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Abstract

This paper studies the propagation of pulse like solutions of semilin-
ear hyperbolic equations in the limit of short wavelength. The pulses
are located at a wavefront ¥ := {¢ = 0} where ¢ satisfies the eikonal
equation and d¢ lies on a regular sheet of the characteristic variety. The
approximate solutions are ugpprox = U (¢, 2, ¢ (¢, )/€) where U(t,x,r) is a
smooth function with compact support in ». When U satisfies a familiar
nonlinear transport equation from geometric optics it is proved that there
is a family of exact solutions Ugxasct such that ug,prox has relative error
O(e) as € — 0. While the transport equation is familiar, the construction
of correctors and justification of the approximation are different from the
analogous problems concerning the propagation of wave trains with slowly
varying envelope.

1 Introduction.

The methods of nonlinear geometric optics construct approximate solutions of
partial differential equations of hyperbolic type. The solutions are accurate
as a parameter € measuring the wavelength tends to zero in units chosen so
that the natural unit length for the problem is O(1). The usual science arti-
cle derivations are valid for wavetrains and go under the name of the slowly
varying envelope approximation. The derivations suppose that the amplitude
of the waves changes little over a distance of one wavelength. This article is
concerned with the diametrically opposite case of pulse like solutions, in par-
ticular pulses whose length may be comparable to €. These violate the slowly
varying amplitude assumption.

The research is motivated by ultrashort laser pulses which may contain few
wavelengths and for which the shortcomings inherent in the slowly varying am-
plitude assumption have been recognized for a long time (see e.g. [R]). We
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Figure 1: A wavetrain and a short pulse.

present semilinear results. The quasilinear analogues do not present serious
additional difficulties.

In the present article we study pulses whose amplitudes are so large that
nonlinear effects are important before diffractive effects. This scaling is called
the scaling of geometric optics as opposed to diffractive geometric optics. For the
scaling of geometric optics, an accurate asymptotic solution is constucted and
the leading amplitude satisfies essentially the same nonlinear transport equation
that is appropriate for slowly varying wavetrains and also for the transport of
jump discontinuities. To our knowledge, the result may even be new in the
linear case. The key corrector construction from §2 would also be needed to
justify a variable coefficient linear result. Related but weaker results than those
in this paper are contained in Chapter 3 of [A]. When amplitudes are smaller so
that nonlinear effects are not important until the longer time scale of diffractive
geometric optics, we will show in a second paper that the asymptotic equations
for pulses on that scale differ from the familiar Shrédinger equations which
describe wavetrains.

A snapshot at a fixed time of a wavetrain solution with slowly varying ampli-
tude is suggested in Figure 1. Actually this figure violates the rule of thumb that
the amplitude should change no more than 10% over a distance of one wave-
length, but the idea should be clear. An analytic expression for an example
is

a(zy,m0) e/ e<< 1, a€SER).

In the same spirit, an analytic expression for a snapshot of a short pulse is
b(z2) f(z1/e), e<<1l, b,f €S(R).

The Fourier transforms of these snapshots are given by

G- &),  ad  HE)ef(c)

repectively. In both cases the solutions are high frequency in the sense that
the Fourier tranform is concentrated in a region || > C'/e. However the con-
centration is stronger in the wavetrain case where the spectrum is essentially



contained in an O(1) neighborhood of the point £ = (1,0)/e. The wavetrain has
the form of a rapidly varying exponential prefactor times a function which is
not rapidly varying. This is a key to the slowly varying envelope approximation.
In contrast, the pulse has Fourier transform is spread over a region of size O(1)
in & while it resembles a broad plateau of size O(1/¢€) in & . In particular, no
exponential prefactor leaves a slowly varying quotient. In both cases if one trun-
cates frequencies from a bounded set by multiplying by 1 — x(§) with x € C§°
the relative error tends to zero with epsilon. For wavetrains it is O(e>) while
for pulses it is O(e). These relatively larger low frequency contributions make
the short wavelength asymptotic analysis for pulses harder than the correspond-
ing results for wavetrains. In particular, it is harder to construct correctors to
the leading approximations. The broad spectrum of pulses parallels exactly the
laboratory strategy of spectral broadening which is followed in the production
of short laser pulses.

In the important work of Majda and Rosales ([Ma], [MaR]), both pulse and
wavetrain solutions were envisaged. Their formal analysis includes the construc-
tion of correctors like ours at least in the case of one space dimension. Using
the Haar inequalities in one space dimension and the corrector they constructed
one arrives at results resembling ours in the 1-d case. They concentrated on the
concept of resonance, which only takes place for wave trains because pulses with
different speeds do not overlap on large enough regions of space-time. They also
concentrated on quasilinear as opposed to semilinear equations. In the class of
smooth solutions the quasilinear and semilinear cases are similar. Yoshikawa
also addressed pulse like solutions in a series of papers [Y1, Y2] and references
therein. He constructed formal solutions making additional assumptions of van-
ishing moments for the profile U. The additional hypotheses guaranteed that
correctors without the new terms in the present paper could be constructed.
Considering only profiles with with vanishing moments is not reasonable for the
practical problems. For example there are half cycle laser pulses for which the
amplitude is overwhelmingly of one sign and therefore has nonvanishing inte-
gral. Our results provide a natural setting and a far reaching generalization of
these earlier attacks.

We consider semilinear systems of partial differential equations of the form

d
L(y,8)u+Fly,w) =0,  L(y,3,) =3 A.()

n=0

0
—_— . 1
By, (1)
Here

u=(uy,...,un) €CY, and y= yo,y1,-..,yq) = (t,2) ERxRL. (2)

Assumption 1. The operator L is symmetric hyperbolic on a neighborhood of
a domain of determinacy Qr given by

Qr = {(t,:z:) c2€0, and ogtgmin{e(x),z}}, (3)



where O is a connected bounded open subset of R? lying on one side of its smooth
boundary. The symmetry hypothesis means that the A, are C*° and hermitian
on a neigborhood of Qp and Ay = I. To guarantee that Qr is a domain of
determinacy assume that £ € C*(O) vanishes at 80, is strictly positive on O,
and whenever (t, z) belongs to the lateral surface

Tr = {(t,x) ;xeo,t:aw)<z}, (4)

one has

d
Aalti) =3 G At 20. 5)

Assumption 2. The nonlinear function F' is infinitely differentiable (in the
real sense) from Qr x CN to CV.

