growth at infinity of the

2000 Mathematics Subject Classification 35B40, 35C20, 35105, 35Q60.
! This research was begun while the first author was visiting the University of Michigan and
he would like to thank that institution for its hospitality
?Research partially supported by U.S. National Science Foundation grant NSF-DMS-9803296
1



2 R. CARLES AND J. RAUCH

F1GURE 1. Focusing of pulses.

nonlinear function and the nonlinear optical response of most materials is saturated
at large amplitudes, which means that not merely slow growth but even bounded
nonlinearities are the most reasonable models.

Consider the initial value problem in three space dimensions,

Ou® + alGpus [P~ 0pu® = 0, (t,z) €[0,T] x R3,
1.1 — —
( ) U8|t:0:6U0 (r’r ETO), 3t'u€|t:0:U1 <7’;r ETO):

where a is a complex number, r = |z|, 7o > 0.

Hypothesis. The nonlinearity is subcritical in the sense that 1 < p < 2.

The functions Uy and U; are infinitely differentiable, supported in r > 0, bounded,
and, there is a zg > 0 so that for all » > 0,

(1.2) supp U; (7, .) C [—z0, 20)-

The last assumption implies that the initial data are pulse like in the limit ¢ — 0.

The nonlinearity need not be p-homogeneous, but only p-homogeneous at infinity
or even bounded above by a p-homogeneous at infinity. This is so since we study
the influence of the caustic {r = 0}, where J;u® is large. The results are the same
if the nonlinearity |d;u® [P~ u® is replaced with

|Opuc *

e2\(P—1)/2 L€
(1 + |Opu®| ) Oru® | or, 1T owpr EXER:

8tUE .

Since the initial data are spherical so is the solution so, with the usual abuse of
notation,

W) = w (G lel), s lel) € O, (Re X EL).
Introduce v° := (v<,v%) where
(1.3) as(t,r) = rut(t,r), vg = (0 £ 0, )u" v € C7 (R x R,).

Then (1.1) becomes
(8 £ 0, )05 = r' " Pg(ve + vY), g(y) =blylPty, b= —a27P,

‘US_ + U‘E+'|r:0 = 0’

r—7"ro r—To
'UfF|t:0:Po<r, 6 ):I:EP1<T', 6 ),

(1.4)
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The initial data P; and @); are related to the U; by,
Py(r,z) :=rUs(r,2) + 70, Ug(r, 2)
Pi(r,z) :=Ug(r,z) + r0,Ug(r, 2),

and inherit the smoothness and compact support of the U;. Taking the focusing
into account, a natural generalization for the ansatz given in [2] consists in seeking
approximate solutions,

(1.5)

(v%)app = ((t’g—)appa (”i)app> )

(16) ('Ua_)app(t, T’) = Vin(t: Ty Zl) B

_r—ro+t’

- e

(Ufl-)app (ti T’) = Vfoc(t: ry 22) + Vout (ta r Z3) —

z3=

3

_i-r—rg r—t—rg

22

e e

where the profiles V" V¢ and V°U are compactly supported in the z variable. As
shown on Figure 2, V™ corresponds to an incoming spherical pulse and V°" to an
outgoing spherical pulse both generated at time ¢ = 0. The latter pulse never sees
the caustic. The V¢ term represents an outgoing spherical pulse created when the
incoming pulse crosses the focus.

F1GURE 2. Geometry of rays.

The profiles defined for 7 > 0 are determined as solutions of the initial boundary
value problems,

(L.7) {(@ — 0Vt z) = P (V) (E ),

v |t:0 = Po(r, 1),

(0 4 0, )Vt (t, 7, 23) = ' "Pg(VOU) (L, 7, 23),
(1.8) Veut| _, = Polr, z),
Vout|r:0 = O’
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(0 + 0, Ve = 1Py (VIS)(t, 7, 23),
(1.9) (Vin 4 veey(¢,0,2) = 0,

Ve(t,0,2)],_, = 0.

These in turn are solved by integrating nonlinear ordinary differential equations
along the rays of geometric optics.

The second equation in (1.9) shows that on traversing the focus the amplitude
of the profile is multiplied by —1 = ¢?27/2. This is the classical Maslov index for a
focal point of multiplicity equal to 2 (see e.g. [5]).

