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Abstract

Precise finite speed, in the sense of that the domain of influence is a subset of the union of
influence curves through the support of the initial data is proved for hyperbolic systems
symmetrized by pseudodifferential operators in the spatial variables. From this, uniqueness
in the Cauchy problem at spacelike hypersurfaces is derived by a Hölmgren style duality
argument. Sharp finite speed is derived from an estimate for propagation in each direction.
Propagation in a fixed direction is proved by regularizing the problem in the orthogonal
directions. Uniform estimates for the regularized equations is proved using pseudodiffential
techniques of Beals-Fefferman type.

§1. Introduction.

In R
1+d
t,x , consider the system of partial differential equations,

0 = ∂tu +
d

∑

j=1

Aj(t, x)∂ju + B(t, x)u := Lu , ∂j :=
∂

∂xj
. (1.1)

Here
u(t, x) = (u1(t, x), . . . , uN (t, x)), (t, x) ∈ R

d,

is complex N -vector valued and the coefficients Aj , B are smooth N × N matrix valued
functions so that for all α,

∂α
t,xAj , ∂

α
t,xB ∈ L∞(R1+d) .

Introduce the symbol,

a(t, x, ξ) :=

d
∑

j=1

Aj(t, x) iξj , (1.2)

* Research partially supported by the National Science Foundation under grant NSF DMS
0405899
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and characteristic polynomial

p(t, x, τ, ξ) := det
(

i τI + a(t, x, ξ)
)

.

Definitions. The system is weakly hyperbolic when for all (t, x, ξ) ∈ R
1+2d, the roots

τ of p(t, x, τ, ξ) are real. The system is symmetric hyperbolic when i a is hermitian
symmetric for all (t, x, ξ) ∈ R

1+2d. The system is strictly hyperbolic when for all real
(t, x, ξ) ∈ R

1+2d with ξ 6= 0, the equation p = 0 has has N distinct real roots τ . The system
has constant multiplicity when i a(t, x, ξ) is diagonalisable for all real (t, x, ξ) ∈ R

1+2d

with real eigenvalues whose multiplicity is independent of t, x and ξ 6= 0. The system is
symmetrizable, when there is a smooth hermitian N×N matrix valued function r(t, x, ξ)
defined on R

1+d
t,x × R

d
ξ homogeneous of degree zero in ξ for |ξ| ≥ 1 so that

i. ∃C > 0, ∀t, x, ξ, r ≥ CI,

ii. ∀α, β, 〈ξ〉|β|∂α
t,x,∂

β
ξ r ∈ L∞(R1+d × R

d) .

iii. The matrix r(t, x, ξ)a(t, x, ξ) is hermitian antisymmetric for all t, x, ξ with |ξ| ≥ 1.

For weakly hyperbolic systems, the Cauchy problem is well set in suitable Gevrey spaces
provided the coefficients have sufficient Gevrey regularity [B] [ST]. They are usually not
well posed in C∞. The other four classes define Cauchy problems so that for arbitrary s
and initial value f ∈ Hs(Rd) there is a unique solution u ∈ ∩j≥0 C

j(R ; Hs−j(Rd)) with
u|t=0 = f . All four are special cases of the fourth.

Convention. When not otherwise specified, (·, ·) and ‖ · ‖ denote the scalar product and
norm in L2(Rd

x).

The crux in showing that the Cauchy problem is well set for the last four classes above is
to prove that there is a function c(t) independent of the intitial data so that for solutions
u ∈ C(R ; H1(Rd)) of (1.1), ‖u(t)‖ ≤ c(t) ‖u(0)‖.

The strategy for proving such estimates is to find a smooth family of strictly positive
bounded family of self adjoint operators on L2(Rd)) so that

CI ≥ R(t) ≥ cI > 0, and,

sup
t,x,ξ∈R1+2d

∥

∥

∥
R

(

d
∑

j=1

Aj(t, x)∂ju
)

+
(

R
(

d
∑

j=1

Aj(t, x)∂ju
)

)∗∥
∥

∥

L(L2(Rd))
:= K <∞.

In such case one finds that for solutions of (1.1),

∂t(R(t), u, u) ≤ C1(R(t)u, u),

so
(R(t)u(t), u(t)) ≤ eC1|t| (R(0)u(0), u(0)).

In the symmetric hyperbolic case, one may take R = I. The case where r = r(t, x) is
multiplication by a matrix valued function was introduced by Friedrichs [F]. When r is
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not the identity this class is sometimes called symmetrizable. Our principal interest is the
case where r depends on ξ. Precise finite speed when the symmetrizer is independent of
ξ has several known proofs ([JMR], [R1]). In the constant multiplicity case, including the
strictly hyperbolic case, order the distinct real eigenvalues of i a,

λ1(t, x, ξ) < λ2(t, x, ξ) < · · · < λn(t, x, ξ) .

Since the multiplicities do not change, the eigenvalues do not cross, and such an ordering
of the smooth eigenvalues is possible. Define πµ(t, x, ξ) smooth and homogeneous of degree
zero to be the spectral projection along the range of a(t, x, ξ)−λµ(t, x, ξ) I onto its kernel.
Then the R(t) can be taken to be classical pseudodifferential operator with principal symbol
is equal to

∑

µ

πµ(t, x, ξ)∗ πµ(t, x, ξ) .

This construction is due to Calderón [Ca] in the strictly hyperbolic case and to Yamaguti
[Y] in the constant multiplicity case. The symmetric, strictly, and constant multiplicity
systems are all symmetrizable. The earliest appearance of the symmetrizable class that
I know of is in [La]. The definition is in my opinion the most natural one leading to
pseudodifferential estimates without loss of derivatives.

Remarks. 1. Condition ii. implies that r belongs to the classical symbol class S0(R1+d×
R

d). *

2. The Kreiss Matrix Theorem [K] shows that constant coefficient initial value problems
which generate a C0 semigroup on L2(Rd)) are characterized by the existence of such an
r(ξ) without the smoothness. That is, ii holds only for α = β = 0.

Though the initial value problem is solvable, many natural questions are not easily settled
for symmetrizable systems. For example to merit the name hyperbolic one would like to
know that there is finite speed of propagation. The difficulty for systems symmetrized
by pseudodifferential operators in x is that the definition is rigidly anchored in the choice
of the time variable. For example, if one has such a system and one perturbs the time
variable,

t̃ = t+
∑

αjxj , |α|Rd < ǫ, x̃ = x,

it is not clear whether their is a symmetrizer in the new variables. The results of the
present paper show that the initial value problem with initial data given at t̃ = 0 is well
posed.

Finite speed of propagation for systems symmetrized by pseudodifferential operators has
only recently been established [R2] by constructing solutions as the limit of approximate
solutions satisfying finite difference equations. The stabililty of those schemes is proved
by nontrivial pseudodifferential techniques [LN], [YN], [V1], [V2]. Variant definitions for

* A smooth symbol c(t, x, ξ) belongs to Sm(R1+d × R
d) when for all α, β, 〈ξ〉β−m∂α

t,x∂
β
ξ c ∈

L∞(R1+d × R
d).
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symetrizability are proposed in [FL1], [FL2] which are stable under perturbations of the
timelike variable. They have not assumed the classic status of the energy estimate for
symmetrizable systems.

In this paper we settle two open problems concerning symmetrizable hyperbolic initial
value problems, uniqueness in the Cauchy problem at spacelike hypersurfaces, and, precise

finite speed of propagation.