The pulses will be located near the wavefront which is given as a nondegen-
erate level set of a smooth function ¢,

Sri={y€0r : ¢(y) =0}. (6)

Assumption 3. The defining function ¢ is smooth on a neighborhood of Qr,
the wavefront Y is nonempty, and d¢(y) # 0 wherever ¢(y) = 0. The defining
function ¢ satisfies the eikonal equation

det L(y, dp(y)) =0 (7

on a neighborhood of ¥. This implies that ¥ and the nearby level surfaces of
¢ are characteristic. The surface Xt is assumed to be transverse to the lateral
boundary Tr.

Examples. Two motivating examples are sketched in Figure 2. They concern a
system whose characteristic variety is given by 472 = |£|? so the corresponding
speed of propagation is equal to 1/2. The domain of determinacy is Qp :=
{lt) <R-t, 0<t<T} where R>T.

In the example on the left, ¥ is the hyperplane {t = —2z; + ¢} which
correponds to a pulse with planar wave front. A different geometry is given
by the example on the right with ¥ = {|z| = R — t/2} where T < 2R < R.
In this case the pulse is focussing with spherical wavefronts. Note that the
transversality condition is satisfied in the second example because ¥ does not
meet the lateral boundary.

Assumption 4. There is an open conic neighborhood N of the conormal
variety

N*(Sp) = {@.sdé(y) : yeTr, 0#£s€R}

on which the characteristic variety is a graph of a smooth function w(y, £). That
is (y;7,€) € Char L(y, d) if and only if T = w(y, &) with w a smooth function
homogeneous of degree one in &.
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Figure 2: A planar wavefront and a focussing spherical wavefront.

It follows that near X7 the defining function satisfies the reduced eikonal
equation

¢r = w(y, Va9). (8)

On the conic neighborhood from Assumption 4, the characteristic variety is
given by the equation 7 — w(y,£) = 0 so the hamiltonian vector field with
hamiltonian 7 — w(y, £),
0 _ g 9 g0w 0
Ot £ 0&; Ox; = Oy, Oy’

Jj=1

is tangent to the variety.

Definitions. On a neighborhood of Y define the smooth funtion w(y) to be
the orthogonal projector of CV onto the kernel of L(y,d¢(y)). Define the group
velocity field v.0, from the spatial projection of the hamiltonian field

v(y).0, := _ia_w i (9)
Y)-Ga = 0&; l(y,de(y)) Oz

i=1
The approximate solutions that we construct have the form
Ugpprox = Uy, ¢(y)/e), with TEIEOO U(y,r) =0.

For € small, the approximate solution is concentrated in an e neighborhood of
Y so that up to an error O(e) only the values of U (y, r) with y € X are needed.
The graph of U as r changes describes the cross section of the pulse as one moves
away from Y. If U decays at least as fast as 1/r then U = x(r)U + V(y,r)/r
where x(r) has compact support and V' is bounded. Inserting r = ¢/e shows
that replacing U by x U changes ug,,,ox by O(€). These two remarks show that
it is natural to seek the leading profile, U(y, r) as a function on X7 x R compactly

supported in r.



In order that the approximation be good, the profile U is chosen to satisfy
two equations. The first is the polarization identity

VyeXr, reR, w(y)U(y,r) =U(y,r). (10)

The second is a transport equation along the rays which are integral curves of
the vector field 9; + v.0,. It reads

on(y)
ayu

d
(0 +v-0.) U+ 7)Y A, F LU+ (FE,) = 0. (11)

Since 7(y) U = U, the sum of the first two terms is equal to

w(y) (Bt + v.aw) U.

If F were an affine function of u, (11) would be exactly the transport equation of
linear geometric optics. In this sense it is familiar. In particular, for conservative
linear operators the symmetric part of the zeroth order term yields growth
or decay of amplitudes corresponding to converging or diverging rays. The
transport equation (11) is a compact family of ordinary differential equations
parametrized by ¥rN{t = 0}. Since Q7 is a domain of determinacy for L(y, 0,)
it follows that the vector field 0; + v.0, is outgoing at the lateral boundary of Q.
Therefore, Picard’s existence theorem for ordinary differential equations implies
that the profile U exists locally and for T" small is uniquely determined in X7 by
its initial values.

Proposition 1.1 Suppose that U(z,r) € C°((Sp N {t = 0}) x R) is supported
in |r| <T and satisfies w(0,2)U(z,r) = U(z,r). Then there is a 0 <T < T and
a unique solution U(y,r) € C®°(Xr x R) to equations (10 — 11) also supported
in |r| <T which satisfies the initial condition

U(0,z,7) = U(z,r), zeXr N {t=0}. (12)
Our main theorem is a refinement of the following result which asserts that if the

approximate solution exists for 0 < ¢t < T then smooth exact solutions within
O(e) also exist on that time interval.

Theorem 1.2 Suppose that 0 < T < T, and that U € C®(Er x R) is a solution
of (11) with support in |r| < T < co. Suppose that Uy = w(y)Up € C=(Qr x R)
is a smooth extension of U supported in a small neighborhood of 1 x {|r| < F}.
Define a family of approzimate solutions in Qr by

Uspprox(¥) = Uo(y,8(y)/e) - (13)

The approzimate solutions are asymptotically accurate in the sense that there is
an €9 > 0 and a family of exact solutions v¢ € C® (1) of the equation

L(y,0y) v+ F(v°) =0, 0<e<e (14)



satisfying

HZ1Z2 e Tt (U e — ) ‘ = 0() as e—0, (15)
Le(Qr)
for any finite family of smooth vector fields Zi,..., Zy on Qr each tangent to

Sy

The proof has four steps; correction, extension-truncation, linear conormal
estimates, and a perturbation argument. The first and most important step is
the construction of a corrector so that the residual R® := L ug o0 +F (Y, U pprox)
becomes O(e). Then the family of corrected approximate solutions is extended
to t > —a with a > 0 preserving the essential geometric features of the set
Qr and the smallness of the residual. The exact solution v¢ is the solution
to Lv¢ + F(y,v®) = x(t) R where the smooth cutoff function x vanishes for
t > —a/3 and is equal to 1 for ¢ < —2ta/3. The solution v* is chosen equal to

Ugpprox fOr t < —2a/3. Finally a perturbation argument using linear conormal
estimates shows that for € small v¢ = ug, . + w* with w® = O(e).