Theorem 1. Define the approrimate solution ((v )app, (v3)app) by (1.6), (1.7),
(1.8) and (1.9). As in [2], nonlinear geometric optics is valid before the focus in
the sense that for any d > 0,

lv: — (v3)appllzes ([0,r0—a1x[0,00)) = O(€),

while v* = O(1). For larger times nonlinear geometric optics is again valid but the
error can be larger, precisely

lvg — (v3)appllLe=((o,71x[0,00p) = O(°77).

This result asserts that for £ small the pulse is described by nonlinear geometric
optics before and after the focal point. The only influence of the focal point on the
asymptotic description is the sign change which also occurs for the linear problem.
Away from the focus the nonlinearity plays a crucial role as it appears in the
transport equations of geometric optics, but for the crossing of the focus the effects
are as in the linear case.

The next result refines this in two ways. In §3 we will show that the approximate
solution defined above does not give good pointwise estimates for ui = (v +v%)/2r.
Fix 1 > a. Consider new approximations v¢ := (vZ,v%) in {r < ¢} which are
exact solutions of the linear wave equation in characteristic form. These solutions

are chosen to match with the geometric optics solution along r = ¢ (see §5). They
are defined by
suppve C {t+7r>ro— z0e} suppvy C {t—r> 17— 20¢} ,
and in these domains
i t+r—r
ve (t,r) = V" (ro,Ea, u) ,
€
t—r— ro)
. .

(1.10) .
vi(t,r)=-vn" (7’0, g%,

Theorem 2. For fivred 2— p < a < 1, the family v¢ of solutions of the linear wave
equation in {r < &%} is a better approzimation in the sense that

[[v = v¥||Leo(o,r)x[0,c0)) = O(°7P),

[(v5 +v2) = (vi + V) o rixpoeepy = O(re*=P) = o(r/e),
while vy +v2 = O(r/e).

The first estimate shows that v® is a good an approximation to v*. The last relation
shows that (va_ + vj_)/?r is a good pointwise approximation for u;. The factor of
r on the right of the second error estimate is crucial. In contrast, ((vi)app +
('vj_)app)/Qr is not a good approximation to uf. In fact we show in §3 that it is
more singular than u;.

In the last section of the paper we apply Theorem 2 to prove that a more natural
looking inner approximation near {r = 0} is in fact less accurate.
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2. EXISTENCE OF THE PROFILES

Since the profiles are defined by ordinary differential equations along the rays,
the existence results for equations (1.7), (1.8) and (1.9) follow from the theory of
ordinary differential equations. The main point is to show that the time interval
of existence includes [0, ro], so that the first profile exists past the focusing time
(Figure 2). This is achieved in at least the following two cases;

e when the equation is dissipative, that is, a > 0, or
e when the initial data Py is sufficiently small.

Proposition 2.1. Assume that a > 0, or that Py is sufficiently small. Then there
exists a time T > rq such that Equations (1.7), (1.8) and (1.9) have unique solutions
yin yout yfoe ¢ (0N L%)([0,T] x Ry x R). Moreover, these profiles are compactly
supported in their last variable,

(2.1) supp V" (t,r,.), supp VUi (t,r,.), supp V(t,r,.) C [—20,20],
and theiwr derivatives with respect to both t and z are bounded, that is

diVin vest vk € (CnLe) ([0, 7] x By x ).

The boundedness of the derivatives follows upon differentiating the equation and
noting that these derivatives satisfy an equation with the same form as the profile
itself. The same is not true of the derivatives with respect to r which are singular,
~ r17P near the focal point.

3. PROOF OF THEOREM 1
Define the first remainder
€ €

w' o= (Wl wg),  with  w§ = g~ (03 Japp

The nonlinear wave equation in characteristic form (1.4) together with the equa-
tion (1.7) for the incoming profile implies that (v®)app satisfies

(875 — ar)('va_)app - rl—pg((vé_)app) :
Similarly (v% )app satisfies
(O + 0r) (V3 )app = rl_pg((vi)app) ;

as soon as ¢ is so small that the waves with profiles V_f_oc and V_l‘_mt do not overlap.
Subtracting these equations from the equations satisfied by v% yields

(3.1) (0 £ 0 )wi = 7P (g(v2 +v%) = g((v3 )app)) -
In this expression we make two replacements. First,
9005 + %) = 9((02 Japp + (5 app) + (900 + 05) = 9 (62 Japp + (v )app) )
Using Taylor’s Theorem, the second term is written as
9w +05) =g ((v2 Japp + (v3 )app) = (W +wi)h((v%)app, w?) := (wE +wi) (L, 7).