Definitions. Suppose that L is weakly hyperbolic. The characteristic variety of L
at t, x is the set of (τ, ξ) ∈ R

1+d \ 0 such that p(t, x, τ, ξ) = 0. The forward timelike

cone of L at (t, x), denoted T +
t,x is the set of τ, ξ belonging to the connected component

of dt = (1, 0, . . . , 0) in the complement of the characteristic variety at t, x. A smooth
embedded hypersurface, M, is spacelike at m when half of its conormal line at m lies in
T +

m .

For each (t, x), T +
t,x is a nonempty open convex cone in (τ, ξ) space. For this and other

properties of hyperbolic polynomials see [Co], [G̊a], [Ho1], [La].

Theorem 1.1. If L is symmetrizable hyperbolic and M ⊂ R
1+d is a smooth embedded

hypersurface which is spacelike at m ∈ R
1+d and u ∈ D′(R1+d) satisfies Lu = 0 on a

neighborhood of m and vanishes on one side of M near m, then u = 0 on a neighborhood
of m in R

1+d.

For each of the more restricted classes, symmetric, strictly, and constant multiplicity, the
systems are also of that type for any time variable t̃ = t̃(t, x) so that dt̃ and dt belong
to the same connected component of the noncharacteristic points. Thus for these more
restricted systems, one easily proves Theorem 1.1.

By precise finite speed we mean the bound on the support of solutions of Lu = 0 in
Theorem 1.2 which we describe now. For ξ ∈ R

d \ 0, define,

τmax(t, x, ξ) := max
{

τ ∈ R : p(t, x, τ, ξ) = 0
}

.

As a function of ξ, τmax(t, x, ξ) is positively homogeneous of degree one, continuous, and,
convex. The set T +

t,x has equation,

T +
t,x =

{

(τ, ξ) : τ > τmax(t, x, ξ)
}

.

Definitions. The forward propagation cone for L at (t, x) is the closed convex dual
cone,

Γ+
t,x :=

{

(T,X) : ∀ τ, ξ ∈ T +
t,x, T τ +Xξ ≥ 0

}

. (1.3)

An influence curve for L is a lischitzean curve γ(t) = (t, x(t)) defined for t in a nontrivial
closed interval and so that the tangent vector to γ lies in Γ+

γ(t) for Lebesgue almost all t.

Since dt = (1, 0, . . . , 0) ∈ T +
t,x it follows from the definition that T > 0 in Γ+

t,x. Thus,
the ≥ 0 in (1.3) is hardest to satisfy when τ is small. The infinum of the values τ is
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−τmax(t, x,−ξ). Therefore, the propagation cone has equation

Γ+
t,x =

{

(T,X) : T ≥ 0 and ∀ ξ, −T τmax(t, x,−ξ) +X.ξ ≥ 0
}

.

By homogeniety, it suffices to consider |ξ| = 1. Following Leray [Le] (see also [JMR]),
define emissions as follows.

Definition. If K ⊂ R
1+d is a closed set, the forward emission of K denoted E+(K)

is the union of forward influence curves γ : [t,∞[→ R
1+d with γ(t) ∈ K. The backward

emission is denoted E−.

The emissions are closed subsets of R
1+d.

Theorem 1.2. If L is symmetrizable hyperbolic, s ∈ R, u ∈ C(R : Hs(Rd)) satisfies
Lu = 0 in the sense of distributions, then, supp u ∩ {t ≥ 0} ⊂ E+(supp u(0)).

Remark. Duhamel’s representation shows that one has the same conclusion provided that
Lu ∈ L1

loc([0,∞[ ; Hs(Rd)) has support in E+(supp u(0)).

Uniqueness in the Cauchy problem at spacelike hypersurfaces implies precise finite speed
(see [JMR], [R1]). Thus for symmetric, strictly and constant multiplicity systems precise
finite speed is known. For symetrizable systems, we reverse the logic proving Theorem 1.2
and then deriving Theorem 1.1 by a duality argument of Hölmgren type.

Our strategy for proving precise finite speed is to estimate the propagation in a single
direction, say x1, by regularizing the equation in the directions x2, . . . , xd. For the regu-
larized equation, the propagation in x1 is elementary. The original equation is recovered
by removing the regularization. The crux is to prove uniform energy estimates for the
regularized problems. This stability step uses pseudodifferential techniques beyond the
classical calculus.

A main step is Proposition 2.1 concerning propagation in x1. The proof of that result
occupies the next three sections. Theorem 1.2 is derived from Proposition 2.1 in §5 by a
global geometric argument. The geometric arguments in [Le], [R1], and this one form a
sequence reducing the input required to deduce precise finite speed. The present result
derives sharp finite speed whenever the conclusion of Proposition 1.2 is available. Theorem
1.1 is derived from Theorem 1.2 in §6.

Acknowledgment. When I was struggling to prove the central estimate, Proposition 4.2,
I was aided by conversations with David Dos Santos, Patrick Gérard, and Guy Métivier.
I thank them warmly.

§2. Propagation in x1.

Proposition 2.1. Suppose that L is symmetrizable, and, for all t, x the spectrum of
A1(t, x) belongs to the interval [λmin, λmax]. If s ∈ R, and u ∈ C

(

R ; Hs(Rd)
)

satisfies
Lu = 0 and

supp u(0) ⊂ {−∞ ≤ a ≤ x1 ≤ b ≤ ∞} ,
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then for t ≥ 0,

supp u ⊂
{

a+ λmin t ≤ x1 ≤ b+ λmax t
}

. (2.1)

Remarks. 1. For t ≤ 0 the support is in a + λmaxt ≤ x1 ≤ b + λmint. This follows from
the t ≥ 0 result upon reversing the time.

2. The derivation, in §5, of Theorem 1.2 from Proposition 2.1 is essentially geometric.

To prove Proposition 2.1, the derivatives with respect to x2, . . . , xd are regularized leaving
a differential operator in t, x1 whose propagation in x1 is easily analysed. The proposition
follows upon passing to the limit. The difficulty is to prove uniform bounds for solutions
of the regularized operators. The regularized equations are symmetrized by a nonclassical

pseudodifferential operator.

Use the notations

ξ = (ξ1, ξ
′), ξ′ := (ξ2, . . . , ξd),

〈

ǫξ′
〉

:=
(

1 + ǫ2|ξ′|2
)1/2

.

Introduce the tangentially regularized symbols,

aǫ(t, x, ξ) := a
(

t, x, ξ1,
ξ′

〈ǫξ′〉

)

= A1 iξ1 +

d
∑

j=2

Aj
iξj

〈

ǫξ′
〉 .

For ǫ = 0 this is equal to a(t, x, ξ). It defines a smooth family of symbols for the compact
parameter set 0 ≤ ǫ ≤ 1.

We use the Weyl calculus of pseudodifferential operators as presented in [H, v.IIII, chap.
18]. The metrics and weights depend on the parameter ǫ ∈ [0, 1] and we verify that
the continuity and temperance hypotheses are satisfied with constants uniform in ǫ. The
uniformity allows us to conclude that when the calculus is used to derive estimates, they
are uniform in ǫ.

A superscript w denotes the Weyl quantization. The Weyl operator, aw(t, x,D), with
symbol a(t, x, ξ) is equal to

aw(t, x,D) =
∑

j

(

Aj(x)∂j −
1

2
(∂jA)(x)

)

.