2 The approximate solution and first corrector.

As is usually the case in geometric optics expansions, the leading term alone
when inserted in the equation does not have a small enough residual to yield a
useful error estimate. One needs correctors. One of the striking facets of the
problem of pulse propagation is that the corrector strategy which works in the
case of wavetrains fails for pulses. Based on experience with wavetrains, it is
natural to take as an ansatz

u = Uy, d(y)/€) + e Ur(y, d(y)/e) - (16)

with Uj;(y,r) tending to zero as |r| — oo. The ansatz which works for wave
trains is exactly of this form but with U; periodic in r. Plugging (16) into the
equation yields

L(y, 67/)(“6) = L(ya 6?/ + d¢(y) 67') (UO(y7T) + 6[Jl (y7,r))

€

r=g(y)/e’

F(y,u) = F(y,Uo(y,r) + eU1(y,7))

r=¢(y)/e’
and

F(y7 UO(y7,r)+6U1 (y,’f‘)) = F(y7U0(y7T))+€H(€7y7 UO(y7,r)7€U1(y77‘)) 'Ul(yar) .

The last assertion uses Taylor’s Theorem with remainder to provide the smooth
function H.



Combining these three equations one has the important residual formula

L(ue) + F(ue) = (%W_l(yﬂ") + W()(y,T) + 6W1(67y7,r)) r=(y) /e ’ (17)
where
W_i(y,r) = L(y,dé(y))0:Uo,
WO(ya 7') = L(ya d¢(y) )67‘U1 + L(ya 6y) UO + F(y7 UO) ) (18)
Wl (€7y7 T) = L(y7 61}) Ul (y,T) + H(67y7 UO(yJ T)a 6[Jl (ya,r)) : Ul (ya T) .

The strategy is to choose Uy and U; so that W_; = Wy = 0. In general, this
turns out to be impossible. The problem occurs in the W, equation. Integrating
(18) from r = —00 to r = oo shows that

Ly, d6(0) (U (0,00) ~Us(y,=09) = [ L(4:0,) Voly. 1)+ F (0, Vo) dr-

—00

If Uy tends to zero as r — oo then the left hand side must vanish. However,
for generic Uy, the right hand side is nonzero and it is therefore not possible to
find such U;. The solution is to allow the corrector to have different values at
r = £o00. Choose a function

g(r) € C(R),  with [ Ty dr=1. (19)
Define ,
G(r) = [ g(r) dr (20)

The new ansatz is
u(y) = Uoly, sw)/e) + e (Vi(y,6() /) + ) Gow)/e)) - (21)

Computing as above shows that (17) is valid with

W_i(y,r) = L(y,d¢(y))0-Uo (22)
Wo(y,r) = L(y,dé(y))(0,Ur + c(y)g(r)) + L(y,8,)Uo + F(y, Uo) (23)

Wie,y,r) = L(y,0y) (Ui(y,r) +c(y)G(r)) +
H (e,y,Uo,e(Ur + c(y)G(r)) ) - (Ur + c(y) G(r)) - (24)

To guarantee that W_; = 0, we choose U satistying the polarization condi-
tion
™ Uo = Uo .
To analyse equation (23), introduce the partial inverse Q(y) € C*(Qr)
uniquely defined by the conditions

Qly)m(y) =0, and  Qy)L(y,do(y)) = (I —7(y))- (26)

—~

25)



The equation Wy = 0 is equivalent to the pair of equations
T(y)Wo=0, and  Q(y)Wo=0.
The first of these equations involves only Uy and thanks to (10) is equivalent to
m(y) L(y,0y) w(y) Uo + m(y) F(y,Uo) = 0. (27)

Expanding the operator in the first term yields

- 2 - dn(y)
m(y) Ly, 0,) 7(y) = Y w(y) Au(y) 7 () o T m(y) Y Auly) 3 (28)
=0 p 40 p
Thanks to Assumptions 3 and 4 and the fact that Ag = I one has (see [DJMR])
m(y) A; () m(y) = v;(y) 7(y), (29)

where v is the group velocity defined in equation (9). Inject this in the previous
formula to find

(30)

d
") L0 7(0) = 7(0) (04 v.0.) +7(0) 3 Au) L
u=0

By,

This together with (27) yields the important equation (11) of the last section.
It also shows that (27) is a set of transport equations along rays which can be
used to determine Uy from its initial data.

When (25) as well as (27) are satisfied, one has W_; = 0 = 7(y) Wy. Then
the leading term in the residual is (1 — 7(y))Wo(y, #(y)/€) and is comparable
in size to the approximate solution u°. This is typical of two scale asymptotic
methods. The leading term in the expansion is not sufficient to create a residual
which is small compared to u€.

The next goal is to construct a corrector to eliminate this leading term in
the residual. Multiply (23) by Q(y) to find

(1= 7@)Wo = (I = 7)) (8. U1 + cy)g(r)) + QL) (L(y,8,) Uo + F(y, V) ).

(31)
Thus Wy vanishes exactly when the corrector satisfies

(T = 7() (301 + cw)g(r)) = -Q(w) (L,8,) Us + F(y,Us)) . (32)
Integrating this equation and using the fact that U; (y, £00) = 0 shows that
(T-7@)ew) = - [ QW) (Lw.0) o+ F.U) dr. (33)

When ¢(y) satisfies this equation, there is an 7 < 0o so that the function

(T = 7)) e@)g(r) - Q) (L(,0,) Vo + F(y,Uo)) (34)



is smooth and compactly supported in |r| < 7 with vanishing r integral so (33)
uniquely determines

(I =7my)Ui(y,r) = (35)
- [ (1= ) ew)g) + Q) (Lw.0)Vo(v.1) + FTa(y. ) dr.

Neither 7(y) ¢(y) nor 7(y)Us affect the value of Wy so for simplicity we complete
the specification of ¢(y) and U; by

m(y)ely) = 0 = 7(y) Ua(y,r). (36)

Proposition 2.1 Suppose that U € C®(Zr x R) is a solution of (11) as in
Proposition 1.1. Suppose that Uy € C®(Qp x R) is an extension of U as in
Theorem 1.2. Define c(y) amd Uy by formulas (33), (35), and (36). Then

1. c(y) € C*(Q7), Uy € C®(Qr x R) and Uy all vanish for |r| >T.

2. The approzimate solution u® defined by the ansatz (21) satisfies (17) with
W_1 =0 and W0|ET =0.

3. For any finite family Z1, ..., Zpyr of smooth vector fields on Q1 each of which
is tangent to X1 one has

sup HZlZQ AVES
0<e<1

L) 00, (37)

and

H leg...ZM(L(y,ay)uf+F(y,uf)) = O(e), as e—0. (39

Jueion
Proof. The first two parts are immediate from the construction.

The leading term of the residual is equal to Wo (y, ¢(y)/€). Since Wy (y,r) =0
when ¢(y) = 0 and d¢ # 0 at such points, Taylor’s Theorem implies that on
a neighborhood of 7 x R, Wy(y,r) = ¢(y) V(y,7) with V € C®(Qr x R)
supported in |r| < 7. The leading term is then equal to eK(y, ¢(y)/€) with
K(y,r) := rV(y,r). This together with the formula for W; shows that the
residual is of the form e K (e,y, #(y)/e) where K € C*([0,1] x Q7 x R) with
0, K supported in a compact interval of r uniformly in €,y.

