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Suppose that P(D) is a homogeneous hyperbolic polynomial of degree m > 1 with time-like
covector §. Here D = 9/idy with y € R". The symbol P(7) is a homogeneous polynomial on
(R™)*. Hyperbolicity with respect to # € (R™)* means that for any n € (R")* the equation

P(n+s0)=0 (1)

has only real roots s. In particular, P(6) # 0.

The characteristic variety
CharP := {n€eR"\0 : P(n) =0}

is a conic real algebraic variety in (R")*. Since the equation (1) has m complex roots (counting
multiplicity), and they all are real, it follows that every real line 7 + s intersects the variety in
at least one point and no more than m points which shows that the variety has codimension 1 in
(R™)*. The fundamental stratification of real algebraic geometry (see [BR]) asserts that except for
a set of codimension at least 2, the variety consists of smooth, points, that is points where locally
the variety is equal to the zero set of a real analytic function with nonvanishing gradient.

Definitions. If n # 0 is a point of the characteristic variety then Q,(n) is the homogeneous
polynomial of degree k > 1 which is the leading term in the expansion of P (7 + n) about 7,

P(n+n) = Qy(n) + higher order terms in 7, Qn #0.

At a smooth point 7, the annihilator of the tangent space T, (Char P) is a one dimensional linear

subspace Ly € (Tﬂ (Char P))* = R". The lines in R" parallel to Ly are those moving with the
group velocity (see [AR]).

This velocity describes the propagation of wave packets, pulses, and singularities associated with
the frequencies (R \ 0) 7.

For variable coefficient operators, the above computations are performed in the tangent and
cotangent spaces at a fixed point and P is the principal symbol at that point. They are pertinent
for example for symmetric hyperbolic systems and points of the characteristic variety which are
microlocally of constant multiplicity.

If n € Char P is a smooth point of multiplicity one, that is P(n) = 0 and dP(n) # 0, then
dP(n) is a basis for L,, and one has a simple way of recovering the velocity from the symbol.

In an analogous way, at a smooth point one can write the variety locally as ¢ = 0 with dgq # 0,
then dq(n) is a basis for L,. However, in real algebraic geometry it is not in general easy to find
a function ¢ starting from the defining function P when the roots have multiplicity greater than
one. The following two results provide a straigtforward algorithm to compute the group velocity
for our hyperbolic operators.
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Theorem. If n is a smooth point of the characteristic variety and @, is as above, then there
is a linear form £(n) so that the tangent plane at n to the characteristic variety of P is equal to

{£(n —n) = 0}, and, Qy(n) = £(n)*.

Corollary. If 1 is a smooth point of the characteristic variety and Q, and L, are as above, then
for all n which are not in the characteristic variety of QQ,, (e.g. 1 =0), dQ,(n) is a basis for Ly,.

These results both rely on the fundamental theorems concerning Local Hyperbolicity (see [G]).
That theory is closely related to the ideas of microhyperbolicity introduced by Bony and Shapira
in [BS] (see [H, §8.7]).

The proof of the Theorem begins with the fact from [G] that @, (n) is hyperbolic with time-like
covector 6. Then for every real 7 the equation B

QQ("? +s0)=0 (2)
has only real roots s.

Lemma 1. For every real n the equation (2) has exactly one root s.

Proof. Since k is the degree of QQ, one has as ¢ — 0,

e *P(n+e(n+s0) = @n(n+ s6) + O(e) . (3)

If (2) had two roots s; and s3, then Rouché’s theorem would imply that the characteristic variety
of P would have points near 7 + ¢(n + s;6) as ¢ — 0 violating the smooth variety hypothesis. I

The next Lemma is then applied to R = @,,.

Lemma 2. If R(n) is a homogeneous polynomial hyperbolic with respect to the time-like covector
0 and for all real 1 the equation R(n + sf) = 0 has exactly one real root s, then there is a linear
form £(n) such that

R(n) = £(n)%e .

Proof. Introduce coordinates (7,&1, ....,&€r—1) in (R™)* so that 8 = (1,0,...,0). Then
R(r.&) = R(1,0,....0) (" + aa()r* " - + apo (O)7 + au(©))

with a;(£) homogeneous of degree j and k = deg R > 1.
By hypothesis, for each real ¢ the equation R(7,£) = 0 has a unique root 7 = r(£). Therefore

k
R(7,€) = R(1,0,...,0)(r —r(¢))".
Equating coefficients of 7~! shows that

—k?"(f) = 011(6),

so 7(€) is a homogeneous polynomial of degree 1. The Lemma follows with 4(7,£) = c(7 — r(§))
provided that c is chosen to satisfy ¢* = R(1,0,...,0). |
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The constant ¢ and the functional £ are uniquely determined up to a factor which is a k' root of
unity.

Proof of Theorem. Combining the above lemmas implies that Q,(n) = £(n)*. It remains to
show that the tangent plane to the characteristic variety of P is given by the equation £(n—n) = 0.

Introduce local coordinates (7,&) as in the proof of Lemma 2. Since # = (1,0,...,0) is

noncharacteristic for P, the variety of P is given by the roots 7 of P(7,£) = 0 with £ ranging over
R™ \ 0.

The points near 1 = (7, £) are then given by the roots 7 of
P(t+er,§+€) = 0, (4)
with |¢| < 1. Equation (2) takes the form

e FP(r+er,é+eb) = Qn(7,€) + O(e) - (5)

Since @, = ¢*, the equation Q,(7,£) = 0 is equivalent to the equation £(7,£) = 0. Since

20) = Q,(0) # 0, it follows that the solutions of £(7,£) = 0 are given by 7 = z.£ for an
appropriate .

Rouché’s Theorem applied to (5) shows that for || < 1 the roots of (4) are given by
T=z.£+O0(e).

The corresponding points 7 = (7 + €7,{ + €£) of the characteristic variety of P differ from 7 by
O(e) and satisfy
U(n —n) = O(e*).

This shows that the equation of the tangent plane is £(n —n) = 0. |

Proof of Corollary. Since @, = £* one has

dQy(n) = kL(n)*~*de(n).

Since £ is a linear form on (R™)*, df(n) is a vector which does not depend the point 7 where the
derivative is evaluated. The Theorem implies that d¢ is a basis for L,. Therefore, dQ;(n) is a basis

whenever it is nonvanishing. This holds exactly for 7 which satisfy £(n) # 0 which is exactly those
7 which are not in the characteristic variety of @,,. ]

References

[AR] D. Alterman and J. Rauch, Diffractive nonlinear geometric optics for short pulses, preprint
available at www.math.lsa.umich.edu/ rauch.

[BR] R. Benedetti and J.-L. Risler, Real Algebraic and Semialgebraic Sets, Actualités Math-
ématiques, Hermann (1990).

[BS] J.-M. Bony and P. Shapira, Existence et prolongement des solutions holomorphes des équations
aux dérivées partielles, Invent. Math. 17, 95-105 (1972).

[G] L. Géarding, Local hyperbolicity, Israel J. Math. 13, 65-81 (1972).
[H] L. Hérmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag (1983).