Therefore,

Lu = ∂tu + aw(t, x,D)u + B̃(t, x)u , B̃ := B +
1

2

d
∑

j=1

∂Aj

∂xj
. (2.2)

Approximate solutions are defined as solutions of the regularized system

∂tu
ǫ + aw

ǫ (t, x,D)uǫ + B̃(t, x)uǫ = 0 , uǫ|t=0 = u|t=0 .
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The key step is to derive estimates for uǫ independent of ǫ. From such estimates one
immediately concludes that uǫ → u. The bound on the support of u follows when one
proves that the uǫ are supported in the set in the right hand side of (2.1). The technical

difficulty is that aǫ is not a classical symbol of order 1. The derivatives ∂β
ξ a do not decay

like 〈ξ〉1−|β|. The symbols behave more and more like this classical behavior as ǫ→ 0. Our
strategy is to use the Weyl calculus with weights and metrics depending on ǫ ∈ [0, 1]. The
hypotheses of the Weyl calculus are satisfied uniformly in ǫ . The uniformity is verified in
the next section. It is applied in §4 to prove uniform bounds.

§3. The parameters of the Weyl calculus.

Suppressing the (t, x) dependence,

∂aǫ

∂ξ1
=

∂a

∂ξ1

(

ξ1,
ξ′

〈ǫξ′〉

)

,
∂aǫ

∂ξ′
=

∂a

∂ξ′

(

ξ1,
ξ′

〈ǫξ′〉

) ∂

∂ξ′
ξ′

〈ǫξ′〉
.

The last factor is uniformly bounded,

sup
ξ,ǫ

∣

∣

∣

∣

∂

∂ξ′
ξ′

〈ǫξ′〉

∣

∣

∣

∣

< ∞ .

As ∂ξa = O(1/|ξ|) for |ξ| ≥ 1, one has

∣

∣∂ξaǫ

∣

∣ ≤
C

〈

ξ1 , ξ′/〈ǫξ′〉
〉 .

Continuing in this way shows that with constants independent of ǫ ∈ [0, 1],

sup
t,x

∣

∣∂β
t,x∂

α
ξ aǫ(x, ξ)

∣

∣ ≤
C(α, β)

〈

ξ1 , ξ′/〈ǫξ′〉
〉|α|−1

< ∞ .

For the Weyl calculus, introduce the familly of metrics gǫ and weights mǫ,

gǫ,(x,ξ) := dx2 +
dξ2

〈ξ1, ξ′/
〈

ǫξ′)〉2
, mǫ :=

〈

ξ1 , ξ
′/〈ǫξ′〉

〉

.

The formula for gǫ,(x,ξ) means that,

gǫ,(x,ξ)(y, η) = |y|2 +
|η|2

〈

ξ1 , ξ′/〈ǫξ′〉
〉2 .

An orthonormal set of vector fields at x, ξ is,

∂

∂yj
,

〈

ξ1 , ξ
′/〈ǫξ′〉

〉 ∂

∂ηj
.
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Recall ([H, Def. 4.9.4.3]) that b(x, ξ) ∈ S(mǫ, gǫ) when

∀k ∈ N, sup
x,ξ

|b|gǫ

k (x, ξ)

mǫ(x, ξ)
<∞ ,

where |b|gǫ

k (x, ξ) denotes the norm of the k-multilinear kth derivative of b(x, ξ) with respect
to x, ξ. The important thing is that the the norm of the derivatives at x, ξ are taken with
respect to the metric gǫ,(x,ξ).

Thus, aǫ ∈ S(mǫ, gǫ), with estimates uniform in t, ǫ. The same is true of ∂j
t aǫ for each j.

Definition. A family of symbols bǫ(t) ∈ S(mǫ, gǫ) is said to be bounded if and only if

∀j ∈ N, k ∈ N, sup
ǫ∈[0,1],t,x,ξ

|∂j
t bǫ(t)|

gǫ

k (x, ξ)

mǫ(x, ξ)
<∞ .

Examples. i. The family of symbols aǫ is bounded in S(mǫ , gǫ). ii. The family of
symmetrizer symbols

rǫ

(

t, x, ξ1,
ξ′

〈ξ1, ǫξ′〉

)

is bounded in S(1, gǫ). (The weight 1 corresponds to L2 bounded operators.)

For ǫ = 0, the metric and and weight reduce to,

g0,(x,ξ) = dx2 +
dξ2

〈ξ〉2
, m0(x, ξ) = 〈ξ〉 ,

and the symbol class S(m0, g0) is the classical space S1(R1+d × R
d).

The weight mǫ is increasing in ǫ. For ǫ fixed the weights are bounded as ξ′ → ∞ with
ξ1 bounded. It’s maximum values is O(1/ǫ). As ǫ decreases, the symbols aǫ increase.
becomes closer and closer to first order in ξ′.

The metric, dx2 + dξ2/m2
ǫ , is decreasing in ǫ. This encodes the fact that the derivatives

of aǫ have improving decay properties as ǫ decreases. As ǫ decreases, the derivatives are
better controled. The stability result in the next section is proved relying on a precise
harmony between these two countervailing effects.

The first step is to compute the metric gσ
ǫ which is derived from gǫ. Recall one of the

characterizations. Fix x, ξ. Denote by W ′ the space of y, η and W its dual with coordinates
ŷ, η̂ and duality,

〈

(y, η) , (ŷ, η̂)
〉

= yŷ + ηη̂ =
∑

j

(

yj ŷj + ηj η̂j

)

.

The symplectic form
σ
(

(y, η) , (z, ζ)
)

:= zη − yζ ,
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is a real nondegenerate quadratic form on W ′ ⊕W ′. It induces the isomorphism

W ∋ (ẑ, ζ̂) 7→ A(ẑ, ζ̂) = (ζ̂ , −ẑ) ∈W ′ ,

so that
σ(A(ŷ, η̂), (x, ξ)) =

〈

(y, η) , (x, ξ)
〉

= yŷ + ηη̂ .

A metric γ on W is given by transporting g by the map A,

γ(ŷ, η̂) := gǫ,(x,ξ)

(

A(ŷ, η̂)
)

= gǫ,(x,ξ)

(

η̂,−ŷ
)

= |η̂|2 +
|ŷ|2

〈ξ̂1 , ξ̂′/(ǫξ̂′)〉2
.

By duality, this induces a form on W ′ ([H, eqn. 4.9.4.11]),

gσ
ǫ,(x,ξ)(y, η) := max

γ(ŷ,η̂))=1

〈

(y, η) , (ŷ, η̂)
〉2

.

Equivalently,

gσ
ǫ,(x,ξ)(y, η) := max

{

(

y.ŷ + η.η̂
)2

: |η̂|2 +
|ŷ|2

〈

ξ1 , ξ′/〈ǫξ′〉
〉2 = 1

}

.

This minimization problem yields

gσ
ǫ,(x,ξ)(y, η) =

〈

ξ1 , ξ
′/〈ǫξ′〉

〉2
|y|2 + |η|2 =

〈

ξ1 , ξ
′/〈ǫξ′〉

〉2
gǫ,(x,ξ)(y, η) . (3.1)

From (3.1) one finds the formula for the regulariizing weigth hǫ,

hǫ(x, ξ) :=

(

sup
(y,η)6=0

gǫ(x,ξ)(y, η)

gσ
ǫ,(x,ξ)(y, η)

)1/2

=
〈

ξ1 , ξ
′/〈ǫξ′〉

〉−1
=

1

mǫ(x, ξ)
. (3.2)

With these formulas in hand, we verify the hypotheses of the Weyl calculus.