To prove the third part it suffices to show that for such K(e,y,r),

sup || Z12; ... ZuK(€,y, ¢(y)/€) lL=ar) < oo- (39)
0<e<1
This is proved by showing that Z1Z, ... Zpy K (e, y, ¢(y)/€) is a finite sum of
terms Kj(e,y, ¢(y)/e) with K; having the same properties as K.
By an inductive argument it suffices to show that Z K (e, y, ¢(y)/€) is a finite
sum of this type.
The chain rule implies that

Z(K(e,y,0)/e)) = (ZK)(e,y,9(y)/e) + Kr(e;y,6(y) [€) Z(y)/e.  (40)

10



Since Z is tangent to X it follows that Z¢ = 0 when ¢ = 0. Since the zeroes of
¢ are nondegenerate, Taylor’s Theorem implies that there is a smooth function
a(y) on a neighborhood of Y7 so that Z¢ = a(y)¢(y). Thus, the right hand side
of (40) is equal to K(e,y, ¢/€) with K(e,y,7) := (ZK)(€, y,7) + Kr (e, y,)a(y)r.
This completes the proof. O

3 Extension to negative times.

The proof of the main theorem begins by extending the approximate solution to
a domain of determination which reaches into the past. The extension is done
in three stages, extend ¢, then extend U, then extend Q.

First step, In {t = 0} extend ¢(0,z) to be smooth on a neighborhood of
Er N {t = 0}. Then solve the reduced eikonal equation (8) to construct an
extension of ¢ to a neighborhood of 7 N {¢t = 0}. In doing this note that
the domain of determinacy part of Assumption 1 implies that the ray direction
0y + v.0, is tangent or outgoing at the lateral boundary of Qr, which permits
this extension without altering the values of ¢ inside Q.

Having extended ¢, the set £ N {¢ = 0} extends across the boundary of
O wherever the two surfaces meet, thanks to the transversality condition in
Assumption 3.

Extend the initial values U(0,z) across 80O as a smooth function satisfying
the polarization identity (10). Then solve the intial value problem defined by
(11) to extend U to the past on a neighborhood of X7 N {t = 0}.

Finally as t moves negative, move the boundary of Q outward at a speed
which slightly exceeds the maximal (in absolute value) speed of propagation for
the system L(y,d) at the point. The intersection of the domain swept out for
{t > —a} is denoted Q, 7.

This argument proves the following lemmas. The first extends Assumptions
3 and 4 to Q4,7 while the second extends Proposition 2.1.

Lemma 3.1 Ifa > 0 is sufficiently small the above procedure yields a domain of
determinacy Qq v with C* lateral boundary, a characteristic surface ¥, 1 which
is transverse to the boundary with conormal N*(Z, 1) belonging to a smooth
sheet of the characteristic variety, and, a solution U € C'*® (ia,T n ﬁa,T) to the
polarization and profile equations (10) and (11).

Lemma 3.2 The analogue of Proposition 2.1 in Q, 1 as opposed to Qr is true.
That is, suppose that Uy extends U from ia,T to ﬁa,T, satisfies the polarization
identity, and is supported in {a small neighborhood of ¥, 7} x [—r,r]. Then
defining an approzimate solution on Qg1 by (33), (35), (36), and (21), the
residuals satisfy (37) and (38) with Qr replaced by Qg 7.

11



4 Linear conormal estimates.

In this section we recall two types of conormal estimates associated with ¥, 7 C
Q7. The first family are L? estimates for derivatives tangent to ¥, 7 and the
second family are pointwise estimates coming ultimately from integration along
characteristics. These ideas were perfected in the eighties in the study of the
nonlinear propagation of singularities for hyperbolic equations and systems. To
our knowlege the conormal category was introduced in these problems by Bony
in [Bol]. The present treatment is a semiglobal version of [RR]. References for
further developements can be found in the book of Beals [Be].

The motivating problem is that the exact solution v¢ of the main theorem is
constructed as a perturbation of the approximate solution u¢. To analyse this
process one needs control on the family of operators linearized at the approxi-
mate solutions ¢,

[£.0) + DuF@.u)]

The zeroth order term, D, F(y,u®) has bounded derivatives tangent to X, 7.
The derivative transverse to X, 7 can grow like 1/e.

Deﬁnition._ Denote by Z the set of smooth vector fields on ﬁa,T which are
tangent to X, 1

Z is a C*(Q,,r) module, that is it is closed under multiplication by functions
in C*(Q,,7). It is closed under Lie bracket in the sense that if Z; and Z,
belong to Z then so does the commutator [Z;, Z»]. In local coordinates so that
Y = {yq = 0}, Z is generated by O1,...,04—1,y404 in the sense that elements
of Z are linear combinations of these fields coefficients in C*®(Q,, 7). A finite
partition of unity for Q, r shows that Z is finitely generated as a module, that
is, there is a finite set of elements 73, ..., Zx € Z so that an arbitrary member
of Z is a linear combination of the Z; with coefficients in C*(Q,, ).

With the linearized operators as a model we study estimates uniform in €
for the family of operators

L*(y,0) := L(y,0) + B(y), (41)

where B¢ € C*®°(Q,,7) is defined for 0 < € < ¢ and satisfies the following
uniform bounds. If M < oo is any positive integer and Z; ,...,Zy € Z, then

sup ||21 AV > 2 ||Lm

0<e<eo

(@) < OO (42)

This section adds some ideas to earlier work to achieve global estimates through-
out {2, 1 and to treat the characteristic surface whose constant multiplicity may
be greater than one. It also introduces some innovations borrowed from progress
made in the last years in the study of nonlinear geometric optics. This is par-
ticularly true for the presentation of the transport equations.

12



Definition. For 0 < s € N, the space H% is the set of u € L*(Q,,1) so that
for any o € NE with |a| < s one has (Z1,Z2,...,Zk)%u € L*(Qq,1) where

Z1,...,4K is a generating set for Z. The linear space H% is a Hilbert space
with a family of pairwise equivalent norms defined by
2 L At a 2
Hu“s’/\ = Z le (2., Zxk) “”L%Qa,r)' (43)
lor|<s

The symbol || ||rrs, when used without further clarification is meant to denote
one of the family of norms.

The main result of the section is the following.