Since ¢ € C! and the approximate solutions (v¥)app are uniformly bounded, it
follows that f¢ is uniformly bounded on any set on which the family v is uniformly
bounded. Summarizing, we have the following error equation

(3.2) (O £ 0wy = rITPf w4+ SL(t, ),

(3-3) Si(tr) = rt? (9(('L’a—)app+ ('Uf(-)app) - g(('”fl:)app))'
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We use an inequality of Haar type for the differential operator

L'—é -1 0 ﬁ
- 3t+ 0 1 /or

Definition 3.1. The characteristics for L are the lines traveling with speed +1.
In [0,7] x Ry, the incoming characteristics are speed minus one characteristics
starting at t = 0, and the outgoing characteristics are speed one characteristics
starting at t = 0 or at » = 0 . The set of incoming characteristics is denoted
I'_(T), and the set of outgoing characteristics is denoted T'(T').

Proposition 3.1. Let w = w(t,r) =: (w_,wy). Assumew € (CNL>®)([0,T]xRy)
s a solution of

Lw=7r"""fw+ < g; ) , (w- +wy)],_, =0,

where f is a matriz with coefficients in (C'N L*)([0,T] x Ry). Then there erists
C depending on T, p and f such that for all 0 <t < T,

[ @] Lo 10,00y SC(”w(O)HLw([O,oo[)+WESFH_IET) L'S‘|+ b /W|S+|)'

YEL4(T)
Proof. The first step is the elementary fact that if
Lw = G in r>0, (w_+w+)|r:0:0,
then

llw— (&)L (0,000 < llw= (0}l (fo,00p +  sup /IG—I: and
YEL_(T) Iy

lw4 ()]l zee ((0,00p < NJw= (-, 0)||Loo(o,77%{0}) + w4+ (0)||Loo(o,c0p) +  SUP /|G+|-
YEL4(T) Iy

An application of Gronwall’s Lemma completes the proof. a

Recall that T" > ry denotes a time of existence for the profiles from Proposition
2.1. From Proposition 2.1, there exists Cy > 0 independent of £ such that

(3.4) H (Ua)app HL°°([0,T]><[0,00[) < Co.

A straightforward local existence argument shows that either v3 exists through-
out [0,T] x [0, c0[, or, the maximal local solution belongs to C'([0,7:[xR4) with
0< T, <T and

liminf ||v®(¢)||p = )
iminf {Jv* (8)][L (o,cop) = 0
In the latter case there is a first time, ¢. such that
[l (te)ll=ro,0on = 2C0 -
We prove that there is a constant C' > 0, so that for ¢ < 1 and ¢ <.,
(3.5) ||'w€||Loo([07ts]X[07oo[) < Ce2r,
This implies the O(27P) error estimate of Theorem 1. To see this choose g1 < 1
so that C'E?_p < 2Cq. Then if t* < T we have the contradiction
2Co = ||w® (t°)|| oo (0,00 < Ce*7P < 2C.

It follows that ¢* = T'. In that case (3.5) is the desired result.
We next prove the estimate (3.5). On [0,¢°], w® is pointwise bounded by 2Cy.
Since we know that the family (v®)app is uniformly bounded it follows that v° is
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uniformly bounded. As remarked above, this implies that f¢ is uniformly bounded
so Proposition 3.1, implies that

10 Ol o < € (SNl +_ma / s+ max [ 151).
e @oeeb - veri(e) Jy ot
A key step is to estimate the integrals on the right hand side.
The arguments for the + cases are entirely analogous so we treat only the minus
case.
The first key observation is that

g(('va—)app+('L’j-)app) ~ g(( )app) + g(('”i)app)-

In fact the two sides are equal except on the small set where both (v )app and
(v%)app are nonzero.

The two functions are nonzero at most on the union of two isoceles right triangles
with side O(¢). An important one is at the focal point. Less important is the
triangle with hypotenuse on ¢ = 0 and centered at r = rg. Denote the union of the
two triangles by E(¢). Then

ST (61) = 177 (g (0 )ape) + B (6 7) X))

with uniformly bounded h®.

