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Abstract

We prove that symmetrizable hyperbolic systems have finite speed
of propagation. This is done by constructing the solution by the
method of finite differences. The estimate for the speed is not sharp.
Proving a precise result is an open problem.

1 Introduction

Denote by

(t, x) = (t, x1, . . . , xd) = y = (y0, y1, . . . , yd) ∈ R
1+d ,

with dual variable

(τ, ξ) = (τ, ξ1, . . . , ξd) = η = (η0, η1, . . . , ηd) .

Consider N ×N systems of linear partial differential operators

L(y, ∂y) := ∂t +
d∑
j=1

Aj(y) ∂j +B(y) (1)
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on [0, T ]× Rd which satisfy

∀α, sup
y∈[0,T ]×Rd

∣∣∣∂αy {Aj(y), B(y)}
∣∣∣ < ∞ , (2)

Finite speed for nonlinear hyperbolic problems is usually proved by con-
structing a linear equation for the difference of two solutions.

Definition 1 A homogeneous polynomial p(τ, η) is hyperbolic with timelike
variable t iff p(1, 0, . . . , 0) 6= 0 and for all ξ ∈ Rd, the roots τ of p(τ, ξ) = 0
are all real.

Definition 2 The system (1) is hyperbolic iff for all y ∈ [0, T ]× Rd,

p(y, τ, ξ) := det
(
τI +

∑
j

Aj(y) ξj

)
is a hyperbolic polynomial in (τ, ξ) with timelike variable t.

Definition 3 The system (1) is symmetric hyperbolic (see [4], [9]) iff the
matrices Aj(y) are hermitian symmetric.

Definition 4 The system (1) is strictly hyperbolic iff for each y ∈ Rd and
ξ ∈ Rd \ 0 there are N real distinct roots τ of p(y, τ, ξ) with a uniform lower
bound on the distance between roots for (y, ξ) ∈ [0, T ]× Rd × {|ξ| = 1}.

Definition 5 The system (1) is symmetrizable hyperbolic iff there is a smooth
invertible N×N matrix valued function K(y, ξ) ∈ C∞([0, T ]×Rd×{Rd\0}),
homogeneous of degree 0 in ξ so that so that

K(y, ξ)
d∑
j=1

(
Aj(y) ξj

)
K(y, ξ)−1

is hermitian symmetric and for all α

∂αy,ξK , and ∂αy,ξ(K
−1) (3)

are uniformly bounded on [0, T ]× Rd × {|ξ| = 1}.
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Symmetric and strictly hyperbolic systems are both symmetrizable. So
are systems so that

∑
Ajξj is diagonalisable with real eigenvalues of constant

multiplicity. Using the algebra of singular integral operators, a.k.a. pseudod-
ifferential operators, Calderón [2] (resp. Yamaguti [16]), treated the Cauchy
problem in the strictly hyperbolic (resp. constant multiplicity) setting. The
symmetrizable systems were introduced in the early 1960s. They date at
least to [9] where it is shown that the methods of Calderón and Yamaguti
yield the following result.

Theorem 1 For any s ∈ R and g ∈ Hs(Rd) there is a unique solution
u ∈ C([0, T ] ; Hs(Rd)) to the Cauchy problem

Lu = 0 on [0, T ]× Rd , and u|t=0 = g . (4)

The symmetrizable systems have some annoying instabilities. If one
changes variables to (t′, x′) := (t + εψ(x), x) with ψ ∈ C∞0 (Rd) and ε small,
it is not known if the new system must be symmetrizable in t′, x′. Strictly
hyperbolic, symmetric hyperbolic, and diagonalisable systems with of con-
stant multiplicities remain so in the new variables. Such perturbations of
space like hypersurfaces are at the heart of the usual proofs of finite speed.
To my knowledge it was not known that symmetrizable systems have finite
speed of propagation. Since finite speed is one of the desirable properties of
hyperbolic systems, this was a serious gap.

In this paper we prove that there is finite speed using results that have
been known for more than thirty years. We construct a solution with finite
speed by the method of finite differences.

Theorem 2 If u is the solution of the Cauchy problem from Theorem 1 and
g vanishes on an open set ω, then the the solution u vanishes on the relatively
open subset Ω of {t ≥ 0},

Ω :=
{

(t, x) ∈ [0, T ]× Rd : c t
√
d < min

x/∈ω

∑
j

|xj − xj|
}
,

where

c := sup
{
σ
( ∞∑
j=1

Aj(y) ξj

)
: (t, x, ξ) ∈ [0, T ]× Rd × {|ξ| = 1}

}
, (5)

and σ denotes spectral radius.
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Remarks. 1. The result implies that waves propagate with speeds no
greater than c

√
d. When d > 1, the factor

√
d renders this estimate imprecise.