Lemma 3.1. i. The metrics gǫ are uniformly of slow variation ([H, Definition 4.9.4.1]),

∃N > 0, c > 0, ∀ǫ < 1, gǫ,(x,ξ)(y, η) ≤
1

N2
=⇒ gǫ,(x+y,ξ+η)(z, ζ) ≤ C gǫ,(x,ξ)(z, ζ).

ii. The weights mǫ is gǫ continuous uniformly in ǫ ([H, Definition 4.9.4.3]),

∃ 0 < c < C, ∀ǫ < 1, gǫ,(x,ξ)(y, η) ≤ c =⇒ mǫ(x, ξ)/C ≤ mǫ(x+y, ξ+η) ≤ Cmǫ(x, ξ) .
(3.3)

Therefore, m
1/2
ǫ is also uniformly gǫ continuous.
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iii. The metric gǫ is σ-temperate, uniformly in ǫ. In fact,

gǫ,(y,η)(z, ζ) ≤ gǫ,(x,ξ)(z, ζ)
(

1 + gσ
ǫ,(y,η)(x− y, ξ − η)

)

(3.4)

verifying [H, (4.9.5.11′)] with C = N = 1.

iv The weight mǫ is σ, gǫ temperate, uniformly in ǫ. In fact,

mǫ,(y,η) ≤ mǫ,(x,ξ)

(

1 + gσ
ǫ,(y,η)(x− y, ξ − η)

)

verifying [H, (4.9.5.12)] with C = N = 1. Therefore m
1/2
ǫ is uniformly σ, gǫ temperate.

Proof. i. First note that

gǫ,(x,ξ)(y, η) ≤
1

N2
=⇒

|η|2

1 + ξ21 + 〈ξ′/ǫξ′〉2
≤

1

N2
=⇒ |η| ≤

1

N

∣

∣

∣
ξ1 , ξ

′/〈ǫξ′〉
∣

∣

∣
. (3.5)

Slow variation is implied by the existence of a N, c > 0 so that for all such t, x, ξ, η

∣

∣

∣
ξ1 + η1 ,

(ξ′ + η′)

〈ǫ(ξ′ + η′)〉

∣

∣

∣
≥ c

∣

∣

∣
ξ1 ,

ξ′

〈ǫξ′〉

∣

∣

∣
. (3.6)

Take N = 100. Split the proof of (3.6) into two cases depending on whether |ξ1| ≤ |ξ|/10
or not.

When ξ1 > |ξ|/10, use (3.5) to show that

η1 <
|ξ|

N
<

10|ξ1|

N
=

|ξ1|

10
. (3.7)

Then

|ξ1 + η1| ≥
9|ξ1|

10
≥

9|ξ|

100
≥

9

100

∣

∣

∣
ξ1 ,

ξ′

〈ǫξ′〉

∣

∣

∣
,

implying (3.6).

On the other hand, when |ξ1| ≤ |ξ|/10, one has

|ξ′| ≥
9

10
|ξ| ≥ 9|ξ1| .

Use (3.5) to find,

|η′| ≤
1

N

(

( |ξ′|

9

)2

+
( |ξ′|

〈ǫξ′〉

)2
)1/2

≤
2|ξ′|

N
=

|ξ′|

500
.

Then,
501

500
|ξ′| ≥ |ξ′ + η′| ≥

499

500
|ξ′|
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and (3.6) follows.

ii. It suffices to treat mǫ. For that, it suffices to verify the second, inequality in (3.3),
since one can then write (x, ξ) = (x+ y, ξ + η) + (−y,−η) to derive the first.

The proof of slow variation showed that there is a c > 0 so that gǫ,(x,ξ) ≤ 1/(4.100)2

implies (3.6). This implies the desired second inequality in (3.3).

iii. Compute

gǫ,(x,ξ)(z, ζ) = |z|2 +
|ζ|2

〈

ξ1 , ξ′/〈ǫη′〉
〉2 ,

and,

gǫ,(y,η)(z, ζ) = |z|2 +
|ζ|2

〈

η1 , η′/〈ǫη′〉
〉2 = |z|2 +

|ζ|2
〈

ξ1 , ξ′/〈ǫξ′〉
〉2

〈

ξ1 , ξ
′/〈ǫξ′〉

〉2

〈

η1 , η′/〈ǫη′〉
〉2

Peetre’s inequality is the first of the sequence,

〈

ξ1 , ξ
′/〈ǫξ′〉

〉2

〈

η1 , η′/〈ǫη′〉
〉2 ≤ 1+

∣

∣

∣

(

ξ1−η1 ,
ξ′

〈ǫξ′〉
−

η′

〈ǫη′〉

)
∣

∣

∣

2

≤ 1+ |ξ−η|2 ≤
(

1+gσ
ǫ,(y,η))(x−y, ξ−η)

)

.

(3.8)
Combining the last three lines yields (3.4).

iv. Estimate (3.8) establishes the desired estimate for mǫ. For m
1/2
ǫ it follows that

m
1/2
ǫ,(y,η) ≤ m

1/2
ǫ,(x,ξ)

(

1 + gσ
ǫ,(y,η)(x− y, ξ − η)

)1/2

verifying [H, (4.9.5.12)] with C = 1 and N = 1/2.

§4. Estimate for the propagation in x1.

We use three facts about the Weyl calculus when the weights and metrics satisfy the
uniform continuity and temperance estimates as in the Lemma 3.1.

W.1. The adjoint with respect to the L2(Rd) scalar product of bw(x,D) is equal the Weyl
operator with symbol b∗(x, ξ).

W.2. If bǫ and cǫ are bounded in S(mǫ,1, gǫ) and S(mǫ,2, gǫ) respectively then the product
bwǫ (x,D)cwǫ (x,D) is a Weyl operator with symbol bounded in S(mǫ,1mǫ,2 , gǫ). And, the
operators

cwǫ (x,D)bwǫ (x,D) − (cǫbǫ)
w(x,D)

have Weyl symbols bounded in S(hǫmǫ,1mǫ,2 , gǫ).

W.3. If bǫ(x, ξ) is bounded in S(1, gǫ), then bwǫ (x,D) is bounded in L(L2(Rd)).

Proofs. The first is immediate from the definition ([H2, pg. 151].
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The second is the leading symbol part of [H, Theorem 18.5.4].

The third is a consequence of the proof of [H2, Theorem 18.6.3]. The reader can verify that
the bound proved in Theorem 18.6.3 depends only on the constants in the slow variation,
continuity and termperance estimates together with the S(1, gǫ) bounds on the symbol.

Example. Consider W.2 when one of the operators has symbol in S(mǫ, gǫ) and the
other in S(1, gǫ). The first operator is not as singular as an operator of order 1 since mǫ

is smaller than 〈ξ〉 most particularly when ξ′ → ∞. The error term when one uses the
product of the leading symbols belongs to S(hǫmǫ, gǫ) = S(1, gǫ). The gain hǫ = 1/mǫ is
less than one order but is exactly what is needed so that the error has weight 1 and will
therefore be a bounded operator.

The next result is elementary. For ǫ fixed it considers aw
ǫ as a bounded perturbation of

A1∂1. The bounded terms grow like 1/ǫ which leads to very crude estimates as ǫ→ 0.

Lemma 4.1. i. For any f ∈ H∞(Rd) := ∩sH
s(Rd), there is a unique solution

uǫ ∈ ∩s C
s(R ; Hs(Rd))

to the initial value problem

∂tu
ǫ + aw

ǫ (t, x,D)uǫ + B̃(t, x)uǫ = 0 ,

uǫ
∣

∣

t=0
= f ,

with B̃ defined in (2.2). There is a constant c independent of t, ǫ, f , so that

sup
t∈R

e−c|t|/ǫ ‖uǫ(t)‖L2(Rd) ≤ c ‖f‖L2(Rd) . (4.1)

ii. If the spectrum of A1 belongs to [λmin, λmax] for all (t, x) and supp f ⊂ {a ≤ x1 ≤ b}
then,

supp uǫ ∩ {t ≥ 0} ⊂
{

a+ λmin t ≤ x1 ≤ b+ λmax t
}

. (4.2)

Proof. i. Write,
(

Aw
ǫ + B̃

)

− A1(t, x)∂x = cwǫ (t, x,D′),

with

cǫ(t, x, ξ) :=

d
∑

j=2

Aj(t, x)
iξj
〈ǫξ′〉

.