The term in parentheses is uniformly bounded and is supported in the two right-
ward moving strips from Figure 2. Thus the support of S° intersects each v in at
most two intervals with total length O(g). Thus

/|5€|<c/ P17 dr = O(e277) .

Moreover, if one is interested in ¢t < rg — J, the upper bound is sharpened to

d+ce
/|Sa_| < C’/ M Pdr = O(e).
o' é

The first of these estimates completes the proof of (3.5) and therefore the second
part of Theorem 1.

For t < 7o — § the second estimate shows that the “so long as” argument can be
sharpened by replacing ¢?~7 in (3.5) by ¢ and thereby proving the first assertion of
Theorem 1. O

Remarks. 1. The estimate for fv |S_| is sharp. In fact, considering the incoming
characteristic, 7, which arrives at ¢t = rg, 7 = 0 it is easy to see that

/5_ = cg( = V™™(to,0,0)) €277 + o(27P)

which in general is no smaller than O(¢?7F). It is not hard to show that this implies
that w® (¢, 0) is in general no smaller than O(27P) proving that (3.5) is also sharp.
2. For later use we show that the natural estimate

”atngLm([O,T]x[O,oo[) = 0@,

is valid. The derivative with respect to r is less well behaved near {r = 0}. To
derive the estimate for the time derivative differentiate (3.1) with respect to time

to find
1
(& + 6,»)@105 = pl7P [® 9w 4 p17P ™ -

Proposition 5.1 implies the desired estimate.
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4. WEAKNESS OF THE APPROXIMATION NEAR THE CAUSTIC
At the focal point ¢ = rg, 7 = 0, the approximation is imprecise. For the exact
solution, the relation
vE + vy
2r
and the fact that v® and v§ are bounded yield

(4.2) At (t,r) = O <1> .

(4.1) Oeuf(t,r) =

r

The fact that (v& + vi)|T:0 = rut|r:0 = 0 suggests that there is a better estimate
for Qu®. In fact, the family J;u® satisfies the same pointwise bounds as focusing
pulse solutions of the linear wave equation. In particular, for fixed ¢, u; is bounded
on [0,7] x R3.

Proposition 4.1. For any time 1" > 0, there is a constant C so that for dall € €
10,1],

. C
(4.3) O (t,1)] <

on [0,7] x [0,00].

Proof. Differentiating (1.4) with respect to time and letting w := (8tva_ , 3tvi) one
obtains an equation as in Proposition 3.1 with S1 = 0. It follows that on compact
time intervals

€ € € € C
Hat“— ; at”+HLoo([o,Tx[o,oo[) < C ||3tv_(0, ), 0103 (0, -)HLw([o,oo[) < P
From the definition of v one has that
(8t - ar)va_ = (at + ar)v:- )
SO
Or(vE +vy) = 0 (v —vy) = O(1/e).
Since v + vi vanishes when r = ( one finds that
vE +vy = O(r/e).
This, compact support, and the crude estimate (4.2) implies (4.3). d

The same estimate does not hold for r—! ((vg_)app + (vi)app) which is the natural
approximation for u;. To see this begin by remarking that the transport equations
satisfied by the the first profiles imply that

Oy (('Ua—)app+(”i)app) = at((va—)app - (vi)app)
+ piop (g(Vin(t, r,z1)) — g(VfOC(t,r, zz)) |Zl:t+r+r07

t—r—rg .
22:—0

Since the derivatives 6t73Vin’f°C are bounded, it follows that
0¢ ((v2 )app — (v3)app) = O(1/e).

On the other hand the second summand is in general of order exactly =7 near the
focal point since using the boundary condition shows that at » = 0 where z; = z5,

(4.4) (9(Vo2 (1,0,21)) — g(VI°(t,0, 22)) = g(V™)(¢,0,2) — g(=V™) (2,0, 2)
' =29(V")(t,0,2) £0.

Therefore, for ¢ fixed, §, ((va_)app + (‘Ui)app) ~ r17P as r = 0 so integrating from
r = 0 implies that

(v )app + (Ui)app = 0(7“2_1)) >>0(r).
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Note that it follows that ((va_)app + (vi)app))/r is not a good approximation of
O;uf when r'7P > ¢~ 1 that is, for r < £t

On the other hand, from Theorem 1 and (4.3), ((U‘E_)app + (v% )app)) /7 is a good
approximation of d;u® when r > ¢37P. Notice that since 1 < p < 2, one has
(3—p) <(p—1)7" (see Figure 3).

