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Abstract. This paper considers the behavior of pulse-like solutions of length ε � 1 to semi-
linear systems of hyperbolic partial differential equations on the time scale t = O(1/ε) of diffractive
geometric optics. The amplitude is chosen so that nonlinear effects influence the leading term in the
asymptotics.

For pulses of larger amplitude so that the nonlinear effects are pertinent for times t = O(1),
accurate asymptotic solutions lead to transport equations similar to those valid in the case of wave
trains (see [D. Alterman and J. Rauch, J. Differential Equations, 178 (2002), pp. 437–465]). The
opposite is true here. The profile equation for pulses for t = O(1/ε) is different from the corresponding
equation for wave trains.

Formal asymptotics leads to equations for a leading term in the expansion and for correctors.
The equations for the correctors are in general not solvable, being plagued by small divisor problems
in the continuous spectrum. This makes the construction of accurate approximations subtle. We use
low-frequency cutoffs depending on ε to avoid the small divisors.
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1. Introduction. The simplest pulse-like solutions arise as plane wave solutions
of constant coefficient homogeneous hyperbolic equations.

1.1. Linear plane waves.
Assumption 1.1 (symmetric hyperbolicity).

L(∂y) = ∂t +

d∑
j=1

Aj∂xj ,(1.1)

where the coefficients Aj are constant N ×N hermitian symmetric matrices.
The space-time variable is

y = (t, x) ∈ R
1+d with dual variables (τ, ξ).

If f : R → C
N is smooth and β = (τ, ξ), then the chain rule yields

Lf(y.β) = L(β)f ′(y.β).

Thus L(f(y.β)) = 0 when f ′ takes values in the nullspace of L(β).
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Fig. 1.1. Planar fronts and phase velocities.

Recall that the characteristic variety, Char L, is the set of (τ, ξ) ∈ R
1+d \ 0

satisfying the dispersion relation det L(τ, ξ) = 0 . The characteristic variety is a real
conic algebraic variety. For β ∈ Char L one has the orthogonal decomposition

C
N = kerL(β) ⊕⊥ rangeL(β).

Definition 1.2. For β ∈ Char L, π = π(β) is the orthogonal projection of C
N

onto kerL(β). Define the partial inverse Q(β) by

Qπ = 0, QL(β) = (I − π).

Then u = f(y.β) is a plane wave solution of Lu = 0 when β ∈ Char L and f
satisfies the polarization π(β) f = f.

1.2. Plane pulses and group velocity. If, in addition,

f(s) → 0 as s → ±∞,

then the family of plane wave solutions

uε := f
(y.β

ε

)
describes pulses with planar wave fronts. If f has compact support, then the pulse
uε is supported in an O(ε) neighborhood of the hyperplane y.β = 0. The pulse cross
section is given by the function fε(s) := f(s/ε). The function f is called the profile
of this pulse family. For profiles which tend to zero as s → ±∞, the conditions
π(β)f = f and π(β)f ′ = f ′ are equivalent.

At t = 0 (resp., t = 1) the pulse is supported near the planes x.ξ = 0 (resp.,
x.ξ = −τ). This is indicated in Figure 1.1.

The phase is given by

y.β = tτ + x.ξ = (x− vt).ξ

for any velocity vector v satisfying

v.ξ = −τ.



DIFFRACTIVE NONLINEAR SHORT PULSES 3

For any such v, the pulse family is given by

hε(x− vt), where hε(x) := fε(x.ξ) = f(x.ξ/ε).

The pulse family can be viewed as moving with any one of these phase velocities.
Three such velocities are sketched in Figure 1.1. In dimension d > 1, the phase
velocity is not uniquely determined.

In contrast Definition 1.4 below shows that the group velocity is well defined at
smooth points β of the characteristic variety.

For ξ 	= 0 the points (τ, ξ) ∈ Char L which project to ξ are those points such
that −τ is a real eigenvalue of

∑
ξjAj . Thanks to the hyperbolicity assumption this

is a finite and nonempty set of points for each ξ, and so the variety has codimension
1. As such its singular points form a variety of codimension at least 2 so that most
points of the variety are smooth in the sense of the next assumption.
Assumption 1.3 (smooth point of the characteristic variety). β = (τ0, ξ0) belongs

to the characteristic variety, and there is a conic neighborhood of ξ0 and a real analytic
function τ(ξ) on that neighborhood so that on a conic neighborhood of β the variety
is given by the equation τ = τ(ξ).

Definition 1.4. For β a smooth point of the characteristic variety, the group
velocity is defined by

group velocity := v := −∇ξτ(ξ0).
Since τ is homogeneous of degree 1 in ξ, the Euler homogeneity relation implies

that

ξ.∇ξτ(ξ) = τ(ξ).

This implies that the group velocity satisfies v.ξ = −τ , the equation defining phase
velocities. The group velocity is the correct choice from among the possible phase
velocities.

1.3. Wave trains versus pulses. The geometric optics approximations which
are most familiar concern the short wavelength limit of wave trains (see [24]). Wave
trains and pulses are contrasted in Figure 1.2. Standard geometric optics yields
equations for the envelope of wave trains. The methods go under the name of the
slowly varying envelope approximation (SVEA) in science journals. A rule of thumb is
that to use the SVEA the amplitude should not change more than 10% per wavelength.
The wave train in Figure 1.2 is a borderline case for this rule. The rule of thumb
suggests that one must have about ten to twenty wavelengths per pulse length before
the SVEA is a reliable approximation.

For much shorter pulses like the one on the right in Figure 1.2 the SVEA is clearly
inappropriate. Interest in short-pulse phenomena, which violate this slowly varying
envelope assumption, has increased with the development of ultrafast lasers which
produce few-cycle pulses. Rothenberg [25] clearly described the problems arising
from treating short pulses as wave trains. Short-pulse solutions have been studied via
full numerical simulation as in [28], [15], [16], [17], and [14]. A variety of asymptotic
attacks are proposed and pursued in [13], [10], [21], [20], and [22]. In this paper the
equation defining the leading order asymptotics is simple, and the approximation is
proved to be accurate in the limit of small wavelength. Thus, from the above list
only those which are consistent with our approximation can also be accurate. Only
those whose equations are as simple can be competitive. It is our evaluation that with
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wavetrain short pulse

Fig. 1.2. Example of a wave train and a short pulse.

these two criteria in mind, a strong case can be made for our approach, but out of
politeness we leave detailed comparison to the interested reader.

A difficulty in the study of pulses and wave trains is that the terms in the hy-
perbolic equation are of radically different magnitudes. Simply dropping the smaller
ones and keeping the large ones usually leads to completely incorrect results. This is
apparent in the simplest families of short pulses in R

1+1,

uε := e−tf((x− t)/ε), ∂tu
ε + ∂xu

ε + uε = 0.

The three terms of the equation are of sizes O(1/ε), O(1/ε), and O(1). Dropping
the relatively small O(1) term yields the approximate solution f((x− t)/ε), which is
completely inaccurate.

A second difficulty in short-pulse asymptotics is that formally imitating the ex-
pansions of geometric optics generates equations for a leading term and correctors
in an asymptotic expansion. Generically, the equations for the correctors cannot be
solved. For the time scale t = O(1), before the onset of diffractive effects, Yoshikawa
[26], [27] showed that if one imposes physically unnatural assumptions guaranteeing
that the corrector equations can be solved, then one does get an accurate description.
In [5] we showed that the leading term is accurate without the unnatural assumption
and extended the construction to the case of curved wavefronts. In a sequence of
articles Carles and Rauch [7], [8], [9] studied the passage of spherical pulse solutions
of semilinear wave equations across focal points.

For pulses on the scale of diffractive geometric optics, [1] includes some of the
results of the present paper but notably does not prove a rate of convergence of the
error as ε → 0. There is also a study of pulses from Lannes’ perspective of waves of
broad spectrum (spectre large) in Barrailh and Lannes [6]. It is likely that the present
analysis can be extended to nearly planar wavefronts as in the work of Dumas [12]
for the diffractive wave train case. The present article contains the proofs of results
described and used in [2] and [3].

Typical analytic expressions for the wave forms in Figure 1.2 are

wave train : a(x) eix1/ε with Fourier transform â(ξ − (1/ε), 0);

pulse : a(x1/ε)b(x
′) with Fourier transform εâ(εξ1) b̂(ξ

′).

The Fourier transform of the wave train is localized near (1/ε, 0), which is called the
carrier frequency in applications.

The Fourier transform of the pulse is spread over a box of dimensions 1/ε × 1 in
(ξ1, ξ

′) space. There is no carrier frequency. There is no exponential prefactor which
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renders the quotient slowly varying. Some of the asymptotic approaches cited above
are flawed because they insist on identifying a carrier frequency.