This symbol defines a classical pseudodifferrential operator in x′, D′ depending smoothly
on t, x1. In fact

ǫ cǫ(t, x, ξ) is bounded in S1(Rd+1
t,x × R

d−1
ξ′ ) (hence in S(1, gǫ)) .

12



Thus,

∀s, ∃cs, ∀t, ‖cwǫ (t, x,D′)‖L(Hs(Rd
x
)) ≤

c(s)

ǫ
. (4.3)

In addition, cwǫ is local in x1. That is, for any t,

ω ⊂ R and supp k ⊂ ω × R
d−1
x′ =⇒ supp cwǫ (t, x,D′)k ⊂ ω × R

d−1
x′ .

Write the differential equation defining uǫ as

r∂tu
ǫ + rA1(t, x)∂1u

ǫ + r(t, x) cwǫ (t, x,D)uǫ = 0, r(t, x) := r
(

t, x, (1, 0, . . . , 0)
)

, (4.4)

where r(t, x, ξ) is the symmetrizer. Since r is strictly positive and rA1 is hermitian sym-
metric, the operator

G := r∂t + rA1∂1,

is symmetric hyperbolic. Introduce the growth matrix

Z(t, x) := ∂tr + ∂1(rA1).

The differential energy identity for G is,

∂t〈rv, v〉 + ∂1〈rA1 v, v〉 = 2 Re 〈Gv, v〉 + 〈Zv, v〉,

The Cauchy problem for (4.1) is solved by Picard iteration. The first approximatiion uǫ
1

is the solution of
(

r∂t + rA1∂1

)

uǫ
1 = 0, uǫ

1

∣

∣

t=0
= f .

This first approximation is independent of ǫ. For ν > 1, approximations are defined by

(

r∂t + rA1∂1

)

uǫ
ν = −r(t, x) cwǫ (t, x,D′) uǫ

ν−1, uǫ
ν

∣

∣

t=0
= f ,

Integrating the differential energy law for v = uǫ
1 over R

d yields

∂t(ru
ǫ
1, u

ǫ
1) = (Z(t, x)uǫ

1, u
ǫ
1) ≤ c (ruǫ

1 , u
ǫ
1).

In particular, there is a constant c independent of ǫ, t ≥ 0 so that

‖uǫ
1‖ ≤ c ect ‖f‖ .

Define uǫ
0 := 0. For ν ≥ 2, use the differential energy identity for v := uǫ

ν −u
ǫ
ν−1. Estimate

∥

∥

(

G+ Z
)(

uǫ
ν − uǫ

ν−1

)
∥

∥ =
∥

∥

(

− r cwǫ + Z
)

(uǫ
ν−1 − uǫ

ν−2

)
∥

∥ ≤
c

ǫ
‖uǫ

ν−1 − uǫ
ν−2‖ .

13



Integrating the differential energy identity over R
d
x yields

∂t

(

r(uǫ
ν − uǫ

ν−1) , u
ǫ
ν − uǫ

ν−1

)

≤
c

ǫ

(

r(uǫ
ν−1 − uǫ

ν−2) , u
ǫ
ν−1 − uǫ

ν−2

)

.

Integrate to find

‖(uǫ
ν − uǫ

ν−1)(t)‖ ≤
c

ǫ

∫ t

0

‖(uǫ
ν−1 − uǫ

ν−2)(s)‖ ds :=
c

ǫ
I(‖(uǫ

ν−1 − uǫ
ν−2)(s)‖ ,

involving the integration operator I,

(I g)(t) :=

∫ t

0

g(s) ds .

Iterating yields
∥

∥(uǫ
ν − uǫ

ν−1)(t)‖ ≤
(c

ǫ

)ν−1

Iν−1(‖uǫ
1(s)‖) .

Use the estimate

Iν(g)(t) ≤
1

(ν − 1)!
max
0≤s≤t

|g(s)| ,

to find,
∥

∥(uǫ
ν − uǫ

ν−1)(t)‖ ≤
(c

ǫ

)ν−1 1

(ν − 2)!
c ect ‖f‖ .

This implies that as ν → ∞, uǫ
v converges to a solution u ∈ L∞

loc(R ; L2(Rd)) satisfying the
estimate in i.

Estimates for the derivatives of the uǫ
ν can be proved by differentiating the equation uǫ

ν

and reasoning as above. The details are left to the reader.

Uniqueness is proved by using the energy identity for v = uǫ − wǫ, the difference of two
solutions. Reasoning as above yields

∂t(rv, v) ≤
c

ǫ

(

rv , v
)

.

As the initial value of v vanishes, it follows that v = 0.

ii. We prove that for t ≥ 0, uǫ vanishes for x ≤ a + λmint. The proof that u vanishes for
x1 ≥ b+ λmaxt is analogous.

Consider the domain Ω := {0 ≤ t ≤ t, x1 ≤ a+ λmint}. Denote by Γ := {0 ≤ t ≤ t, x1 =
a+ λmint} the lateral boundary. Integrate the diffential energy identity applied to v = uǫ

over Ω to find,

∫

Ω

∂t〈rv, v〉 + ∂1〈rA1 v, v〉 − 2 Re 〈Gv, v〉 − 〈Zv, v〉 dt dx = 0. (4.5)

14



Let

E(t) :=
(

∫

x1≤a+λmint

〈ruǫ , uǫ〉 dx
)1/2

.

Integrate by parts to show that

∫

Ω

∂t〈rv, v〉 + ∂1〈rA1 v, v〉 dt dx = E(t)2 − E(0)2 +

∫

Γ

〈

(n0r+n1rA1)u
ǫ , uǫ

〉

dσ, (4.6)

where (n0, n1, 0, · · · , 0) is the unit outward normal at Γ and dσ is the element of d-
dimensional area on Γ. Since uǫ vanishes for x1 ≤ a, it follows that E(0) = 0.

Since
(G+ Z)uǫ = r(t, x) cǫ(t, x,D′)uǫ,

one has
∣

∣

∣

∫

Ω

2 Re 〈Gv, v〉 + 〈Zv, v〉dx dt
∣

∣

∣
≤

c

ǫ

∫ t

0

E(s)2 ds.

Combining with (4.5) and (4.6) yields,

E(t)2 ≤ −

∫

Γ

〈

(n0r + n1rA1)u
ǫ , uǫ

〉

dσ +
c

ǫ

∫ t

0

E(s)2 ds . (4.7)

The unit outward normal to Γ is a positive multiple of (−λmin, 1, 0, . . . , 0). Thus n0r +
n1rA1 is a hermitian matrix which is a positive multiple of

−λminr + rA1 = r1/2
(

− λmin I + r1/2A1 r−1/2
)

r−1/2 .

The matrix r1/2A1 r−1/2 has the same eigenvalues as A1, thus real and ≥ λmin. There-
fore the matrix in parenthesis has real nonnegative eigenvalues. Thus the eigenvalues of
−λminr + rA1 are nonnegative, so this matrix is nonnegative hermitian. Therefore

∫

Γ

〈

(n0r + n1rA1)u
ǫ , uǫ

〉

dσ ≥ 0.

Use this in (4.7) to find,

E(t)2 ≤
c

ǫ

∫ t

0

E(s)2 ds .