Theorem 4.1 Suppose that (3+d)/2 < s € N, 0 < k € N, and that for all
lal <k,
(Z1,---,ZK)" € L®(Qor) N HE

and vanishes on a neighborhood of {t = —a}. Then the unique u¢ € L*(Qy, 1)
solving the initial value problem

Lu*=f in Q,r, u€|t: =0
satisfies for all |a| < k,
(Z1,...,ZK)"u® € L®(Qa,1)) N HE,

and for all |B| < k+1

(Z1,.., 2K)° (T = 7(y))us € L®(Qa1).

There is a constant C independent of f and € so that

Z ||(Z1> L) ZK)QUGHL“’(QQ,T)OH% +
lo| <k

Y 2, Zk)P (1 = 7))l @ r) (44)

|B|<k+1
<C Z ||(Z17---,ZK)afHLoo(Qa,T)nH;-

|| <k

To prove the theorem the key is to prove (44) as an a priori estimate. This is
broken into two parts, L? estimates and then L™ estimates which are proved in
the next two subsections. Readers familiar with such conormal estimates may
want to skip directly to §5.
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4.1 L2 estimates.

The L? estimates are implied by the next elementary L? estimate proposition
followed by a nontrivial commutation argument.

Proposition 4.2 For each 0 < s € N there are constants As and Cs > 0 so
that for all uw € C*(Qa,7) with (Z1,. .., ZK)%u|,__, =0 for all |a < s, one
has

AS A, (= Ayl

or S Ol L, 5 (45)
This estimate descends from the following basic estimate.

Lemma 4.3 There is a Ao > 0 so that for all u € C*(Qu,1)) with u|t:7a =0
one has
Re (e ™ Léu, e *u)

> (A=) Re (e Mu, e *u) (46)

Qa, T Qa,7’

where the scalar product is that in L*(Qq ).
Proof of Lemma. Begin with the identity

Re (e ™ Léu, e Mu) = Re ((L¢ + AI) e Mu, e™Mu)

Qa,T Qa, 7’
Integration by parts in the L term on the right yields
Re (Lfe Mu,e My )Qa,T = /39 < Z v Ay e Mu, e*’\tu> do
a,T “20
B¢ + B¢* 0A VY
+/ <(7+ —“)e u,e u>dy,
Qa,T 2 Z 6yl‘

n>0

where v is the unit outward normal and do the element of surface area.

Since u vanishes at ¢ = —a the integral over that part of the boundary van-
ishes. The outward normal to the boundary {¢t = T} is (1,0,...,0) and the
normal at the lateral boundary is V., (t — £(z)) = (1, —V£). Therefore, As-
sumption 1 guarantees that on these parts of the boundary the matrix ) v, A4,
is nonegative so that the boundary integral is nonnegative and the lemma follows
since B¢ and 9, A, are uniformly bounded. O

The proof of the proposition proceeds by a commutation argument in suit-
able coordinates together with a patching using a partition of unity. The co-
ordinates for both dependent and independent variables are chosen to achieve
the commutation relation (52) between L€ and Z. To prepare for that we begin
with a moderately general discussion.

14



Definition. Denote by M the family of smooth N x N matrix valued functions
on Qur. If P(y,0) is an N x N system of linear partial differential operators
of order one whose coefficients are smooth on €, T, we say that

PCML+MZ+M, (47)

when there are smooth matrix valued functions Mr(y), M1(y), ..., Mk(y), and
Mo(y) on Qg 1 so that

K
P=M,L+Y M;Z;+ M.
j=1
The definition of
P c MZ+ M, (48)

is analgous but without the M L term.

When condition (48) holds P is sometimes called tangential and sometimes
totally characteristic. The first part of the next lemma is both well known and
easy. We learned it from the work of Melrose. The second part of the lemma is
closely related to ideas investigated in [MeR], [Bol, Bo2], and [RR].

Since the principal symbol P(y,n) of a differential operator is homogeneous
of degree one in the the fiber variable n and the fiber in N*(X) has dimension
equal to one, it follows that for y € ¥ and (y,n) € N*(X), kero(P)(y,n) and
rangeo(P)(y,n) do not depend on the choice of 1 # 0.

Lemma 4.4 i. (48) holds if and only if the principal symbol o(P) satisfies
J(P)lN*(E) =0.

ii. Suppose that L is an N x N system of first order partial differential op-
erators with smooth coefficients on Q, 1, not necessarily hermitian, and that
ker o(L)|n+(x) and rangeo(L)|n+(x) are smooth vector bundles on ¥ satisfying

kernel o(L)|n+(sy N rangeo(L)|n-zy = {0}. (49)
Then (47) holds if and only if
0(P)|kernel o(L)| sy = 0- (50)
Remark. The hypothesis (49) is equivalent to
cN = kernelo(L)|n+(x) @® rangeo(L)|n+(x), (51)

and also to
kernel O'(L) |N* (=) = kernel U(L)2 |N* (=) -

These equivalent hypotheses are automatically satisfied when the A, are her-
mitian.
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Proof. The only if parts of each of assertions i. and ii. are immediate.

The assertions are local and independent of the choice of y coordinates so it
suffices to reason in coordinates so that £ = {yq = 0}. In such coordinates one
has

d
P=Y Cu(y)du+Llot. = Ca(y)ds mod MZ+ M
p=0

Using Taylor’s theorem write

Ca(yo, - -»Ya—1,Ya) = Ca(Yo, - - -,Yd—1,0) + y4 Ca(y) .

Then since yq 84 € Z one has
P = Cd(yo,. ..,yd,l,O)Od mod M Z + M.

On the other hand o(P)|n+x) = Ca(Yo, - - - ,Yd—1,0)n4, s0 if 0(P)|n+(z) =0
then (48) holds which proves the if part of i..
Next turn to ii.. Analogous computations for L show that

ML = M(yo,---,Ya-1,0) Aa(yo, - - -,Ya-1,0) 0 mod M Z + M.
In these coordinates, (50) is equivalent to the assertion
kernel A4(yo,-.-,Y4-1,0) C kernel Cy(yo,..-,¥a-1,0).

This together with (51) implies that there is a unique smooth matrix valued
function M (yo,...,yd—1) so that

kernel A4(yo,---,Yd—1,0) C kernel M (yo, - .., Yd4—1),

and
M(yo,...,ya—1) Aa(yo,-..,¥a-1,0) = Ca(yo,---,Ya—1,0).