The approximations take the form

wave train : U(y , y.β/ε) with U(y , θ) periodic in θ;

pulse : U(y , y.β/ε) with U(y , z) → 0 as z → ∞.

In both cases β ∈ Char L.
In the latter case the function U(y, ·) represents the profile of the pulse. In the

former case it gives the envelope of the wave train. The pulse approximation can
be called the slowly varying profile approximation since the profiles vary on the scale
O(1), which is much longer than the pulse length O(ε).

1.4. The basic problem. Consider the behavior for t ∼ 1/ε of solutions to a
system of equations

L(∂y)u
ε +Φ(uε) = 0, uε(0, x) = εpf

(
x,

x.ξ0
ε

)
,(1.2)

where β = (τ0, ξ0) is a smooth point of the characteristic variety.
Assumption 1.5 (short pulse initial data). The function f(x, z) satisfies

∀N, 〈ξ, ζ〉N f̂(ξ, ζ) ∈ L∞(Rd+1).(1.3)

This assumption is slightly stronger than the assumption f(x, z) ∈ Hs(Rd+1
x,z ) for

all s > 0, used in [1] and [2], but is weaker than the Schwartz class. We will see that
if one starts with f in the Schwartz class, then generically the pulse profile will not
be Schwartz class for t > 0.
Assumption 1.6 (order J nonlinearity). The nonlinear function Φ(u) is of order

J ≥ 2 in the sense that for all |α| ≤ J − 1, ∂αΦ(0) = 0. Denote by ΦJ(u) the
homogeneous Taylor polynomial of degree J approximating Φ(u) near u = 0.
Assumption 1.7 (magnitude of the solution). The exponent p is chosen so that

p = 1/(J−1). This insures that nonlinear effects become important on the time scale
t = O(1/ε).

To see that for waves of this amplitude it is reasonable that the nonlinear term is
pertinent for times t = O(1/ε) and not before, make the following back-of-an-envelope
estimate. The nonlinear term is of size εpJ = εp+1. The accumulated effect of the
nonlinear term for times t = O(1/ε) is crudely estimated as

1

ε
εp+1 = εp.

Since εp is the size of our solution it is reasonable to expect the accumulated nonlinear
effects to be important on these time scales.
Assumption 1.8 (polarization). The initial data f satisfy the polarization condi-

tion π(β)f(x, z) = f(x, z).
Definition 1.9. Define the scalar real second order homogeneous differential

operator P (∂x) by

P (∂x) := −1

2

d∑
l,m=1

∂2τ

∂ξl∂ξm

∣∣∣∣
ξ=ξ0

∂2

∂xl∂xm
.(1.4)
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With these assumptions and definitions, the approximate pulse-like solutions have
the form

uεapprox = εpU0

(
εt, t, x,

τ0t+ ξ0.x

ε

)
, lim

|z|→∞
U0(T, t, x, z) = 0.(1.5)

The slowly varying profile U0 is polarized as usual, π(β)U0 = U0, and is deter-
mined from its initial data by the pair of evolution equations

(∂t + v.∂x)U0 = 0, ∂TzU0 + P (∂x)U0 + π(β)∂zΦJ(U0) = 0.

The second equation, for which T = 0 is characteristic, is the pulse version of the
nonlinear Schrödinger equation.

As these are the key equations that need to be solved in order to understand the
behavior of solutions to (1.2), we pause briefly to discuss them. The first equation is
handled by writing

U0(T, t, x, z) = U0(T, x− vt, z).(1.6)

The second equation is then equivalent to

∂TzU0 + P (∂x)U0 + π(β)∂zΦJ(U0) = 0.(1.7)

On the face of it, this is a differential equation in the d + 2 variables T, x, z. In
Proposition 4.1, it is shown that τ ′′ has rank ≤ d− 1, so the differential operator has
derivatives in at most d+ 1 independent directions.

To see that (1.7) gives rise to a well-defined evolution, write it formally as

∂TU0 + ∂−1
z P (∂x)U0 + π(β)ΦJ(U0) = 0.

The operator ∂−1
z P (∂x) is antisymmetric on the Hs, which for s large are invariant

under ΦJ . Corollary 4.12 implies that for f as above, there is a T∗ ∈ ]0,∞] and a
unique

U0 ∈ C
(
[0, T∗[ ; ∩sHs(Rd+1

x,z )
)

satisfying (1.7) and the initial condition U0|T=0 = f . If T∗ < ∞, then for all s >
(d+ 1)/2,

lim
T→T∗

∥∥U0(T )
∥∥
Hs(Rd+1

x,z )
= ∞.

Having constructed U0, define an approximate solution by (1.6) and (1.5). Our
main theorem asserts that the error in this approximation tends to zero as ε → 0. To
motivate a class of natural norms to measure this error, note that uεapprox = O(εp).
Differentiating uε costs a power of 1/ε but no worse, so one has(

ε∂
)α

uεapprox = O(εp).(1.8)

Denote by V the (d + 1)-dimensional space of constant coefficient vector fields.
Choose a basis V1, . . . , Vd of the d-dimensional subspace of fields which are tangent
to the hyperplane {y.β = 0}. Choose the basis so that V1, . . . , Vd−1 are tangent to
{t = 0}. Then these d− 1 vectors are a basis for the constant fields on R

d
x which are
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tangent to {x.ξ0 = 0}. Differentiating in the d directions V1, . . . , Vd does not bring
out a factor of 1/ε, and one has(

V1, . . . , Vd
)α

uεapprox = O(εp).(1.9)

Choose a (d+1)st field W , which completes the V1, . . . , Vd to a basis of V. Since
ξ 	= 0, this vector field can be chosen tangent to {t = 0}. Define

Vd+1 = arctan(y.β)W.(1.10)

This vector field vanishes on {y.β = 0} and so is tangent to that hyperplane. Any
smooth vector field tangent to this hyperplane is a linear combination of the Vj
with smooth coefficients. Any smooth vector field on R

d
x tangent to {x.ξ0 = 0}

is a combination of V1, . . . , Vd−1, Vd+1|{t=0} with smooth coefficients. One also has

Vd+1u
ε
approx = O(εp). Summarizing, one has for all α ∈ N

2(d+1)

(
ε∂y, V1, . . . , Vd, Vd+1

)α
uεapprox = O(εp) .(1.11)

The next result is a straightforward consequence of our main result, Theorem 8.1.
Note the technical point that the derivation Vd is not permitted in the error estimate.

Theorem 1.10. With the notation of the previous paragraphs, for any T < T∗
there is an ε0 > 0 so that for 0 < ε < ε0 problem (1.2) has a smooth solution
uε ∈ C∞({0 ≤ T ≤ T/ε} × R

d
)
. The solution is well approximated by uεapprox in the

sense that for all α ∈ N
2(d+1) there is a C = C(α) so that∥∥(ε∂y, V1, . . . , Vd−1, Vd+1

)α(
uε − uεapprox

)∥∥
L∞([0,T/ε]×Rd)

≤ Cεp+min(1/5,p).(1.12)

Remark. Using the techniques of [5], one can show that there is a different family
of exact solutions uεex with error estimate including Vd, that is,∥∥(ε∂y, V1, . . . , Vd−1, Vd, Vd+1

)α(
uεex − uεapprox

)∥∥
L∞([0,T/ε]×Rd)

≤ Cεp+min(1/5,p).(1.13)

The initial data of the new family are small perturbations of the initial data for the
family uε.

2. Formal asymptotics. Seek approximate solutions to the initial value prob-
lems with short-pulse initial data,

Luε +Φ(uε) = 0, uε(0, x) = εp f

(
x,

x.ξ0
ε

)
, p =

1

J − 1
.(2.1)

The initial function f is assumed to satisfy Assumptions 1.5 and 1.8 for a β satisfying
Assumption 1.3. J is the order of the nonlinearity as in Assumption 1.6.

Motivated by its success in the analogous situation of wave train solutions for
which f is periodic in z, a first attempt is to try to find a profile

U(ε, T, y, z) ∼
∞∑
j=0

εj Uj(T, y, z) =

∞∑
j=0

εj Uj(T, t, x, z),(2.2)

where Uj → 0 as |z| → ∞, and

uε ∼ εpU

(
ε, εt, y,

y.β

ε

)
.(2.3)
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The chain rule implies that a sufficient condition guaranteeing that uε defined by
uε = U(ε, εt, y, y.β/ε) satisfies the differential equation Luε + Φ(uε) = 0 is that U
satisfy

L
(
(ε∂T , 0) + ∂y +

β

ε
∂z

)
εpU(ε, T, y, z) + Φ(εpU(ε, T, y, z)) = 0.(2.4)

We pursue the less ambitious strategy, which is to satisfy

L
(
(ε∂T , 0) + ∂y +

β

ε
∂z

)
εpU(ε, T, y, z) + Φ(εpU(ε, T, y, z)) ∼ 0 as ε → 0,(2.5)

in which case

Luε +Φ(uε) ∼ 0 as ε → 0.(2.6)

We take U to be a sum of only three terms, in which case the equivalence in (2.5)
can be no smaller than O(ε2p+1). Two crucial facts affect our implementation of this
strategy:

1. A trio of equations, derived in section 3, determine U0 from its initial data at
t = T = 0, namely,

π(β)U0 = U0,

∂tU0 + v.∂xU0 = 0,(2.7)

∂T∂zU0 + P (∂x)U0 + π(β) ∂zΦJ(U0) = 0.