Gronwall’s inequality implies that E(t) is identically zero completing the proof of ii.

The main analytical result proves estimates for uǫ that are independent of ǫ. It is here
that the Weyl calculus is used.

Proposition 4.2. For each s ∈ R, There is a constant c = c(s) independent of ǫ, t, f so
that

sup
t∈R

e−c|t| ‖uǫ(t)‖Hs(Rd) ≤ c ‖f‖Hs(Rd) .
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Proof. The case s = 0 implies the general case by a straight forward commutation
argument estimating (1 + |D|2)s/2u. We prove the estimate for s = 0. Since the rǫ(t, x, ξ)
are hermitian, the operators rw

ǫ (t, x,D) are self adjoint by W.1. We first show that there
are strictly positive constants Cj independent of ǫ so that,

Rǫ(t) := rw
ǫ (t, x,D) + C1

〈

D1 , 〈D
′/ǫD′〉

〉−1
≥ C2 I . (4.8)

To prove (4.8), choose C2 > 0 so that

∀ t, x, ξ, r(t, x, ξ) ≥ 2C2 I .

Choose smooth s(t, x, ξ) equal to the positive hermitian square root of r(t, x, ξ) − C2I
Then, s belongs to the classical symbol class S1(R1+d × R

d). Let

sǫ(t, x, ξ) := s
(

t, x, ξ1 , ξ
′/〈ǫξ′〉

)

.

Then sǫ and rǫ are bounded families of symbols in S(1, gǫ).

Since sǫ(t, x, ξ)
2 = rǫ(t, x, ξ)− C2I, it follows that

rw
ǫ (t, x,D) = C2I + (sw

ǫ (t, x,D))2 + ρw
ǫ (t, x,D) (4.9)

W.2 shows that the hermitian symbols ρǫ(t, x, ξ) are bounded in S(hǫ , gǫ) = S(1/mǫ , gǫ).

The family of operators

〈

D1 , 〈D
′/ǫD′〉

〉1/2
ρw

ǫ (t, x,D)
〈

D1 , 〈D
′/ǫD′〉

〉1/2

is the product of operators with symbols in S(m
1/2
ǫ , gǫ), S(m−1

ǫ , gǫ), and, S(m
1/2
ǫ , gǫ)

respectively. W.2 shows that its symbols are bounded in S(1, gǫ).

By W.3, there is a constant C1 so that for all ǫ, f

(

〈

D1 , 〈D
′/ǫD′〉

〉1/2
ρw

ǫ (t, x,D)
〈

D1 , 〈D
′/ǫD′〉

〉1/2
f , f

)

≤ C1

(

f , f
)

.

The substitution g = 〈D′/ǫD′〉
〉1/2

f shows that this is equivalent to,

(

ρw
ǫ (t, x,D)g , g

)

≤ C1

(

〈

D1 , 〈D
′/ǫD′〉

〉−1/2
f ,

〈

D1 , 〈D
′/ǫD′〉

〉−1/2
f
)

= C1

(

〈

D1 , 〈D
′/ǫD′〉

〉−1
f , f

)

.

This together with (4.9) proves the desired positivity (4.8).

Continuing with the proof of the Proposition, compute,

∂t(R
ǫuǫ(t), uǫ(t)) = (Rǫuǫ

t, u
ǫ) + (Rǫuǫ, uǫ

t) + (Rǫ
tu

ǫ, uǫ) .
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The operators Rǫ
t = (rt)

w
ǫ (t, x,D) have symbols bounded in S(1, gǫ). By W.3, the last term

is bounded by C ‖uǫ(t)‖2
L2(Rd). Such terms with constant independent of ǫ are negligible

in the computation that follows.

The sum of the other two terms is equal to

(

[

Rǫaw
ǫ (t, x, iD) −

(

Rǫaw
ǫ (t, x, iD)

)∗]
u , u

)

.

The operator Rǫ is a sum of two terms and we treat them in turn.

The first summand is rw
ǫ (t, x,D). Since rǫ(t, x, ξ) ∈ S(1, gǫ), aǫ(t, x, ξ) ∈ S(mǫ, gǫ), and

rǫ(t, x, ξ)aǫ(t, x, ξ) is hermitian, W.1 together with W.2 imply that the family of symbols
of

rw
ǫ (t, x,D) aw

ǫ (t, x,D) − (rw
ǫ (t, x,D) aw

ǫ (t, x,D))∗ is bounded in S(hǫmǫ , gǫ) .

As hǫ = 1/mǫ, this shows that the symbols are bounded in S(1, gǫ).

The second summand is C1〈D1, 〈D
′/ǫD′〉〉−1. Since

〈

ξ1, ξ
′/〈ǫξ′〉

〉−1
is bounded in S(1/mǫ , gǫ),

W.2 implies that the two families of operators,

C1

〈

D1 , 〈D
′/ǫD′〉

〉−1
aw

ǫ (t, x,D) and,
(

C1

〈

D1 , 〈D
′/ǫD′〉

〉−1
aw

ǫ (t, x,D)
)∗

have symbols bounded in S(1, gǫ).

Combining shows that the symbols of the family of operators

Rǫaw
ǫ (t, x, iD) −

(

Rǫaw
ǫ (t, x, iD)

)∗

are bounded in S(1, gǫ). By W.3, there is a constant C independent of ǫ so that

∥

∥

∥

(

Rǫaw
ǫ (t, x, iD) −

(

Rǫaw
ǫ (t, x, iD)

)∗
)

u(t)
∥

∥

∥
≤ C ‖u(t)‖ .

Therefore,
∂t(R

ǫuǫ(t), uǫ(t)) ≤ C ‖uǫ(t)‖2,

with C independent of ǫ ∈ [0, 1].

From the uniform positivity of the Rǫ it follows that

∂t(R
ǫuǫ(t), uǫ(t)) ≤ C1 (Rǫuǫ(t), uǫ(t)) .

So,
(Rǫ(t)uǫ(t), uǫ(t)) ≤ eC1|t|(Rǫ(0)uǫ(0), uǫ(0)).
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Then, with constants independent of ǫ

‖uǫ(t)‖2 ≤
1

C2
(Rǫuǫ(t), uǫ(t)) ≤

1

C2
eC1|t|(Rǫ(0)uǫ(0), uǫ(0)) ≤ C3e

C1|t| ‖u(0)‖2 .

This completes the proof.

Corollary 4.3. For any T > 0, uǫ converges weak star in L∞([−T, T ] ; L2(Rd)) to the
solution u of equation (2.2) with initial value f .

Proof. We have just proved that the family uǫ is bounded in L∞([−T, T ] ; L2(Rd)).
Suppose that w ∈ L∞([−T, T ] ; L2(Rd)) is the weak star limit of a subsequence uǫk with
ǫk → 0 as k → ∞. To prove the proposition it suffices to show that w solves the initial
value problem which uniquely determines u. That is, it suffices to establish that

∂tw +
d

∑

j=1

Aj(t, x)∂jw + B(t, x)w = 0 ,

in the sense of distributions, and that the initial value of w at t = 0 is f .

We split the verification into t ≥ 0 and t ≤ 0 and present the details of the first. For the
t ≥ 0 half, it suffices to show that for all φ ∈ C∞

0 (R1+d),

0 =

∫ ∞

0

∫

Rd

〈

w , −∂tφ+ aw
0 (t, x,D)∗φ+ B̃∗φ

〉

dt dx +

∫

Rd

〈

f , φ(0, x)
〉

dx . (4.10)

Begin with the weak form of the equation for uǫ,

0 =

∫ ∞

0

∫

Rd

〈

uǫ , −∂tφ+ aw
ǫ (t, x,D)∗φ+ B̃∗φ

〉

dt dx +

∫

Rd

〈

f , φ(0, x)
〉

dx . (4.11)

Choose T > 0 so that φ is supported in |t| < T . Then,

uǫk → w weakly in L2([0, T ]× R
d).