Valid approximation

gp-T g3-p r
FIGURE 3. Is (0;u®)app a good approximation to u§?

These observations pose the problem of finding a more accurate description near
r = 0, that would give at least a good pointwise approximation for d;u®. That is
accomplished in the next section.

5. ASYMPTOTICS NEAR THE CAUSTIC

We have proved that nonlinear geometric optics is valid before and after the fo-
cusing. Though the pulses propagate nonlinearly away from the focus, the crossing
of the focus is described with only the phase shift that would be present in the
linear case. As in [4], this is called the regime of nonlinear propagation with a
linear caustic crossing. The cumulative nonlinear effects from a neighborhood of
r = 0 are negligible. In this section we will prove a stronger result of this sort. Near
r = 0, there are solutions of the homogeneous linear wave equation which furnish
good approximations to the family u®. The strategy is to compare the exact system
in characteristic form,

(0p £ 0 )05 = 7 7Pg(vS + vy),
with the free wave equation, du® = 0 also written in characteristic form,
(5.1) (Or £ 0,)vy = 0, vy = (0 F0,)ru®.

We know that the family v is uniformly bounded so the right hand side of the
transport equations for v are uniformly integrable along characteristics.

For fixed a < 1, v, defined in r < &%, is matched with the approximate
solution given by nonlinear geometric optics along r = £€®. The analysis shows that
the resulting matched asymptotics are accurate for all r.

Therefore, the equation (5.1) is supplemented by the boundary conditions

~ t4e* —r
(52) VRO +VI(L0) = 0, vEi(te®) =V (ro,e, %) ,
and the homogeneous initial conditions

(5.3) vi(0,7) = 0.

There are two important remarks to make about this definition. The first con-
cerns the choice ¢ = ry in the boundary values at r = £*. A more natural choice
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o t+a“—r0)
)

might be to take the actual geometric optics approximation Vi* (t,g ,

The difference is that in (5.2) the value of ¢ is taken equal to rg. However, all these
incoming waves are supported on an £* neighborhood of t = 7 and V" is bounded
so the difference between the two choices is small (see equation (5.5)).

Secondly, with the choice in (5.2) the solution in r < €% is given by the simple
explicit formula (1.10). To see this, note that the values of v¢ are determined from

their values on {r = ¢} U{t = 0} since v© is constant on incoming characteristics.
Thus,
. t —
(5.4) VE(tr) = VE(thr—e%e?) = VN (et 0
€
Similarly vy is constant on outgoing characteristics so its values determined from
vi on {r = 0} U {t = 0}. Using the boundary conditions shows that the values are
determined from the values of v_ on {r = 0} U {t = 0}. This yields,
. t—p—
vilt,r)=vi(t—r0)=—-vi(t—r0)=-V" (TQ,EQ, M) ,
€
recovering the formula (1.10).
The solution v¢ is supported in an O(e) neighborhood of the pair of character-
istics through the focal point ¢ = rg, 7 = 0.

Proof of Theorem 2. A key element is a Haar inequality like that used in §3.

Definition 5.1. With L as in §3, the characteristics for L in [0,T] x [0, R] are the
lines traveling with speed 1. The incoming characteristics are speed minus one
characteristics starting and the outgoing characteristics are speed one charac-
teristics. The set of incoming characteristics is denoted I'_, and the set of outgoing
characteristics is denoted I' .

The next Haar inequality follows immediately upon integrating along characteristics
following the same geometry as in the derivation of (1.10).