The middle transport equation of (2.7) is solved by defining U0(T, x, z) as in (1.6)
so that

U0(T, x− vt, z) = U0(T, t, x, z).(2.8)

2. The equations that one finds for the correctors U1, U2, . . . are not in general
solvable. These equations involve the operator ∂−1

z , which does not act well on a
function whose Fourier transform with respect to z does not vanish at the origin, or
equivalently, whose integral with respect to z is nonzero. For most choices of initial
data, including those for which the transform vanishes on a neighborhood of zero at
time t = 0,

∫
U0 dz does not vanish at later times, and hence the equations for the

correctors are not solvable.
The second fact is the main difficulty this paper overcomes. In our study [5] of

geometric optics before the onset of diffractive effects, a similar problem was encoun-
tered. In that case we were able to construct correctors which had a different form
than the leading term. In the present case of diffractive geometric optics, we do not
know how to find such modified correctors.

A crucial ingredient in the analysis is the representation of the exact solution uε

in terms of an “exact profile” V(ε, t, x, φ) as in [18] and [19] by setting

uε = εp V
(
ε, t, x,

x.ξ0
ε

)
.(2.9)

A key difference between V and U is that in the phase variable slot x.ξ0/ε replaces
β.y/ε for U . To maintain this distinction, the profile variable for which one inserts
x.ξ0/ε is called φ and the profile variable associated with β.y/ε is z. The chain rule
shows that uε defined by (2.9) satisfies Luε +Φ(uε) = 0 when

L
(
∂t, ∂x +

ξ0
ε
∂φ

)
εpV +Φ(εpV) = 0.(2.10)
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The exact profile V(ε, t, x, φ) is then determined from (2.10) and the initial condition

V(ε, 0, x, φ) = f(x, φ).(2.11)

The existence and uniqueness of solutions to the initial value problem formed by (2.10)
and (2.11) are examined in section 4. Our error estimates proceed by proving that

U0

(
ε, εt, t, x,

tτ0
ε

+ φ
)
− V(ε, t, x, φ) → 0 as ε → 0.(2.12)

To establish (2.12), first note that the chain rule implies that if (2.5) holds, then
as ε → 0,

L
(
∂t, ∂x +

ξ0
ε
∂φ

)
εpU

(
ε, εt, t, x,

tτ0
ε

+ φ
)
+Φ

(
εpU

(
ε, εt, t, x,

tτ0
ε

+ φ
))

∼ 0.(2.13)

Thus, if one has correctors U1, U2, . . . to the leading profile, then U(ε, εt, t, x, tτ0ε + φ)
defines an accurate approximate solution of the equation for V, and (2.12) would
follow.

The difficulty is the absence of correctors—equivalently, the fact that we do not
get (2.5). To circumvent this problem, we solve nearby problems with low-frequency
cutoffs applied to the nonlinear term and the initial data. The cutoff problems prop-
agate the property of having a Fourier transform with respect to z, which vanishes on
a neighborhood of the origin.

Choose a cutoff function χ(ζ) ∈ C∞(R) which vanishes for |ζ| < 1 and is identi-
cally equal to 1 for |ζ| ≥ 3/2. Define

χδ := χδ(Dz) = F−1
z χ(ζ/δ)Fz,

where Fz denotes the Fourier transform in z. Seek

Uδ(ε, T, y, z) = Uδ0 (T, y, z) + εU δ1 (T, y, z) + ε2Uδ2 (T, y, z)(2.14)

as an approximate solution of the cutoff equation

L
(
(ε∂T , 0) + ∂y +

β

ε
∂z

)
εpUδ(ε, T, y, z) + χδ(Dz) Φ(ε

pUδ(ε, T, y, z))

= O(ε2p+1)(2.15)

with initial data

Uδ(0, 0, x, z) = χδ(Dz)f(x, z).(2.16)

Then the main result is proved by showing that

Uδ0 (T, t, x, z)− U0(T, t, x, z) = O(δ),(2.17)

and that for δ = ε0.4,

Uδ
(
ε, εt, t, x,

tτ0
ε

+ φ
)
− V(ε, t, x, φ) = O

(
εmin{p , 1/5}).(2.18)

The proof has three main steps. First the approximate solution Uδ satisfying
(2.15) and (2.16) is constructed in Proposition 4.3 and Corollary 4.12. Proposition
5.1 proves the convergence of Uδ0 to U0 as in (2.17). Then Proposition 7.1 proves the
error estimate (2.18). Propositions 5.1 and 7.1 combine to yield (2.12).
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3. Derivation of the profile equations for Uδ
j . In this section we analyze

(2.15). The construction of the correctors Uδ1 and Uδ2 works for δ > 0. For δ = 0 the
analysis shows that the construction of such an approximate solution is in general not
possible.

Define Uδ by (2.14). By convention set Uδ−1 = Uδ−2 = Uδ3 = Uδ4 = 0. Then
computing the left-hand side of (2.15) yields

εp
(1
ε
L(β)∂z + L(∂y) + ε∂T

)
(Uδ0 + εU δ1 + ε2Uδ2 ) + χδ(Dz)Φ(ε

pUδ).

Grouping by powers of ε yields

j=3∑
j=−1

εp+j
{
∂TU

δ
j−1 + L(∂y)U

δ
j + L(β) ∂zU

δ
j+1

}
+ εp+1χδΦJ(U

δ
0 )

+χδ
{
Φ(εpUδ)− ΦJ(ε

pUδ0 )
}
.(3.1)

We use formula (2.14) for times t = O(1/ε). Thus if Uδ1 (T, t, x, z) grew linearly
as t → ∞, the term εU1 would become as large as the U0 term and would no longer
be a small corrector. In order to represent a small correction it is necessary that Uδ1
grow sublinearly as t → ∞. In fact, the correctors will be uniformly bounded in t, x.
Sublinearity will play a crucial role in the derivation of the equations satisfied by the
Uj .

3.1. Annihilating the εp−1 term. This term is equal to

εp−1 L(β)∂zU
δ
0 .(3.2)

It is annihilated by imposing the polarization

Uδ0 = π(β)Uδ0(3.3)

from Definition 1.2. This is consistent with the polarization imposed on the initial
data f(x, z) in Assumption 1.8.

3.2. Annihilating the εp term. This term is equal to

εp
{
L(∂y)U

δ
0 + L(β) ∂zU

δ
1

}
.(3.4)

To annihilate (3.4), one annihilates in turn its image under π(β) and then its image
under Q(β).

Multiplying (3.4) by π(β) eliminates the Uδ1 term since π(β)L(β) = 0. Using the
polarization of Uδ0 from (3.3), one finds

π(β)L(∂y)π(β)U
δ
0 = 0.

As shown in [11], whenever β is a smooth point of the characteristic variety,

π(β)L(∂y)π(β) =
(
∂t + v.∂x

)
π(β).

This identity yields the transport equation

∂tU
δ
0 + v.∂xU

δ
0 = 0.(3.5)
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Setting Q(β) times the εp term equal to zero yields

(I − π(β)) ∂zU
δ
1 = −Q(β)L(∂y)U

δ
0 .(3.6)

This is the key troublesome equation for the correctors. In order for the equation to
be solvable in Hs(Rd+1

x,z ), one needs

1

ζ
Fz

(
Q(β)L(∂y)U

δ
0

)
to be square integrable near ζ = 0. There is no reason to expect that this condition
will be satisfied when δ = 0.

However, (3.11) below defining Uδ0 for δ > 0 implies that the Fourier transform
of Uδ0 with respect to z vanishes on a neighborhood of ζ = 0 as soon as it does so at
T = 0. Thus we can solve (3.6) to find

(I − π(β))Uδ1 = −(∂z)−1Q(β)L(∂y)U
δ
0 when δ > 0.(3.7)

3.3. Annihilating the εp+1 term. This term is equal to

εp+1
(
∂TU

δ
0 + L(∂y)U

δ
1 + L(β) ∂zU

δ
2 + χδΦJ(U

δ
0 )
)
.(3.8)

When δ > 0, use (3.7) to write

Uδ1 = π(β)Uδ1 + (I − π(β))Uδ1 = π(β)Uδ1 − (∂z)
−1Q(β)L(∂y)U

δ
0 .