2. By a Hölmgren type duality argument it follows that the operator L
has local uniqueness in the Cauchy problem at hypersurfaces t = φ(x) that
satisfy |∇xφ| < (c

√
d)−1.

3. Precise finite speed as in [8], [11] would follow from local uniqueness
at spacelike surfaces. Conversely, if one has such a precise finite speed re-
sult, then a Hölmgren argument would prove local uniqueness at spacelike
hypersurfaces.
4. An equivalent definition of symmetrizability is the existence of a smooth
strictly positive hermitian symmetric R(y, ξ) homogeneous of degree 0 in ξ
so that

R(y, ξ)
(∑

j

Aj(y) ξj

)
is hermitian symmetric for all (y, ξ). Given such a symmetrizer R, the matrix
K := R1/2 serves for Definition 5. Conversely if one knows a K, then R =
K∗K serves for the equivalent definitio.
5. Precise finite speed would follow if one knew that symmetrizable sys-
tems could be approximated by symmetrizable systems with analytic or even
Gevrey Gs coefficients with s < N/(N − 1). In such a case, precise finite
speed for the approximate equation follows by combining results of [1] and
[8] (see [13] for a new proof of Bronshstein’s theorem). The result would
follow by a passage to the limit.
6. The Kreiss matrix theorem [7] implies that for constant coefficients Aj
the condition of symmetrizability by a not necessarily smooth K satisfying
the bounds (3) only for α = 0 is a necessary and sufficient for ei

∑
ξjAj) to be

an L2(Rd) multiplier, that is

sup
ξ∈Rd

‖ei
∑
ξjAj)‖ < ∞ .

A convenient reference is [12].
7. Friedrichs and Lax [5], [6] introduced a more restrictive class of symmetriz-
able hyperbolic operators which remain symmetrizable for nearby spacelike
hypersurfaces. As a result, finite speed can be proved in that case by the
standard methods. The definition given here is simpler and more widely
employed.
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2 Friedrichs’ scheme.

Friedrichs’ scheme is a finite difference approximation to the operator L which
is constructed so that in the symmetric case, the stability is proved by an
energy identity analogous to the energy identity for the differential equation
(see for example [12]). The scheme replaces the differential operators ∂j by
the symmetric difference operators

(δhj u)(t, x) :=
u(t, x+ hej)− u(t, x− hej)

2h
,

where
ej := (0, . . . , 0, 1, 0, . . . , 0),

with nonvanishing jth component.
The distinctive feature of the scheme is the treatment of the time deriva-

tive. It is replaced by

u(t+ k, x)− (
∑
|α|=1 u(t, x+ hα))/2d

k
.

The origin of this is the forward difference operator

u(t+ k, x)− u(t, x)

k
.

Then the value u(t, x) is replaced by the average of u at the 2d points which
differ from t, x by translations of distance h along the coordinate axes. The
time interval k is taken to be

k := λh . (6)

Definition 6 The difference operator Lh is defined by

Lhw :=
w(t+ k, x)− (∑|α|=1 w(t,x+hα))

2d

k
+
∑
j

Aj(y) δhjw + B(y)w . (7)

To construct an approximate solution, uh(t, x) of the initial value problem
in Theorem 1 proceed as follows.

For 0 ≤ t < k define uh(t, x) = g(x). For k ≤ t < 2k determine uh by
solving

Lhuh = 0 . (8)
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Inductively determine uh for all nk ≤ t < (n + 1)k. so that uh satisfies (8).
This determines uh on a maximal interval 0 ≤ t < T (k) with T (k) ∈]T−k, T ].

Define

Γλ :=
{

(t, x) t ≥ 0 , and
∑
j

|xj| ≤
t

λ

}
Reasoning inductively on the intervals [0, nk[ shows that the value of uh at
(t, x) depends only on the values of g on the intersection of x−Γλ with t = 0.

The values of the exact solution of (4) at (t, x) could (depending on the
system) depend on the values of g at all points of the ball |x− x| ≤ c t.