Proposition 5.1. Let w = w(t,r) := (w-,wy). Assume w € (C N L®)([0,T] x
[0, R]) vanishes at {t = 0} and is a solution of

Lw=f:=(fi,f), (w_ + 'w+)(t, 0)=0, w_(t,R) =o(t),
where f € C([0,T] x [0, R]). Then

”wHLO"([O,T]x[O,R]) < HUHLw([o,R]) "‘WSEUFP_ /Jle‘ sup L|f2|~

vel4

The inequality of this Proposition is applied to w® := v®* — v® which satisfies the
hypothesis with

: t « ve 4+ vE
R:=¢%, o0:= va_(t,Ea) -y (7‘0;6a, te ) ;= 97( +p_1 ) .
r

To estimate v write it as a sum

o(t) = (02 (6,6%) = (02 Japp(t2) ) + (02 Japp (£,2%) = ¥ (1.6))
The first summand is O(¢?") and the second summand is equal to

o t+r—rmg t—l—r—ro)

(5.5) yin (t,a f) _yin (ro,ea,

In the support of ¢, ¢t + 7 —1rg = O(e) and 7 = &% so t — ro = O(e%). In addition

d; V'™ is bounded so the difference (5.5) is O(¢®). Since a > 2 — p this is O(e?7P).
Proposition 5.1 then implies that

0% = v& || ([0, 77x[0,c0) = O(€*77) .
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So far this is no better than the error estimate for (v%)app. The improvement
involves the approximation of u; by (v§ 4 v<)/r. From the formula (1.10) and
the boundedness of 0,V it follows that ; ,v® = O(1/¢). Integrating dr from r» = 0
then shows that

vi+vi = O(r/e),
which is the size of v§ + v® proved in Proposition 4.1.

To estimate the error in the approximation v +v¢ differentiate the error equa-
tion with respect to t to obtain

L(@twa) = 0 (g(vj_ + 'L’E_)/rp_l) .

The source terms on the right hand side and on the boundary {r = ¢®} are larger
by a factor 1/e than those for w®. One obtains the error estimate

196 (v* = v lloe(o 11xp0.e2) = O 7).
The error equation then yields
10 (v = V) lloom1x0.c0)) = O(77F) + O(r'77).
Integrating from r = 0 then implies that
105 +02) = (v§ +vE) (o mixpee) = O(re'F) +0(r77).

Since r < & the last term is O(r  r'=P) = O(re*(1=P)) | which is larger than
the first term. Thus,

(o3 +02) = (v +vE) llL=(orixo.eep = O(re®t7).
This is o(r/e) since & < 1/(p — 1). This completes the proof of Theorem 2. d

6. A NATURAL INNER EXPANSION IS LESS ACCURATE

The preceding section shows that a good approximation for the solution in {r <
€%} can be constructed using the values of the incoming profile V" (¢, r, z) on r = £*.
Since this is an inner expansion one might expect that one could or even should
use the values of V'™ at the origin, 7 = 0. This yields new inner approximations

vliew = (v;ew,— ) vliew,-l-) )
where
. { _
vrelew,— (t: T’) = Vln (TOa Oa y) )
(6.1) | N
vliew,+(t:r) ==V (TOJOJ c ) .

The next result shows that the relative error of this approximation tends to zero
as € — 0, but, at a slower rate than the error for v*

Theorem 3. The new approximation is good but not as good as v¢, precisely
(6.2) [0 = ViewllL=(oixp0.c0)) = O(e**7)),
and
(6.3)
r

(v +02) = (View.+ + View ) lz=(0,71x10,e2)) = O(gEO‘(H)) - 0(‘)'
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Proof. Since 9,V = O(r'~P) integrating from r = 0 shows that
VE(t,7) = View(t,7) = O(r?7P) = O(e*(*7P)).

This together with the second estimate of Theorem 1 proves (6.2).
To prove the second estimate of the Theorem, use the error equation,

L(v* = view) = 177 (g(v] +v2) — 9(View)) in 0<r<e”,

which follows from the profile equation satisfied by V.
Differentiating with respect to time and using the fact that 0;V'™™ is bounded

shows that
pl=p
L(@t(ve —v;ew)) = O( 6 ) .
The estimate in the second remark of §3, shows that

190 (v = ¥*) L (o, 11x(r=eey) = O(e7P)7Y).
Proposition (5.1) then implies that
19: (v = v¥) [l (o, rixt0e0y = O(*E7P)7H).
The error equation then yields
||8r (va _ VE)HLOO([O,T]X[O,eQ]) _ 0(604(2—19)—1) + O(Tl_p) )
Integrating from r = 0 implies
(v +v) = (v + V)l rixp,eepy = O(re™7P=1) + O(r*7F)

Since r < €% the last term is O(r +r'=7) = O(r Ea(l_p)) . which is smaller than the
first since & < 1. The proof of the Theorem is complete. O
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