Then setting π(β) times (3.8) equal to zero yields(
∂t + v.∂x

)
π(β)Uδ1 = π L(∂y)πU

δ
1

= −
(
∂TU

δ
0 − ∂−1

z πL(∂y)QL(∂y)U
δ
0 + π χδΦJ(U

δ
0 )
)
.(3.9)

Thanks to (3.5) and (3.7), the right-hand side is constant along the integral curves
of ∂t + v.∂x. Therefore (3.9) implies that U

δ
1 grows linearly along these straight lines

unless the constant value is zero. As pointed out in the paragraph before section 3.1,
such growth is unacceptable. Thus we must have

(∂t + v.∂x)π(β)U
δ
1 = 0(3.10)

and

∂T∂zU
δ
0 − πL(∂y)QL(∂y)U

δ
0 + π χδ∂zΦJ(U

δ
0 ) = 0.(3.11)

As shown in [11], at smooth points of the characteristic variety of L(∂y),

π(β)L(∂y)Q (β)L(∂y)π(β) = −P (∂x)π(β),(3.12)

where the second order differential operator P (∂x) is defined in (1.4). Using (3.12) in
(3.11), one gets the fundamental equation

∂T∂zU
δ
0 + P (∂x)U

δ
0 + π χδ∂zΦJ(U

δ
0 ) = 0.(3.13)

Note in passing that formulas (3.5), (3.7), and (3.10) imply that Uδ1 satisfies the
transport equation

∂tU
δ
1 + v.∂xU

δ
1 = 0.(3.14)
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It remains to annihilate the product of Q(β) with the εp+1 term. This yields

(I − π(β))∂z U
δ
2 = −Q(β)

(
∂TU

δ
0 + L(∂y)U

δ
1 + χδΦJ(U

δ
0 )
)
.(3.15)

Thanks to the polarization (3.3), Q(β)∂TU
δ
0 = 0. When δ > 0, (3.15) is solvable and

yields

(I − π(β))Uδ2 = −Q(β) ∂−1
z

(
L(∂y)U

δ
1 + χδΦJ(U

δ
0 )
)
.(3.16)

The above calculations pose no constraints on π(β)Uδ2 and π(β)Uδ1 |t=0. For simplicity
we set them equal to zero, and using (3.14) we find that

π(β)Uδ1 = π(β)Uδ2 = 0.(3.17)

With these choices, (3.16) implies that

(∂t + v.∂x) Uδj = 0 for j = 0, 1, 2.(3.18)

Corrector summary. Once U δ0 is known with the Fourier transform vanishing on
a neighborhood of ζ = 0, the correctors are defined by

Uδ1 = −∂−1
z Q(β)L(∂y)U

δ
0 ,(3.19)

Uδ2 = −∂−1
z Q(β)

(
L(∂y)U

δ
1 + χδΦJ(U

δ
0 )
)
.(3.20)

Residual summary. With the profiles defined in this way,

L
(
(ε∂T , 0) + ∂y +

β

ε
∂z

)
εpUδ + χδ(Dz) Φ(ε

pUδ)(3.21)

= εp+2
(
ε∂TU

δ
2 + L(∂y)U

δ
2 + ∂TU

δ
1

)
+ χδ(Dz)

[
Φ(εpUδ)− ΦJ(ε

pUδ0 )
]
.

4. Solvability of the profile equations for U0(T, x, z). Uδ0 must be con-
structed satisfying the equations

π(β)Uδ0 = Uδ0 ,

∂tU
δ
0 + v.∂xU

δ
0 = 0,(4.1)

∂T∂zU
δ
0 + P (∂x)U

δ
0 + π(β)χδ(Dz) ∂zΦJ(U

δ
0 ) = 0.

Equations (2.7) satisfied by U0 are obtained by setting δ = 0. Taking advantage of
the middle equations of (2.7) and (4.1), define U0(T, x, z) and Uδj(T, x, z) by

U0(T, t, x, z) := U0(T, x− vt, z), Uδj (T, t, x, z) := Uδj(T, x− vt, z).

The last equation in (2.7) is then equivalent to

∂T ∂zU0 + P (∂x)U0 + π(β) ∂zΦJ(U0) = 0.(4.2)

The nonlinear diffractive pulse equation (4.2) has T = 0 as a characteristic surface. In
the wave train case one would have found an equation of nonlinear Schrödinger type
at this stage. It too has T = 0 characteristic. In both cases the equation gives rise to
a well-defined time evolution, at least locally in T .
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Before proving this, we first prove that while the diffractive pulse equation appears
to have d+ 2 independent variables (t, x, z), it actually involves one less direction of
differentiation.

Proposition 4.1. The matrix ∂2τ/∂ξj∂ξk has rank at most d − 1. In fact
ξ0 ∈ ker ∂2τ(ξ0)/∂ξj∂ξk.
Proof. Since τ(ξ) is homogeneous of degree 1, it follows that for all j, ∂τ(ξ)/∂ξj

is homogeneous of degree zero. Therefore

d

dλ

∂τ(λξ)

∂ξj
= 0.

Expanding the left-hand side using the chain rule yields∑
i

ξi
∂2τ(λξ)

∂ξi∂ξj
= 0.

Setting λ = 1 yields the desired result.
In coordinates so that ξ0 = (1, 0, . . . , 0) this implies that τ1,j = τj,1 = 0 so that

P (∂x) = −1

2

d∑
j,k=2

∂2τ(1, 0, . . . , 0)

∂ξj∂ξk

∂2

∂xj∂xk
.

This decrease in the number of spatial dimensions decreases the complexity of the
numerical implementation of the results of this paper.

The local solvability of the nonlinear diffractive pulse equation can be proved in
the Sobolev spaces Hs(R1+d) with s > (d + 1)/2 by standard methods. The results
would apply for general nonlinearities. A weakness is that for the Fourier transform
of U0(T, x, z) with respect to the x, z variables one has only L2 control locally.

The nonlinear term in the profile equation is always a polynomial. Because of
this, we have the luxury of working in spaces related to the Wiener algebra which give
us L1 control of the Fourier transform. That in turn permits us to get L∞ control
of FzU0 by estimates entirely on the Fourier side. These L∞ estimates imply that
(I − χδ)U0 = O(δ) as δ → 0. The usual strategy to obtain sup norm estimates for
Fourier transforms is to prove decay rates as x, z → ∞. The argument completely on
the Fourier side circumvents that avenue. We do not prove any decay rates beyond
those implied by being in ∩sHs(Rd+1

x,z ).

Definition 4.2. The Wiener algebra A(RM ) is the Banach space of tempered
distributions on R

M with the property that their Fourier transform belongs to L1(RM ).
The norm is the L1 norm of the Fourier transform.

Recall that for any 1 ≤ p ≤ ∞ the map

L1 × Lp � f, g → f ∗ g ∈ Lp

is a continuous bilinear map from L1 × Lp to Lp and

‖f ∗ g‖Lp ≤ ‖f‖L1 ‖g‖Lp .(4.3)

The inequality (4.3) with p = 1 shows that the map U → ΦJ(U) maps bounded
sets of A to bounded sets of A. To study the continuity of the map note that the
difference ΦJ(U)− ΦJ(V) can be expressed as

ΦJ(U)− ΦJ(V) =

d∑
i

Pi(U,V)
(
Ui −Vi

)
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with polynomials Pi of degree less than J . Then inequality (4.3) shows that the map
U → ΦJ(U) is uniformly Lipschitzian on bounded subsets of A to A.

The initial value problem for the profile equation (4.2) with initial value

U|T=0 = G(x, z)

is equivalent to the integral identities

Û(T ) = e−iP (ξ)T/ζ Ĝ+

∫ T

0

e−iP (ξ)(T−σ)/ζ π(β)F(
ΦJ(U(σ))

)
dσ(4.4)

for 0 ≤ T ≤ T .
The multipliers eiP (ξ)t/ζ have modulus one so they define isometries on A(Rd+1

x,z ).
This, together with the uniform Lipschitzian property, is enough to make Picard’s
classical existence proof work, yielding the following result.

Proposition 4.3. For each G ∈ A there is a T∗ = T∗(G) ∈ ]0,∞] and a unique
maximal solution U ∈ C

(
[0, T∗[ ; A

)
to the profile equation (4.2), which in addition

satisfies the initial condition U|T=0 = G. The time T∗ is uniformly strictly positive
on bounded subsets of A, and if T∗ < ∞, then

lim
T→T∗

‖U(T )‖A = ∞.(4.5)

The next result is a regularity theorem which asserts that if the initial data lies
in a smaller Banach space B, then the maximal solution is a continuous function with
values in B.