The Courrant-Friedrichs-Levy (CFL) condition (see [3], [12]) requires that
the domain of dependence of the difference scheme must be at least as large
as the domain of dependence for the differential equation. For this to hold
one must have

λ c ≤
√
d . (9)

In order to have the smallest domain of dependence, we take the extreme
value

λ c :=
√
d . (10)

If c = 0 this choice is not possible. However in that case, there are no x
derivatives in the partial differential operaotor and Theorem 2 is elementary.
In the sequel we suppose that c > 0.

With the choice (10), the value of uh(t, x) depends only on the values of
g on (t, x)− Γ√d/c. Therefore if g vanishes on ω, then uh vanishes on the set
Ω in Theorem 2.

3 Proof of Theorem 2

We now use the fact (see [14],[16]) that for symmetrizable systems the Friedrichs
scheme is stable for all λ satisfying the CFL condition (9). This nontrivial
result relies on the sharp G̊arding inequality of Lax-Nirenberg (see [10], [15]).

The stability means that there is a constant C(s) independent of h and
g so that

sup
0≤t≤T−k

‖uh(t)‖Hs(Rd) ≤ C(s) ‖g‖Hs(Rd) .

It follows that there is a subsequence uh(n) with h(n)→ 0 and a v so that

uh(n) ⇀ v weak ∗ in L∞([0, T ] : Hs(Rd)) .
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To show that v is the solution of (4), introduce the transposed difference
operator

(Lh)†w :=
w(t− k, x)− (∑|α|=1 w(t,x−hα))

2d

k
−
∑
j

δhj (Aj(y)†w) + B(y)†w .

so that for all f ∈ L∞([0, T ] ; H(
R
d)), w ∈ C∞0 ([0, T ]× Rd) and h small,∫ T

0

∫
Lh(f) w dx dt =

∫ T

0

∫
f (Lh)∗w dx dt .

In addition,
(Lh)†w = L†w +O(h) ,

where
L†w := −∂tw −

∑
j

∂j(A
†
jw) + B†w ,

is the transposed differential operator.
We next perform a more careful computation when w ∈ C∞0 (]−∞, T [×Rd)

need not vanish near t = 0. The key is the identity∫ T

0

f(t+ k)w(t) dt =

∫ T

0

f(t)w(t− k) dt −
∫ 0

−k
f(t+ k)w(t) dt .

Using this yields∫ T

0

∫
Lh(f) w dx dt =

∫ T

0

∫
f (Lh)†w dx dt− 1

k

∫ 0

−k

∫
f(t+k, x)w(t, x) dx dt .

Use this with f = uh which satisfies Lhuh = 0 and uh(t) = g for t ∈ [0, k[
to find,

0 =

∫ T

0

∫
uh (Lh)†w dx dt − 1

k

∫ 0

−k

∫
g(x)w(t, x) dx dt .

Pass to the limit h(n)→ 0 to find,

0 =

∫ T

0

∫
v L†w dx dt −

∫
g(x)w(0, x) dx .

This is the weak form of the initial value problem (4). By uniqueness of
solutions it follows that v = u.

We have shown that uh vanishes on the open set Ω of the Theorem 2.
Since uh(n) converges to u it follows that u vanishes on Ω.
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[7] H. O. Kreiss, Über matrizen die besränkte halbgruppen, erzeugen, Math.
Scand. 7(1959),71-80.

[8] J.L. Joly, G. Métivier, J. Rauch, Hyperbolic domains of determinacy
and Hamilton-Jacobi equatiions, J. Hyp. Part. Diff. Eq., to appear.

[9] P. D. Lax, Lectures on Hyperbolic Partial Differential Equations, Stan-
ford Lecture Notes, 1963.

[10] P. D. Lax and L. Nirenberg, On stability for difference schemes, a sharp
form of G̊arding’s inequality, Comm. Pure Appl. Math.19 (1966), 473-
492.

[11] J. Rauch, Precise finite speed with bare hands, submitted.

[12] R.D. Richtmeyer and K. W. Morton, Difference Methods for Initial
Value Problems 2nd ed., Wiley Interscience 1967.

8



[13] S. Spagnolo and G. Taglialatela, Quasisymmetrizers and semilinear hy-
perbolic systems, in preprint.

[14] R. Vaillancourt, A simple proof of the Lax-Nirenberg theorems, Comm.
Pure Appl. Math 23(1970), 151-163.

[15] R. Vaillancourt, On the stability of Friedrichs’ scheme and the modified
Lax-Wendroff scheme, Math. Comp. 24(1970), 767-770.
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