It follows that P — ML C MZ + M proving the if part of ii.. d

The key to conormal estimates are commutation relations of the form
[2,I] C ML+ MZ+M. (52)

It is clear that such a relation is invariant under a change of independent vari-
able y' = y'(y). In addition, (52) is invariant under multiplying L by a smooth
invertible matrix valued function. However, linear systems are also invariant
under linear changes in the dependent variable v’ = M(y)u(y). One of the
subtleties of the commutation relation (52) is that they are not invariant under
such changes of variables. They depend on the choice of basis for the depen-
dent variable, and that choice may need to depend on y as the next example
illustrates. This is in sharp contrast to the identities (47) and (48) which hold
independent of the choice of basis.
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Example. Consider d = N = 2 and ¥ = {y» = 0}. Suppose that r(y1) a
smooth unit vector valued function of y; with r’ # 0. Consider operators with

L = |r(y1))r(y1)| 02 mod M Z+ M. (53)
Then

01,2) = (I @) el + k) @)]) & mod MZ+M.  (549)

Since the coefficient of 92 in (53) has rank one, and the coefficient in the com-
mutator has rank two the operator [01, L] does not satisfy (50) and therefore
the commutator identity (52) does not hold.

On the other hand, if one makes a smooth unitary change of variables in C

u="U(y)v with U(ys)r(y) = (1,0)
and then multiplies by U, the operator L is transformed to a symmetric hyper-
bolic operator L with leading coefficients U A, U*. Therefore
L=U|r(y))(r(y)|U* 32, mod MZ+ M.

However, by construction,

" 1 0
Ul el 0 = (o )
and it follows that all the commutators [Z, [] satisfy (50).

Lemma 4.5 When assumptions 1,3, and 4 are satisfied and y € Sa1 there is
a neighborhood of y and a smooth unitary matriz valued function U(y) so that

the operator Lv := U L (U*v) satisfies
[2,L] ¢ ML+ MZ+ M. (55)

Proof. The commutator identity holds or not independent of the choice of
coordinates y. On a neighborhood of y introduce local coordinates preserving
the time coordinate and so that ¥ = {y4 = 0}.

Lemma 3.1 implies that ker L(y,d¢) is a smooth vector bundle on ¥, 7.
Denote by k > 1 the dimension of the fibers on a neighborhood of y. Write cN =
Ck x CN~F 50 that C* (resp CV~*) is the k (resp. N — k) dimensional subspace
of vectors whose last (resp. first) components vanish. On a neighborhood of y
one can choose a smooth unitary matrix U(y) so that B

ker Ly, do(y)) = Uly)" [¢*].

Then
L=ULU* = (0’”’“ 0 )6d mod M Z + M,
0 Invertible n gy x (N —k)
and
(2,0] = (Okoxk S) 81 mod MZ + M.
The criterion of Lemma 4.4.ii. then implies that (55) holds. d
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Proof of Proposition 4.2. For each y € ¥, 7 choose a neighborhood and
unitary map as in Lemma 4.5. For each y € ﬁa,T \ia,T choose a relatively
open neighborhood in Q, r which does not meet ¥, 7. To the neighboorhoods
disjoint from ¥ associate the unitary matrix valued function which is identically
equal to 1.

Choose a finite cover of (0, 7 by neighborhoods from the preceding para-
graph, and a smooth partition of unity {¢; € Cm(ﬁa,T)}lsisﬁ subordinate
to this cover. For each i denote by U; the associated unitary matrix valued
function.

We now use the big system trick to derive the estimate (45). Define a long
vector of functions on Q, 7 by

u = (G e, @) h:0)u, -, Usp)aly)u) . (56)
Define a diagonal operator
L := diag{U;LU; }. (57)

The equation for ¢ then implies an equation

<L+B€)u:f, (58)
with
£l < C(Flln+ull,n),  forall A, (59)
and
Sl:p ||(Z17 R ZK)aBGHLM(Qa’T) < 0.

Note that the diagonal entries of L are not everywhere defined in Q, 7 but that
they are applied in (58) only to functions with compact support within their
domain of definition. The interest of the bold equation is that one has the
estimate

(A= 2o) ”u”o,A < ”(L + Bf)u”O’)\

which is the case s = 0 of the proposition, and one has the commutation relation
[Z,L]C ML+ MZ + M. (60)

The proof is by induction. Assuming the case s — 1, we prove the case s.
Compute

(L+B)Zu = ZL+Bu+][L,ZJu—- (ZB%)u
Z(L+B%u+ MLu+ MZu+ Mu— (ZB%)u
= ZL+BYu+ ML+B)u+ MZu+ Mu, (61)

Il

where the family M* contains terms from the commutator and [Z,L], terms of
the form MB¢u and terms of the form (ZB€)u. Therefore M€ satisfies uniform
bounds like B¢.
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The inductive hypothesis implies that
A=Ae-))1Zul 10 < Coma|(L4B) Zully1x < O (IT+B Yo +ullsn )

where (61) is used in the last estimate. Summing over Z € {Z; ..., Zk} and
adding the estimate from the case s — 1 yields

K
A= Av) (Ilalls-1r + Y 1Z5ulls-10) < € (11T +BYullo + llullsn)
1

Absorbing the last term on the right in the left hand side yields

A =2)l[ullsx < Cs [[(L+B)ullsx,

which is equivalent to the case s of the proposition. O

4.2 L* estimates.

The next Sobolev type lemma gives two easy L*° estimates.

Lemma 4.6 If s > (1 +d)/2 and u € HS and Vu € H5 ', then u € C(Qu,1)
and there is a constant C = C(s,Qq,7) so that

el ey < € (IVelyr + Nl ) -

Proof. At points away from ¥ the standard Sobolev imbedding theorem applies.
If u satisfies the hypotheses then so does 1 u for any ¢ € C®°(Q,,7) so it
suffices to consider functions u with support in small local coordinate neighbor-
hoods.
On a neighborhood of points of ¥\ dQ choose local coordinates so that

Y = {yq = 0}. Then the hypotheses on 4 and Vu imply that
Yu € L*(yq; H*(RY)) and 84(¢u) € L*(ya; H* ' (R?)).

Standard trace theorems imply that ®u is a continuous function of y; with
values in H*~1/2(R?%) C (L*®° N C)(R?).

At points of ¥ at which ¢t = —a or t = T but not on the lateral boundary
of €2 the local coordinates as above can be chosen respecting the time variable.
Repeating the argument of the last paragraph shows that yu is a continuous
function of y4 with values in H*~Y/2(R%) C (L N C)(R2).