Definition 4.4. A Banach space B ⊂ A is admissible if it has the following
three properties:

1. The inclusion map B → A is continuous.
2. The map U → ΦJ(U) maps B to itself and is uniformly Lipschitzian on subsets
of B which are bounded in A.

3. For T 	= 0, the Fourier multipliers eiTP (ξ)/ζ are isometries from B to itself.
The following are examples of admissible Banach spaces.
Example 4.5. If 1 < p ≤ ∞, then B := {U ∈ A : Û ∈ Lp} is admissible.
Example 4.6. If s > (d+ 1)/2, then Hs(Rd+1) is admissible.
Example 4.7. If B1 and B2 are admissible, then so is the intersection B1 ∩ B2.
Proof for Example 4.5. Only property 2 in the definition is not immediate. One

needs to prove that for every R > 0 there is a constant C so that if ‖U‖A ≤ R and
‖V‖A ≤ R, then ∥∥ΦJ(U)− ΦJ(V)

∥∥
B
≤ C

∥∥U−V
∥∥

B
.(4.6)

Taylor’s theorem implies that

ΦJ(U)− ΦJ(V) = Ψ(U,V)(U−V),

where Ψ is a matrix-valued homogeneous polynomial of degree J − 1.
To estimate the Lp norm of the Fourier transform use Young’s inequality

∥∥F(
ΦJ(U)− ΦJ(V)

)∥∥
Lp ≤ ∥∥F(

Ψ(U,V)
)∥∥

L1

∥∥F(U−V)
∥∥
Lp

≤ C(R) ‖U−V‖B.
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Proposition 4.8. If B is admissible and G ∈ B, then the maximal solution found
in Proposition 4.3 satisfies

U ∈ C([0, T∗[ ; B).(4.7)

Proof. From the admissibility properties one easily demonstrates using Picard’s
method that the integral equation (4.4) has a maximal solution

U ∈ C([0, T ∗(G)[ ; B),

and if T ∗ < ∞, then

lim
T→T∗

‖U(T )‖B = ∞.(4.8)

Since this solution is continuous with values in A it follows that T ∗(G) ≤ T∗(G). The
result of the proposition follows from establishing the inequality T ∗(G) ≥ T∗(G).

The proof is indirect. We suppose on the contrary that T ∗(G) < T∗(G) and derive
a contradiction.

If T ∗(G) < T∗(G), then U is continuous on [0, T ∗] with values in A, and so there
is an R < ∞ so that

‖U(T )‖A ≤ R for 0 ≤ T ≤ T ∗.

Taking the B norm of (4.4) and using the last two properties from the definition of
admissibility yields

‖U(T )‖B ≤ ‖G‖B +

∫ T

0

C ‖U(σ)‖B dσ for 0 ≤ T < T ∗.

Gronwall’s inequality implies that

‖U(T )‖B ≤ ‖G‖B eCT for 0 ≤ T < T ∗.

In particular, (4.8) is violated. This contradiction proves the proposition.
Our main existence result is a corollary of Propositions 4.9 and 4.10 below.
Proposition 4.9. Define B to be the closed subspace of A(Rd+1

x,z ) consisting of

functions U such that (i) Û ∈ L∞(Rd+1
ξ,ζ ), and (ii) for all µ > 0, Û is uniformly

continuous on {|ζ| ≥ µ}. Then B is admissible.
Proof. B is a closed subspace of Example 4.5 with p = ∞. Thus to prove that

B is admissible it suffices to show that ΦJ maps B to itself. In fact, more is true. If
Û ∈ L1 ∩ L∞ (which is true if U ∈ B), then Fx,z

(
ΦJ(U)

)
is bounded and uniformly

continuous, which implies that ΦJ(U) ∈ B.
To prove the stronger assertion of the last sentence, write ΦJ as a sum of terms

each of which is a product of a monomial of order J−1 and a monomial of order 1. The
Fourier transform of the first factor belongs to L1 and the Fourier transform of the
second belongs to L∞. The desired result follows from the fact that the convolution
of an element of L1 with an element of L∞ is uniformly continuous.

Proposition 4.10. If 0 ≤ m ∈ Z and 1 ≤ p ≤ ∞, then the subspace

B
m,p :=

{
U ∈ A : 〈η〉m Û(η) ∈ Lp(RNη )

}
is admissible.
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Proof. This proof follows [23]. The only sticky point is estimate (4.6). Toward
that end one must show that for K-fold products one has∥∥∥Uj∥∥∥

A

≤ R ⇒
∥∥∥〈η〉m Û1 ∗ Û2 ∗ · · · ∗ ÛK

∥∥∥
Lp

≤ C(K,R)
∑
j

∥∥∥〈η〉m Ûj

∥∥∥
Lp

.(4.9)

Written out, this becomes∥∥∥∫ 〈η〉m Û1(η − η1) Û2(η1 − η2) · · · ÛK(ηK) dη1 dη2 · · · dηK−1 dηK

∥∥∥
Lp

≤ C(K,R)
∑
j

∥∥∥〈η〉mÛj∥∥∥
Lp

.(4.10)

Note that

η = (η − η1) + (η1 − η2) + · · ·+ (ηK−1 − ηK) + ηK ,

so

|η| ≤ |η − η1|+ |η1 − η2|+ · · ·+ |ηK−1 − ηK |+ |ηK |.

Define η0 := η, ηK+1 := 0, so the summands on the right are equal to |ηj−1 − ηj | for
1 ≤ j ≤ K+1. The integral in (4.10) is split into K+1 pieces, the integrals over sets

E(j) :=
{
(η, η1, . . . , ηK) : |ηj−1 − ηj | = max

1≤k≤K
{|ηk−1 − ηk|

}}
.

The sets Ej overlap in measure zero sets, so it suffices to show that

∥∥∥∫
E(j)

〈η〉m Û1(η − η1) Û2(η1 − η2) · · · ÛK(ηK) dη1 dη2 · · · dηK−1 dηK

∥∥∥
LP

≤ C(K,R)
∑
j

∥∥∥〈η〉mÛj∥∥∥
Lp

.

On E(j), |η| ≤ K|ηj−1 − ηj | so∫
E(j)

〈η〉m |Û1(η − η1)| · |Û2(η1 − η2)| · · · |ÛK(ηK)| dη1dη2 · · · dηK−1dηK

≤ C(K)

∫
E(j)

〈ηj−1 − ηj〉m |Û1(η − η1)| · |Û2(η1 − η2)|

· · · |ÛK(ηK)| dη1dη2 · · · dηK−1dηK .

Young’s inequality bounds the Lp norm of the integral on the right by∥∥〈η〉mÛj∥∥Lp

∏
k =j

∥∥Ûk∥∥L1 = C(R)
∥∥〈η〉mÛj∥∥Lp .

This completes the proof.
Definition 4.11. B is the Fréchet space of tempered distributions V(x, z) so that
1. V̂(ξ, ζ) ∈ L∞(Rd+1) and for every µ > 0 is uniformly continuous on the set

{(ξ, ζ) : |ζ| ≥ µ}.
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2. For every nonnegative integer m

〈ξ, ζ〉m V̂(ξ, ζ) ∈ L∞(Rd+1).

Combining Propositions 4.9 and 4.10 shows that B is the intersection of admissible
spaces. By Example 4.7, this implies the following corollary.

Corollary 4.12. Suppose that U ∈ C
(
[0, T∗[ ; A)

)
is a maximal solution of the

profile equation (4.2) and that U
∣∣
T=0

∈ B. Then

U ∈ C
(
[0, T∗[ ; B

)
.(4.11)

This corollary gives us more than enough control on the leading profile to carry
out our analysis. The most interesting aspect is the sup norm control near ζ = 0
without continuity.

5. Construction of Uδ
0. A perturbation argument is the key to solving the

δ > 0 equations (4.1). The third equation in (4.1) is equivalent to

∂T∂zU
δ
0 + P (∂x)U

δ
0 + π(β)χδ(Dz) ∂zΦJ(U

δ
0) = 0.(5.1)

Multiplying (4.2) by χδ(Dz) yields

∂T ∂zχ
δ(Dz)U0 + P (∂x)χ

δ(Dz)U0 + π(β)χδ(Dz) ∂zΦJ(U0) = 0.(5.2)

This equation resembles (5.1), as demonstrated in the next proposition, which shows
that the solution of (5.1) can be obtained as a small perturbation of χδ(Dz)U0.

Proposition 5.1. Suppose that U0 = π(β)U0 ∈ C
(
[0, T ] ; ∩mB

m,∞)
satisfies

(4.2). Then there is a δ0 > 0 so that for 0 < δ < δ0 the initial value problem defined
by (5.2) with initial condition

Uδ0
∣∣
T=0

= χδ(Dz)U0

∣∣
T=0

(5.3)

has a unique solution Uδ0 ∈ C([0, T ] ; ∩mB
m,∞), and for all 1 ≤ q < ∞ and 0 ≤ m <

∞,

sup
0≤T≤T

∥∥Uδ0(T )− χδ U0(T )
∥∥

Bm,q(Rd+1
x,z )

= O(δ1/q).