Compute

aw
ǫ (t, x,D)∗ =

(

A1∂1 −
∂1A1

2

)∗

+ cwǫ (t, x,D)∗ = −A∗
1

∂

∂x1
+
∂1A

∗
1

2
+ (c∗ǫ )

w(t, x,D).

The first term from (aw
ǫ )∗φ,

(

− A∗
1

∂

∂x1
+
∂1A

∗
1

2

)

φ , is independent of ǫ.

The classical calculus of pseudodifferential operators implies that for all s,

(c∗ǫ )
w(t, x,D′)φ → (c∗0)

w(t, x,D′)φ in Hs([0, T ] × R
d), as ǫ→ 0.
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Therefore as k → ∞,

−∂tφ+ aw
ǫk

(t, x,D)∗φ+ B̃∗φ → −∂tφ+ aw
0 (t, x,D)∗φ+ B̃∗φ in Hs([0, T ] × R

d).

Passing to the limit k → ∞ in (4.11) yields (4.10), completing the proof.

Proof of Proposition 2.1. Combining the Corollary 4.3 with Lemma 4.1.ii proves
Propostion 2.1.

§5. End of proof of Theorem 1.2.

Begin with two corollaries of Proposition 2.1.

Corollary 5.1. Suppose that L is symmetrizable hyperbolic, ξ is a unit covector, and, for
all (t, x) the eigenvalues of

∑

j Aj(t, x) ξj are ≤ λmax. Then if s ∈ R, u ∈ C(R : Hs(Rd))
satisfies Lu = 0, and, supp u(0) ⊂ {x.ξ ≤ b}, then for t ≥ 0,

(

supp u ∩ {t ≥ 0}
)

⊂
{

x.ξ ≤ b + λmax t
}

. (5.1)

Proof. An approximation argument reduces to the case u(0) ∈ ∩sH
s(Rd).

An orthogonal tranformation taking ξ to (1, 0, . . . , 0) reduces this to Proposition 2.1 in the
case a = −∞.

Corollary 5.2. Suppose that L is symmetrizable hyperbolic and that Γ is a proper convex
cone in {t ≥ 0} so that for all t, x, Γ+

t,x ⊂ Γ. Then if s ∈ R, and u ∈ C(R : Hs(Rd)) satisfies
Lu = 0, then,

(

supp u ∩ {t ≥ 0}
)

⊂ ∪x∈supp u(0)

(

x + Γ
)

. (5.2)

Proof. Writing the initial datum as a sum of distributions with support in small balls, it
suffices to prove the Corollary for data with support in a small ball.

By translation invariance it suffices to prove the Corollary for data with support in balls
with center at the origin. Suppose that supp u(0) ⊂ {|x| ≤ r}.

Denote by TΓ the dual cone to Γ. Since Γ is a proper future cone it follows that dt =
(1, 0, . . . , 0) belongs to the interior of TΓ.

Since Γ contains Γ+
t,x for all t, x it follows that T ⊂ T +

t,x for all t, x. Therefore T is given
by an equation

τ ≥ τΓ(ξ) ≥ sup
t,x

τmax(ξ) . (5.3)

The eigenvalues of
∑

j Aj(t, x)ξj are the negatives of the roots τ of p(t, x, τ, ξ) = 0. There-
fore,

∀ (t, x), spec
(

∑

j

Aj(t, x)ξj

)

⊂
{

λ ≤ τmax(t, x,−ξ)
}

⊂
{

λ ≤ τΓ(−ξ)
}

. (5.4)
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Corollary 5.1 implies that the support of u is contained in {x.ξ ≤ r + τΓ(−ξ)t}. This is
equivalent to tτΓ(ξ) + x.ξ ≥ 0. By (5.3), this implies that tτ + x.ξ ≥ 0 for all (τ, ξ) ∈ T
with |ξ| = 1. By positive homogeneity it extends to all (τ, ξ) ∈ T . Therefore,

supp u ⊂
{

(t, x) : ∀(τ, ξ) ∈ TΓ, tτ + x.ξ ≤ r
}

(5.5)

From the duality between Γ and T , (5.5) is equivalent to

supp u ⊂ {|x| ≤ r} + Γ .

This proves the desired result when the support of u(0) is contained in a ball centered at
the origin.

To prove Theorem 1.2, use fattened cones as in [R1] to generate wiggle room. We fatten
Γ by shrinking T .

Definition. For ǫ > 0, define the shrunken time like cone,

T +,ǫ
t,x :=

{

(τ, ξ) ∈ R
1+d : τ > τmax(t, x, ξ) + ǫ|ξ|

}

.

Define the fattened propagation cone, Γ+,ǫ
t,x , to be the closed dual cone. Denote by E±,ǫ

the emissions defined with the Γ±,ǫ
t,x .

The fattened cones, Γ+,ǫ
t,x are strictly convex, increasing in ǫ and contain Γ

+,ǫ/2
t,x \ 0 in their

interior. In addition, ∩0<ǫ<1Γ
+,ǫ
t,x = Γ+

t,x. It follows that in the limit ǫ → 0 the emissions
E+,ǫ decrease to E+.

The proof of Theorem 1.2 proceeds by a sequence of Lemmas.

Lemma 5.3. For any ǫ > 0 there is a δ1 > 0 so that

max
{

|t− t̃| , |x− x̃|
}

≤ 2δ1 =⇒ Γ+,ǫ
t,x ⊂ Γ+,2ǫ

t̃,x̃
. (5.6)

Proof. Since

τI +
∑

j

Ajξj = r−1
(

τr + r
∑

j

Ajξj

)

= r−1 r1/2
(

τI + r−1/2(r
∑

j

Ajξj)r
−1/2

)

r1/2,

the roots τ of p(t, x, τ, ξ) = 0 are, for real ξ, the negatives of the eigenvalues of the hermitian
matrix r−1/2(r

∑

j Ajξj)r
−1/2. As the matrix is uniformly lipshitzean, it follows that τmax

is uniformly lipschitzean on R
1+2d. Lemma 5.3 follows.

Lemma 5.4. Suppose that L is symmetrizable. For each 0 < ǫ < 1 there is a δ > 0 so
that if u ∈ C(R ; Hs(Rd)) satisfies Lu = 0 and t ∈ R, then

supp u ∩ {t ≤ t ≤ t+ δ} ⊂ E+,ǫ(supp u(t)) .
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Proof. Given ǫ > 0 choose δ1 > 0 so that (5.6) holds.

Decomposing u with a partition of unity it is sufficient to prove the assertion for u with
supp u(t) ⊂ {|x − x| ≤ δ1/2}. Translating coordinates we may suppose that t = 0 and
x = 0.

Let Γ := Γ+,2ǫ
0,0 . Then

max{|t|, |x|} ≤ 2δ1 =⇒ Γ+
t,x ⊂ Γ .

Use a localization idea dating at least to Leray [Le],. Define a new symmetrizable operator
L̃ which agrees with L when max{|t|, |x|} ≤ δ1 and for which the propagation cones are
all contained in Γ. Choose a smooth

Φ : R
1+d → {|t, x| < 2δ1} ⊂ R

1+d

so that

max{|t|, |x|} ≤ δ1 =⇒ Φ(t, x) = (t, x) max{|t|, |x|} ≥ 2 δ1 =⇒ Φ(t, x) = (0, 0) .