Finally where ¥, 0Q and t = —a or t = T meet, the transversality in
Assumption 3 implies that d > 2 and the surfaces are in general position. One
can choose local coordinates so that ¥ = {yg = 0} and Q is the quadrant
{yo > 0}N{y1 > 0}. Then, repeating as above one finds that 1u is a continuous
function of yg with values in H*~Y/2(R2 x R¥~2) C (L® N C)(R2 x R¥~2). O
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Lemma 4.7 If s > (1+d)/2 and u € H% and ¢ is the defining function of
Yo, then ¢u € C(Qu1) and there is a constant C so that

lo@el o, -y < €l

Proof. Choose a smooth vector field X on ¥ which is transverse to X. Since
X (¢u) = (¢X)u+ (X ¢)u and ¢(y) X is tangential it follows that X (pu) € HE
and

I1X(pu)ll gz < Cligul

Therefore
V@)l < C (IX @0 gms + bl ) < Cllull g
An application of the preceding lemma completes the proof. O

For elements of H% one therefore has L* control except near X. Using the
differential equation one has L control for (I — ) u as the next result shows.
Estimates like these at a noncharacteristic hypersurface ¥ go under the name
partial hypoellipticity. Here the surface is characteristic and one might call the
estimate partial partial hypoellipticity.

Lemma 4.8 Denote by m(y) € C*° (Qa,7) a smooth extension, from a neighbor-
hood of X417 to all of Qo,1, of the orthogonal projector on ker L(y,d¢). There
is a constant C so that for all u € C*(Qy,7) and € €0, €]

|V I =7(y)u ||L2(QG,T) <C ( ”“”le + ||L€“||L2(QG,T)) :

Proof of Lemma. There is a uniquely determined smooth partial inverse Q(y)
to L(y,d¢(y)) defined on a neighborhood of X, 1 by the conditions

Qm=0, and Q(y)L(y,dp(y)) =1 —7(y).
In local coordinates so that ¥ = {yq = 0},
QL(y,0) = (I-m(y)dsg mod MZ+ M,

80
Og(I—7(y)u = QLu mod MZu+ Mu,

whence

|0 (T =) ulls < € (12 u] gt [l )-

This together with the tangential derivatives shows that V(I — 7)u € L? and
the proof is complete. O

Combining Lemmas 4.8 and 4.6 proves the following corollary.
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Corollary 4.9 If s > (1 + d)/2 then there is a constant C so that for all u as
in the previous lemma

=7 ]l panry < C(Jullyy +1ZUl ). (©2)

The more interesting sup norm estimates are those for 7(y)wu, which are
proved by the method of characteristics.

Lemma 4.10 There is a neighborhood O of ia,T in ﬁa,T and a constant C' so
that for all u € C*(Qqr) withu|,__ =0,

|7 (y) u HLoo(@) < (63)
C( ||L€““Loo(9a,T) + H(I - 7r(2/))“||Loo(na,T) + ||Z (I- 7r(y))“||L°°(Qa,T)) )
Proof. Begin with the identity

7Lru = nLu—7nL(I—7)u.
The 7(y) sandwich identity (20) implies that

TLr C (04 v.0z)m+ Mm(y).

Lemma 4.4.i. implies that 7 L (I —7) C MZ + M . Multiplying on the right by
(I — ) yields
rL(I-7) C MZ(I—-7m)+ M —m).
The last three displayed identities show that
(O +v.0)mtu+Mru C nLu+ MZ(I —mu+ M —7)u. (64)

Therefore

H (0 + v.0p)Tu + MMHLw <

O (Il o + 1 = 7)) ullyo g,y + 12 (= 7@y ) -

The fact that Q, 7 is a domain of determinacy in the sense that (5) is satisfied
on the lateral boundary implies that the backward integral curves of the vector
field 0; +v.V, beginning at a point of Q, 7 reach {t = —a} before leaving Q, 7.
Thus integrating the preceding inequality along such integral curves proves the
lemma. O

Estimates (62) and (63) are the key sup norm estimates but they are just
short of sufficient to estimate the sup norm of w since the second estimate
requires a sup norm estimate for the tangential derivatives of (I — 7)u. Now,
Z(I—mu=(Z(I-m))u+ (I—m)Zu. The idea to estimate the second term
would be to differentiate to find L€ Zu = Z Ly + [L¢, Z]u. For this strategy
to work requires good commutation between L¢ and Z and that in turn may
require a change of dependent variable. Fortunately the machinery has already
been set up in the derivation of the L? estimates.
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Proof of Theorem 4.1. The main step is to prove the estimate (44) for
smooth u. The HE part of the conclusion follows from (45). What is new are
the sup norm estimates. The strategy is to use the even bigger system trick
which comes from differentiating (58) tangent to ¥ while taking advantage of
the commutation relation (60).

Introduce the very long vector

u = {(Zl,...,ZK)au}

al<k

Applying tangential derivatives to (58) and commuting yields a very big system
(L+B(y)u = feL®Qr)NHE,

with

L:=diag{L}, and VB, sup|(Z1,.... ZK) B ¥) (g, ) < -
! ,

Note that in these special coordinates Zw(y) = 0 so Z; commutes with (I — ).
Then, the proofs of Corollary 4.9 and Lemma 4.10 yield the estimate

K
”E”Lw(ga,T) + Z “ZJ'(I - 7T)E“Lcm(Qa,T)
Jj=1

< O + B )l 0, myomrs + Il )

This estimate is equivalent to the L> part of (44) which completes the proof of
the latter estimate.

Having proven the a priori estimate, choose f, € C*(Q, 1) so that for all
|a| < k one has the weak star convergence

(Z1ye oy ZR) o = (Z1, ..., ZK)® in Loo(ﬂa’T)ﬂ HE,
and
I(Z1,.. ., ZK)® fallLeo(@urynms < 2[(Z1,- -+ ZK) fllLoo(Qur)n HS, -

The resulting solutions u§, are smooth on ﬁa,T so the a priori estimate holds
for uf,. Thus

Yo WZr,ee, Za)? (I =m0, r) +

|BI<k+1
Z ||(Z17 L) ZM)auanL‘”(Qa,T)ﬂH;
loe| <k
<C Z 1(Z1, - Za)” Fall Lo (@u.r)nmrs, -
loe| <k
Passing to the limit n — oo proves the Theorem. O
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5 Perturbation proof of the Main Theorem 1.2.

Proof. Recall that there are two approximate solutions in play, u¢ from Propo-
sition 2.1 which is a corrected version of ug, . from Theorem 1.2. They differ
by O(e) in the sense that

v 67 || (Zla LR ZK)H (u;pprox - uf) ||L°°(QQ,T) = 0(6) .

Thus to prove the theorem is suffices to find exact solutions v¢ which differ from
u¢ by O(e).

The exact solutions v¢ are constructed as follows. Choose a cutoff function
x(t) € C*°([—a, 0]) as sketched in the figure, so that

xt) =1 ift<—-2a/3 x(t) =0 ift>—a/3.