Furthermore the Fourier transform Fz
(
Uδ0

)
vanishes identically on |ζ| ≤ δ.

Proof of Proposition 5.1. Begin with the proof that Uδ0 has a Fourier transform
with respect to z vanishing on |ζ| ≤ δ. For any γ(ζ) ∈ C∞

0 (R) supported on |ζ| ≤ 1
define γδ(ζ) := γ(ζ/δ). It suffices to show that Fzγδ(Dz)Uδ0(T ) = 0.

The choice of γ implies that γδχδ = 0. Thus multiplying (5.1) by γδ(Dz) annihi-
lates the nonlinear term. This implies that γδ(Dz)U

δ
0 ∈ C

(
[0, T∗[ ; ∩sHs

)
satisfies(

∂T∂z + P (∂x)
)
γδ(Dz)U

δ
0 = 0.(5.4)

In addition γδ(Dz)U
δ
0 vanishes when T = 0.

It follows from the basic Hs conservation law for the linear diffractive pulse equa-
tion [4] that for all s and all T ∈ [0, T∗[ ,

‖γδ(Dz)Uδ0(T )‖Hs(Rd+1
x,z ) = ‖γδ(Dz)Uδ0(0)‖Hs(Rd+1

x,z ) = 0.(5.5)
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Identity (5.5) implies the second assertion of the proposition.
The strategy for proving the O(δ1/q) estimate in the proposition is to construct

Uδ0 as a perturbation of χδ(Dz)U0. Define the perturbation Wδ by

Wδ := Uδ0 − χδ(Dz)U0 .(5.6)

Subtract (5.1) from (5.2) to show that Uδ0 is a solution if and only if Wδ satisfies the
initial value problem

∂T ∂zW
δ + P (∂x)W

δ + π(β)χδ(Dz) ∂z
(
ΦJ(U

δ
0)− ΦJ(U0)

)
= 0,

Wδ
∣∣
T=0

= 0.(5.7)

Note that

ΦJ(U
δ
0)− ΦJ(U0) = ΦJ(χ

δU0 +Wδ)− ΦJ(χ
δU0 + (I − χδ)U0).

Since χδU0(T ) is bounded in the admissible subspace B
m,∞ uniformly for all

0 < δ ≤ 1 and 0 ≤ t ≤ T , the second condition in the definition of admissibility
implies that as long as ‖Wδ‖Bm,∞ ≤ 1,∥∥ΦJ(Uδ0)− ΦJ(U0)

∥∥
Bm,q(Rd+1)

≤ C(m, q)
(∥∥Wδ(T )

∥∥
Bm,q(Rd+1)

+
∥∥(I − χδ)U0(T )

∥∥
Bm,q(Rd+1)

)
.(5.8)

Fix m ≥ 0 and 1 ≤ q ≤ ∞. If ‖Wδ(T )‖Bm,q ≤ 1 for 0 ≤ T ≤ T , define
T∗ = T∗(m, q, δ) = T . Otherwise define

T∗(m, q, δ) := inf{T ∈ [0, T ] : ‖Wδ(T )‖Bm,q = 1}.
The homogeneous linear diffractive pulse equation generates a unitary group on each
B
m,q. The inhomogeneous version of this estimate implies that for T ∈ [0, T∗],

‖Wδ(T )‖Bm,q ≤
∫ T

0

C(m)
(∥∥Wδ(σ)

∥∥
Bm,q(Rd+1)

+
∥∥(I − χδ)U0(σ)

∥∥
Bm,q(Rd+1)

)
dσ.(5.9)

Gronwall’s inequality then shows that

‖Wδ(T )‖Bm,q ≤ C(m)

∫ T

0

∥∥(I − χδ)U0(T )
∥∥

Bm,q(Rd+1)
dt eC(m)T .(5.10)

To proceed we need the following lemma.
Lemma 5.2. For any m ≥ 0, 1 ≤ q < ∞, and M > q + (d + 1)/q there is a

constant C = C(m, q,M) so that for all δ > 0 and all W ∈ B
M,∞,∥∥(I − χδ)W

∥∥
Bm,q(Rd+1)

≤ C δ1/q ‖W‖BM,∞ .

Remark. In contrast note that for W ∈ ∩sHs, ||(I − χδ)W‖Hs = o(1) as δ → 0,
but there is no rate of convergence.
Proof of Lemma. By definition

∥∥(I − χδ)W
∥∥q

Bm,q(Rd+1)
=

∫ ∣∣1− χ(ζ/δ)
∣∣q ∣∣Ŵ (ξ, ζ)

∣∣q 〈ξ, ζ〉mq dξ dζ.
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Use the estimate

|Ŵ (ξ, ζ)| ≤ 〈ξ, ζ〉−M ‖Ŵ‖BM,∞

to find

∥∥(I − χδ)W
∥∥q

Bm,q ≤ ‖Ŵ‖q
BM,∞

∫ ∣∣1− χ(ζ/δ)
∣∣q 〈ξ, ζ〉−Mq 〈ξ, ζ〉mq dξ dζ.

The integral on the right is over |ζ| ≤ δ, so for Mq > mq+ d+1, the integral is O(δ),
which proves the lemma.

This lemma implies that∫ T

0

∥∥(I − χδ)U0(T )
∥∥

Bm,q(Rd+1)
dt = O(δ1/q).

Thus, one can choose δ0(m, q) so that for 0 < δ < δ0,

C(m)

∫ T

0

∥∥(I − χδ)U0(T )
∥∥

Bm,q(Rd+1)
dt eC(m)T <

1

2
.

Then (5.10) shows that if T∗ < T , then

‖Wδ(T )‖Bm,q ≤ 1

2

for 0 < t < T∗. Since this contradicts the definition of T∗ we conclude that T∗ = T
and that (5.10) holds for 0 < T < T . In particular, the evolution equation for Uδ0 is
solvable up to T .

In addition, estimate (5.10) implies the O(δ1/q) convergence rate for the value
m, q fixed at the start. Since m, q is arbitrary, the proof of Proposition 5.1 is com-
plete.

Combining the convergence results of Proposition 5.1 and Lemma 5.2 yields

sup
0≤t≤T

‖U0(T )−Uδ0(T )‖Bm,q(Rd+1
x,z ) = O(δ1/q).(5.11)

Note that the smallest upper bound occurs for the case q = 1 corresponding to the
Wiener algebra.

6. Estimate for the residual. Suppose that T is smaller than the maxi-
mal existence time for U0 in the sense that a solution of (4.2) is known in the
space C

(
[0, T ] ; ∩mB

m,∞(Rd+1
x,z )

)
. Then Proposition 5.1 shows that for 0 < δ < δ0,

Uδ0 (T, t, x, z) = Uδ0(T, x−vt, z) exists on [0, T ] and FzUδ0 vanishes on a neighborhood
of ζ = 0. For δ > 0, the equations for the correctors Uδ1 , U

δ
2 are solvable, so

Uδ(ε, T, t, x, z) := Uδ0 + εU δ1 + ε2Uδ2

is well defined for 0 ≤ t ≤ T/ε. The residual equation (3.21) is then

Rδ(ε, T, t, x, z) := L
(
(ε∂T , 0) + ∂y +

β

ε
∂z

)
εpUδ + χδ(Dz) Φ(ε

pUδ)

= εp+1
(
ε2∂TU

δ
2 + εL(∂y)U

δ
2 + ε∂TU

δ
1

)
+ χδ(Dz)

[
Φ(εpUδ)− ΦJ(ε

pUδ0 )
]
.(6.1)
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This section is devoted to estimates for the right-hand side of (6.1). There are at
least two subtle points. The first is that though the residual is formally O(ε2p+1) it
involves correctors which blow up as δ → 0. Care must be taken about small values
of δ. The second point is that the residual involves the smooth function Φ, which
need not be polynomial. Therefore, the Wiener algebra need not be invariant. The
estimates are therefore done in the scale of Sobolev spaces.

Proposition 6.1. Suppose that Uδ and T are as above, δ0 is as in Proposition
5.1, and s > (d+ 1)/2. Then there is a constant C = C(s) so that for all

0 ≤ t < ∞ ∩ 0 ≤ T ≤ T ∩ 0 < δ ≤ δ0 ∩ 0 ≤ ε ≤ δ,(6.2)

one has

‖Rδ(ε, T, t, x, z)‖Hs(Rd+1
x,z ) ≤ C εp+1

( ε

δ2
+ εp

)
.(6.3)

Proof. The first step is to estimate the size of the correctors Uδ1 , U
δ
2 . The formulas

for these functions involve Uδ0 and, most importantly, the operator ∂−1
z . The formula

for Uδ1 involves ∂−1
z , while the formula for Uδ2 involves ∂−2

z since it has a term with
∂−1
z applied to Uδ1 . The application of the operator ∂−1

z introduces a factor 1/δ in
estimates since the support of Uδj is in |ζ| > δ. The boundedness of the family Uδ0 in
B
m,∞ yields the following estimates for the correctors for 0 < δ ≤ δ0:

∀m,∀ 0 ≤ t < ∞, sup
0≤T≤T

∥∥Uδj (T, t, x, z)∥∥Bm,∞(Rd+1
x,z )

≤ C(m)

δj
.(6.4)

Inserted in the definition of Uδ, this estimate proves that for t ∈ R and 0 ≤ T ≤ T ,

∥∥Uδ(T, t)∥∥
Bm,∞(Rd+1

x,z )
≤ C(m)

(
1 +

ε

δ
+

ε2

δ2

)
.

Thus Uδ(T, t) is uniformly bounded in B
m,∞ for the parameter range (6.2). This is a

key element in the estimate of the second term on the right-hand side of (6.1).
For the right-hand side of (6.1) we also need an estimate for ε∂TU

δ
1 and ε2∂TU

δ
2 .

Start with an estimate for the T derivative of Uδ0 . The evolution equation (5.1) yields

∂TU
δ
0 = −∂−1

z P (∂x)U
δ
0 − π(β)χδ(Dz) ΦJ(U

δ
0).

Together with the uniform boundedness of Uδ0 this yields

‖∂TUδ0‖Bm,∞ ≤ C(m)

δ
.(6.5)

The factor 1/δ comes from the norm of ∂−1
z acting on functions with spectrum in

|ζ| ≥ δ. Differentiating (3.19) and (3.20) with respect to T yields

∂TU
δ
1 = −∂−1

z Q(β)L(∂y)∂TU
δ
0

and

∂TU
δ
2 = −∂−1

z Q(β)
(
L(∂y)∂TU

δ
1 + χδ(Dz)π(β)Φ

′
J(U

δ
0 )∂TU

δ
0

)
.

Using estimate (6.5) in the equations above yields in turn

‖∂TUδ1‖Bm,∞ ≤ C(m)

δ2
and ‖∂TUδ2‖Bm,∞ ≤ C(m)

δ3
.
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Inserting these estimates into the first term on the right-hand side of (6.1) and
using ε ≤ δ yields∥∥∥ε2∂TU

δ
2 + εL(∂y)U

δ
2 + ε∂TU

δ
1

∥∥∥
Bm,∞

≤ C(m)
(ε2

δ3
+

ε

δ2
+

ε

δ2

)
≤ C(m) ε

δ2
.(6.6)

Next turn to the second term on the right of (6.1). Taylor’s theorem with remain-
der implies that there are smooth functions Gα so that

Φ(u) =
∑
|α|=J

uαGα(u).(6.7)

It follows that

Φ(λu) = λJΨ(λ, u),(6.8)

with smooth Ψ satisfying Ψ(λ, 0) = 0. An entirely analogous argument shows that
there is a Ξ(λ, u) vanishing when u = 0 so that

Φ(λu)− ΦJ(λu) = λJ+1 Ξ(λ, u).(6.9)

Split the nonlinearity on the right-hand side of (6.1),

Φ(εpUδ)− ΦJ(ε
pUδ0 ) =

[
Φ(εpUδ)− Φ(εpUδ0 )

]
+
[
Φ(εpUδ0 )− ΦJ(ε

pUδ0 )
]
.

Using (6.8), (6.9), and the fact that εpJ = εp+1 yields

Φ(εpUδ)− ΦJ(ε
pUδ0 ) = εp+1

[
Ψ(εp, Uδ)−Ψ(εp, Uδ0 )

]
+ ε2p+1 Ξ(εp, Uδ0 ).(6.10)

Since both Uδ and Uδ0 are Hs uniformly bounded, (6.10) and Schauder’s lemma imply
that for s > (d+ 1)/2,∥∥Φ(εpUδ)− ΦJ(ε

pUδ0 )
∥∥
Hs(Rd+1

x,z )
≤ C(s) εp+1

(
‖Uδ − Uδ0‖Hs(Rd+1

x,z ) + εp
)
.(6.11)

Using (6.4) and ε ≤ δ yields

‖Uδ − Uδ0‖Hs(Rd+1
x,z ) ≤ C(s)

(ε

δ
+

ε2

δ2

)
≤ C(s) ε

δ
.(6.12)

Combining (6.6), (6.11), and (6.12) yields the estimate (6.3).

7. Proof of (2.12). In the next proposition we prove the third and last conver-
gence result needed to establish our main result.

Proposition 7.1. Suppose that T is smaller than the maximal existence time
for U0 and that U

δ, Uδ are as in the first paragraph of section 6, and hence in the
space satisfying (1.3). Then there is a positive ε1 so that for 0 < ε < ε1, the differ-
ential equation (2.10) has a unique solution V(ε, t, x, φ) ∈ C

(
[0, T/ε] ; ∩sHs(Rd+1)

)
satisfying the initial condition

V(ε, 0, x, φ) = U0(0, 0, x, φ).

In addition, for all s, for δ = ε2/5, and for 0 < ε < ε1,

sup
0≤t≤T/ε

∥∥∥Uδ(ε, εt, t, x, tτ0
ε

+ φ
)
− V(ε, t, x, φ)

∥∥∥
Hs(Rd

x×Rφ)
≤ C(s)εmax{1/5 , p}.(7.1)
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Proof. The construction of Uδ guarantees that Uδ(ε, εt, t, x, tτ0ε + φ) satisfies

L
(
∂t, ∂x +

ξ0
ε
∂φ

)
εpUδ +Φ(εpUδ)(7.2)

= Rδ
(
ε, εt, x,

tτ0
ε

+ φ
)
+
(
I − χδ(Dz)

)
Φ(εpUδ).

The strategy is to construct V as a perturbation, Eδ, of Uδ. Define

Eδ(ε, t, x, φ) := V(ε, t, x, φ)− Uδ
(
ε, εt, t, x,

tτ0
ε

+ φ
)
.(7.3)

The equation for V is rewritten as an equation for Eδ. The equation for Eδ is then
analyzed to show that the perturbation remains small for 0 ≤ t ≤ T/ε.

Subtracting (2.10) from (7.2) yields

L
(
∂t, ∂x +

ξ0
ε
∂φ

)
εpEδ = −Rδ

(
ε, εt, t, x,

tτ0
ε

+ φ
)

(7.4)

− (
I − χδ(Dz)

)
Φ
(
εpUδ

(
ε, εt, t, x,

tτ0
ε

+ φ
))

+
[
Φ
(
εpUδ

(
ε, εt, t, x,

tτ0
ε

+ φ
))

− Φ(εpV)
]
.

The operator L is a symmetric hyperbolic operator with constant coefficients and
coefficient of ∂t equal to I. It follows that L generates a unitary evolution on the
spaces Hs(Rd+1

x,φ ). Thus for all s and for all t smaller than the maximal time of
existence, ∥∥εpEδ(t)∥∥

Hs(Rd+1
x,φ

)
≤ ∥∥εpEδ(0)∥∥

Hs(Rd+1
x,φ

)

+

∫ t

0

∥∥∥L(∂t, ∂x + ξ0
ε
∂φ

)
εpEδ(σ)

∥∥∥
Hs(Rd+1

x,φ
)
dσ.(7.5)

The key is to estimate the integral on the right-hand side of (7.5) using the
expression (7.4).

7.1. Estimate for the Rδ term in (7.4). Estimate (6.3) implies that∥∥∥∥Rδ(ε, εt, t, x, tτ0ε + φ
)∥∥∥∥

Hs(Rd+1
x,φ

)

=
∥∥Rδ(ε, εt, x, z)∥∥

Hs(Rd+1
x,z )

≤ C εp+1
( ε

δ2
+ εp

)
.(7.6)

7.2. Estimate for the (I − χδ(Dz)) Φ(εpUδ(εt, t, x, tτ0

ε
+ φ)) term in

(7.4). As in the derivation of (7.6), the translation invariance of the Hs norm yields∥∥∥(I − χδ(Dz)
)
Φ
(
εpUδ

(
εt, t, x,

tτ0
ε

+ φ
))∥∥∥

Hs(Rd+1
x,φ

)

=
∥∥(I − χδ(Dz)

)
Φ(εpUδ(εt, x, z))

∥∥
Hs(Rd+1

x,z )
.