The cutoff function x.

Let
r(y) = L(y,0)u* + F(y,u") (65)

so that 7¢ = O(e) in the sense of (38). The exact solution v¢ is chosen to satisfy
the nonlinear initial value problem

L(y,8) v + F(y,v®) = x(t) r, ve=uc for t < —2a/3. (66)

This problem automatically has a local solution on —a < t < T'(e) with T'(e) >
—2a/3. To prove the theorem we must show that v¢ exists throughout Q, 1 and
that u¢ — v = O(e). With that in mind define w¢ by

v¢ = uf + ewt.

Subtracting (65) from (66) shows that the initial value problem for v¢ is equiv-
alent to the following initial value problem for w¢,

F € N _F € 1— €
Dt 4 POt en) =Flyu) _ (oxr

€ €
(67)
To analyse this equation start by using Taylor’s Theorem to show that

F(y,u + ew) = F(y,u) + eFy(y,u) w + € J(€, u,w),
where J is a smooth function of its arguments with J(e, u,0) = 0. Define

B = R w), o) = S e e
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Then for all «,

sup | (Z1,...,2Zk)"{B*, g} HLOO(QQ’T) < 00.

0<e<eo
Injecting the definitions into (67) yields the equivalent problem
Lw® = g — eJ(e,u,w), w®=0 for t<—2a/3. (68)
Define G¢(y) to be the solution of the linear problem
L G* = g¢°, G =0 for t< —2a/3. (69)
The estimates for g¢ together with Theorem 4.1 imply that

Zi,...,ZK)7G | < 0. 70
oS |2 Z6) G | gy < 00 (70)

With the goal of showing that w*® is a small perturbation of G¢, define 2¢(y) and
J by

wt = GE+Z€; J(e,u,G,z):—J(G,U,G+z)-

Then, the initial value problem for w¢ is equivalent to
L 2¢ = eJ (e, uf, G, 2°) 2¢=0 for t<—2a/3. (71)

This nonlinear problem for z¢ can be solved by a contraction mapping argu-
ment. Fix (34+d)/2 < s € Nand let

Si={2 € L¥(ur) N HE 2,400 =0, a0d ||2l|p(o ) + Izl <1}

The bounds for u¢, G¢ and Gagliardo-Nirenberg estimates in the conormal cat-
egory (see for example [MR]) show that the family of maps

z = J(e,uf,G¢ )

is uniformly Lipshitzean from S C L™ (Q,,1) N HE to L®(Qq, 1) N HE. At the
same time the estimate from Theorem 4.9 shows that the family of linear maps
(L€)~* are uniformly bounded from S C L®(Q,, 1) N HE to L®(Q,r) N HE. Tt
follows that there is a € €]0, €[ so that the family of maps

z = e(L)7 (e, ,uc, G 2), 0<e<e

is uniformly contractive from S to itself.

Thus, for these values of € the equation (71) has a solution 2¢ € S. This
proves that the exact solution v¢ = u® 4+ €G¢ + €2° exists througout €, 7 and
that [[v¢ — u®||Lenms = O(€).

To complete the proof it remains to show that the tangential derivatives of
v¢ — uf are O(¢) in sup norm. For this, it suffices to show that the tangential
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derivative of w® are O(1) in sup norm. To do that use (44) applied to (68) to
find

Z ||(Z17 ) ZK)awGHL“’ﬂHg <
la|<k

Ci(1+ Y ellZryee, Zi0) T e, w) s )
o<k

Given our bounds for u¢ and the fact that J(e, u, 0) = 0, the Gagliargo-Nirenberg
estimates show that there is a Cy = Co(k, s,u¢, J) so that

> (2, Zk)* T (e us ) [penmy < Co D (21,0, Zk) W || oo, -
|| <k la[<k

Thus when €C1C2 < 1/2 one has

> 2y Zi) || Lo (@ rynms, < 2C -
la|<k

Since 0 < k € N is arbitrary this shows that for all «, ||(Z1, ..., Zk)*w||Le =
O(1) which completes the proof. O

6 References.

[A] D. Alterman, Diffractive nonlinear geometric optics for short pulses, Ph.D.
Thesis, University of Michigan, May 1999.

[Be] M. Beals, Propagation and Interaction of Singularities in Nonlinear Hyper-
bolic Problems, Birkhiuser, Boston, 1989.

[Bol] J.-M. Bony, Interaction des singularités pour les équations aux dérivées
partielles non-linéaires, Sem. Gaoulaouic-Meyer-Schwartz, Ecole-Polytéchnique,
Paris, 1979-1980, exposé 22.

[Bo2] J.-M. Bony, Interaction de singularités pour les équations aux dérivées
partielles non-linéaires, 1981-82, exposé no. 2.

[DJMR] P. Donnat, J.-L. Joy, G. Métivier, and J. Rauch, Diffractive nonlinear
geometric optics, Séminaire Equations aux Dérivées Partielles, Ecole Polytech-
nique, Paris, 1995-1996.

[Ma] A. Majda, Nonlinear geometric optics for hyperbolic systems of conser-
vation laws, Oscillation theory, computation, methods of compensated compact-
ness, IMA Vol. Math. Appl. 2, Springer, New York, 1986, pp. 115-165.

[MaR] A. Majda and R. Rosales, Resonantly interacting weakly nonlinear hy-
perbolic waves I, Stud. appl. Math., 71(1984), 149-179.

[MeR] R. Melrose and N. Ritter, The interaction of nonlinear progressing waves,
Annals of Math (121) 1985, 187-213.

[Me] G., Métivier, The Cauchy problem for semilinear hyperbolic systems, Duke
Math. J. 53(1986), 983-1011.

25



[R] J. E. Rothenberg, Space-time focusing: breakdown of the slowly varying en-
velope approximation in the self-focusing of fentosecond pulses, Optics Letters,
17(1992), 1340-1342.

[RR] J. Rauch and M. Reed, Bounded stratified. and striated solutions of hy-
perbolic systems, in Nonlinear Parital Differential Equations and Their Appli-
cations Vol. IX, H. Brezis and J.L. Lions eds, Pitman Research Notes in Math.
181, 1989.

[Y1] A. Yoshikawa, Solutions containing a large parameter of a quasi-linear
hyperbolic system of equations and their nonlinear geometric optics approxima-
tion, Trans. A.M.S., 340(1993), 103-126.

[Y2] A. Yoshikawa, Asymptotic expansions of the solutions to a class of quasilin-
ear hyperbolic initial value problems, J. Math. Soc. Japan, (47)1995, 227-252.

26