Express Φ(εpUδ) as the sum of two terms,

Φ(εpUδ) = ΦJ(ε
pUδ) +

(
Φ− ΦJ)(ε

pUδ) = εp+1ΦJ(U
δ) + ε2p+1Ξ(εp,Uδ),(7.7)
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where we have used (6.9) to derive the second equality.
Since Ξ(εp,Uδ(εt, x, z) is uniformly bounded in Hs(Rd+1

x,z ) it follows that∥∥(I − χδ(Dz))ε
2p+1Ξ(εp,Uδ)

∥∥
Hs(Rd+1

x,z )
≤ C ε2p+1.(7.8)

Since ΦJ(U
δ(εt, t, x, tτε +φ)) are uniformly bounded in B

m,∞, Lemma 5.2 implies
that ∥∥(I − χδ(Dz))ε

p+1ΦJ(U
δ)
∥∥
Hs(Rd+1

x,z )
≤ C

√
δ εp+1.(7.9)

Adding (7.8) and (7.9) shows that∥∥∥(I − χδ(Dz)
)
Φ
(
εpUδ

(
εt, t, x,

tτ0
ε

+ φ
))∥∥∥

Hs(Rd+1
x,φ

)
≤ C εp+1(

√
δ + εp).(7.10)

7.3. Estimate for the Φ(εpUδ)−Φ(εpV) term in (7.4). Using (6.8) yields

Φ(εpUδ)−Φ(εpV) = εp+1
[
Ψ(εp, Uδ)−Ψ(εp,V)] = εp+1

[
Ψ(εp, Uδ)−Ψ(εp, Uδ + Eδ)].

The proof of Proposition 5.1 shows that

sup
0≤t≤T/ε, 0<ε<δ≤δ0

∥∥∥Uδ(ε, εt, t, x, tτ0
ε

+ φ
)∥∥∥

Hs(Rd+1
x,φ

)
< ∞.

Schauder’s lemma then implies that as long as ‖Eδ‖Hs ≤ 1,

εp+1
∥∥Ψ(εp, Uδ + Eδ)−Ψ(εp, Uδ)

∥∥
Hs(Rd+1

x,φ
)
≤ C εp+1 ‖Eδ(t)‖Hs(Rd+1

x,φ
).(7.11)

Combining estimates (7.6), (7.10), and (7.11) yields the following estimate, valid
as long as ‖Eδ‖Hs ≤ 1:

∥∥∥L(∂t, ∂x+ ξ0
ε
∂φ

)
εpEδ

∥∥∥
Hs(Rd+1

x,φ
)
≤ C εp+1

( ε

δ2
+εp+

√
δ+‖Eδ(t)‖Hs(Rd+1

x,φ
)

)
.(7.12)

7.4. Estimate for Eδ(0). The initial value of Eδ(0) comes from the correctors
in Uδ,

Eδ(0) = f(x, φ)−Uδ(0, x, φ) = εUδ1(0, x, φ) + ε2Uδ2(0, x, φ).

Using (6.4) and the fact that ε ≤ δ yields

‖Eδ(0)‖Hs(Rd+1) ≤ C
(ε

δ
+

ε2

δ2

)
≤ Cε

δ
.(7.13)

8. End of proof. We now use the previous results to bound the error Eδ between
the exact solution V and the approximate solution defined in terms of Uδ.

Fix s > (d + 1)/2. Then as long as ‖Eδ‖Hs ≤ 1, inserting (7.12) and (7.13) into
(7.5) yields

∥∥ εp Eδ(t)∥∥
Hs(Rd+1

x,φ
)
≤ Cεp+1

δ
+ C

∫ t

0

εp+1
( ε

δ2
+ εp +

√
δ + ‖Eδ(σ)‖Hs(Rd+1

x,φ
)

)
dσ.
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Estimate the integral of the constant term using t ≤ T/ε to find

∫ t

0

εp+1
( ε

δ2
+ εp +

√
δ
)
dσ ≤ T εp+1

ε

( ε

δ2
+ εp +

√
δ
)

≤ C εp
( ε

δ2
+ εp +

√
δ
)
.

Combine the last two estimates using ε
δ2 ≥ ε

δ and divide by εp to find

∥∥ Eδ(t)∥∥
Hs(Rd+1

x,φ
)
≤ C

( ε

δ2
+ εp +

√
δ
)
+ C ε

∫ t

0

‖Eδ(σ)‖Hs(Rd+1
x,φ

) dσ.(8.1)

We need to show that Eδ exists for 0 ≤ T ≤ T/ε and that supt∈[0,T/ε] ‖Eδ(t)‖Hs

converges to zero as δ → 0. The integral inequality (8.1) leads to both of these goals
by the “as long as” argument.

For any 0 < ε < δ < δ0, define T∗ = T∗(ε, s, δ) by T∗ = T/ε if Uδ(ε, T, t, x, z)
exists for 0 ≤ t ≤ T/ε and sup0≤t≤T/ε ‖Eδ(t)‖Hs < 1. Otherwise define

T∗ := inf
{
t : ‖Eδ(t)‖Hs = 1

}
.

Gronwall’s inequality applied to (8.1) implies that for 0 ≤ t ≤ T∗,

‖Eδ(t)‖Hs(Rd+1
x,φ

) ≤ C(s)
( ε

δ2
+ εp +

√
δ
)
eC(s)εt ≤ C(s)

( ε

δ2
+ εp +

√
δ
)
.(8.2)

Now we can chose δ as a function of ε. Balancing the ε/δ2 and
√
δ terms in (8.2)

yields

δ = ε0.4 and
ε

δ2
=

√
δ = ε1/5.

Then (8.2) yields for δ = ε0.4

‖Eδ(t)‖Hs(Rd+1
x,φ

) ≤ C(s) εmin{p , 1/5}.(8.3)

Choose ε(s) > 0 so that

C(s) ε(s)min{p , 1/5} <
1

2
.(8.4)

Combining (8.3) and (8.4) shows that for 0 ≤ t ≤ T∗, 0 < ε < ε(s), and δ = ε0.4

‖Eδ(t)‖Hs(Rd+1
x,φ

) <
1

2
.(8.5)

If T∗ < T , setting t = T∗ violates the definition of T∗. It follows that for 0 < ε < ε(s),

Ee0.4(t) has Hs norm less than 1/2 for 0 ≤ t ≤ T/ε.
This proves the solvability for 0 ≤ t ≤ T/ε of the initial value problem defining

V ∈ C([0, T ] ; Hs). That the solution belongs to C([0, T/ε] ; ∩sHs) is then a conse-
quence of standard semilinear hyperbolic theory and the regularity of the initial data
for V.

In addition, since (8.5) holds, the “as long as” argument works, and it follows that
inequality (8.3) is valid for 0 ≤ t ≤ T/ε, provided that ε < ε(s). Since s is arbitrary
this proves the convergence asserted in Proposition 7.1.
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8.1. The main theorems. Combining Propositions 4.3, 5.1, and 7.1 and Corol-
lary 4.12 proves the following result.

Theorem 8.1 (main theorem). Assume that the initial data in (2.1) satisfy
Assumptions 1.5 and 1.8. Let U0 = π(β)U0 ∈ C([0, T∗[ ; A(R1+d) be the maximal
solution of the principal profile equation (4.2) with initial value f . Let V(ε, t, x, φ) ∈
∩s C([0, T ′

∗[ ; H
s(Rd+1)) denote the maximal solution of the initial value problem (2.10),

(2.11) defining the exact profile.
Then, for any T < T∗ there is an ε(T ) > 0 so that for 0 < ε < ε(T ) the solution

uε of the initial value problem (2.1) exists for 0 ≤ t ≤ T/ε, T ′
∗ ≥ T/ε, and uε is given

by

uε = εpV
(
ε, t, x,

x.ξ0
ε

)
.

In addition the asymptotic behavior as ε → 0 is given by

uε ∼ εpU0

(
ε, εt, x− vt,

tτ0 + x.ξ0
ε

)
in the sense that for all s, as ε → 0

sup
0≤t≤T/ε

∥∥∥V(ε, t, x, φ)−U0

(
εt, x− vt,

tτ0
ε

+ φ
)∥∥∥

Hs(R1+d
x,φ

)
≤ C(s) εmin{p,1/5}.(8.6)

Proof of Theorem 1.10. Theorem 1.10 is an immediate consequence of this result.
Simply write

uε − uεapprox = εpV
(
ε, t, x,

x.ξ0
ε

)
− εpU0

(
εt, x− vt,

tτ0 + x.ξ0
ε

)
.

Then the estimate (1.12) follows from (8.6).
Note that the constant field Vd has a nonzero ∂t component. It acts differently

on the two terms in the expression for the error. That is why we have a reduced set
of derivatives in the error estimate of Theorem 1.10.
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