Define a modified system of partial differential operators by

L̃ := ∂t + aw(Φ(t, x), ∂) + B̃(Φ(t, x))).

Then, L̃ is symmetrized by r(Φ(t, x), D). In addition, L̃ is equal to L when max{|t|, |x|} ≤
δ1.

Since the range of Φ is contained in the set of points where Γ+
t,x ⊂ Γ, it follows that for all

t, x the forward propagation cones of L̃ are contained in Γ. Define ũ to be the solution of

L̃ũ = 0, ũ(0) = u(0) .

Corollary 5.2 implies that for t ≥ 0,

supp ũ ⊂ supp u(0) + Γ ⊂ {|x| ≤ δ1/2} + Γ .

Use the elementary bound

|τmax| ≤ sup
R1+d×{|ξ|=1}

∥

∥

∥

∑

j

Aj(t, x)ξj

∥

∥

∥
:= K,

together with ǫ < 1 to conclude that

Γ ⊂ {|x| ≤ (1 +K)t} .

Choose δ ≤ δ1 so that
(1 +K)δ + δ1/2 < δ1. (5.7)
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Then, for 0 ≤ t ≤ δ, the support ũ is contained in |x| ≤ δ1 where L = L̃. Thus ũ solves
the same Cauchy problem as u so by uniqueness, ũ = u. Thus,

supp u ∩ {0 ≤ t ≤ δ} ⊂ supp u(0) + Γ .

Since on the support of u, Γ+,ǫ
t,x ⊂ Γ, this implies that

supp u ∩ {0 ≤ t ≤ δ} ⊂ E+,ǫ(supp u(0)) .

This proves the desired propagation result for data of small support and therefore completes
the proof of Lemma 5.4.

Proof of Theorem 1.2. For ǫ fixed, one can iterate Lemma 5.4 to conclude that on t ≥ 0

supp u ⊂ E+,ǫ(supp u(0)) .

Since the cones Γ+,ǫ are convex and decrease to Γ+, passing to the limit ǫ→ 0, yields

supp u ⊂ E+(supp u(0)) ,

completing the proof.

§6. Proof of Theorem 1.1.

The proof is of Hölmgren type, requiring the solution of initial value problems for the
transposed operator,

L† := −∂t −
∑

j

Aj(t, x)
†∂j +

(

B† −
∑

j

∂jA
†
j

)

.

This is possible because the transposed system is symmetrizable.

Proposition 6.1. i. If L is symmetrized by r(t, x, ξ) then the transposed operator is
symmetrized by (r(t, x, ξ)−1)† . ii. The timelike and propagation cones for L† are identical
to those of L.

Proof. By hypothesis

s(t, x, ξ) := r(t, x, ξ)
∑

j

Ajξj

is hermitian symmetric for |ξ| ≥ 1. Therefore,

r−1 s r−1 =
(

∑

j

Ajξj

)

r−1

is hermitian symmetric for |ξ| ≥ 1. Take transpose to find that

(r−1)†
(

∑

j

A†
jξj

)
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is hermitian symmetric for |ξ| ≥ 1. This proves i.

The characteristic polynomial for L† is

0 = det
(

− τI −
∑

j

A†
jξj

)

= (−1)N det
(

τI +
∑

j

A†
jξj

)

= (−1)N det
(

τI +
∑

j

Ajξj

)†

= (−1)N det
(

τI +
∑

j

Ajξj

)

= (−1)Np(t, x, τ, ξ).

The roots τ(ξ) are the same for L and L†. Therefore the timelike cones and propagation
cones are identical.

If M is an embedded hypersurface in R
1+d
t,x which is spacelike at m and ψ(t, x) vanishes on

M with dψ(m) 6= 0 then on a small neighborhood of m, ψ is a defining function of M . The
covector dψ(m) is conormal to M so replacing ψ by −ψ if necessary, dψ ∈ T +

m expresses
the fact that M is spacelike. Then small balls Br(m) have a future half defined by ψ > 0.
Decreasing r if necessary one has dψ(t, x) ∈ T +

t,x for all (t, x) with |(t, x) − m| ≤ r. In
particular, M is spacelike at all m̃ ∈M with |m− m̃| ≤ r.

Lemma 6.2. With the choices of the preceding paragraph, and 0 < ρ < r consider the
closed balls

Bρ(m) :=
{

(t, x) : |(t, x) −m| ≤ ρ
}

.

There is a ρ so that,

E−(Bρ(m)) ∩
{

|(t, x) −m| = r , ψ(t, x) ≥ 0
}

= φ .

Proof. If not there would be a sequence of points (tn, xn) converging to m and influence
curves

γn(t) = (t, xn(t)) with −∞ < t ≤ t

and t̃n < t satisfying,
∣

∣γ(t̃n , xn(t̃n) −m
∣

∣ = r , and, ψ(t̃n , xn(t̃n)) ≥ 0 .

Writing m = (t,m), the first conditions implies that t̃n ∈ [t− r, t].

For an influence curve, γ′ = (1, x′) ∈ Γ+
γ(t). This implies the uniform bound,

‖x′(t)‖ ≤ sup
t,x,|ξ|=1

∥

∥

∥

∑

j

Aj(t, x)ξj

∥

∥

∥
, Lebesgue a.e. t .

Ascoli’s Theorem implies that there is a subsequence, still denoted γn which converges
uniformly to an influence curve, γ : [t−r , t] → R

1+d, (tn, xn) → m, and, t̃n → t̃ ∈ [t−r, t].
Passing to the limit one finds,

γ(t) = m,
∣

∣γ(t̃) −m
∣

∣ = r, and ψ(γ(t̃)) = 0 .
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Since γ is an influence curve, and dψ is timelike it follows that

d

dt
ψ(γ(t)) > 0 for Lebesgue almost all t ∈ [t− r, t] .

Therefore
0 = ψ(m) = ψ(γ(t)) > ψ(γ(t̃) = 0.

This contradiction proves the Lemma.

Proof of Theorem 1.1. We show that u vanish in Bρ(m) with ρ from Lemma 6.2.

Since L† is symmetrizable hyperbolic from Proposition 6.2, for any φ ∈ C∞
0 (Bρ(m)) we

can define v ∈ ∩s∈NC
s(R ; Hs(Rd)) to be the solution of of the Cauchy problem

L†v = φ, v
∣

∣

t=t+ρ
= 0.

The precise finite speed result together with Duhamel’s formula implies that,

supp v ⊂ E−(suppφ) ⊂ E−(Bρ(m)) . (6.1)

We next complete the proof in the case that u ∈ C1(Br(m)). Since u is supported in the
future half of Bρ, the Lemma implies that at each point of ∂Br(m) one of u or v vanishes.
Therefore, integration by parts shows that

∫

Br(m)

〈

Lu , v
〉

dx =

∫

Br(m)

〈

u , L†v
〉

dx .

From the differential equations satisfied by u and v, one finds

0 =

∫

Br(m)

〈

u , φ
〉

dx .

Since φ ∈ C∞
0 (Bρ(m)) is arbitrary, this is equivalent to u = 0 on Bρ(m) and Theorem 1.1

is proved for u ∈ C1(Br(m)).

In the case of distribution solutions, u ∈ D′(Br(m)) reason as follows. Lemma 6.2 implies
that there is a compact set K ⊂ Br(m) so that for all φ ∈ C∞

0 (Bρ(m)),

supp v ∩ supp u ⊂ K .

Choose a test function χ ∈ C∞
0 (Br(m)) so that χ = 1 on a neighborhood of K. Since

Lu = 0 in Br(m), one has
〈

u , L†(χv)
〉

= 0 . (6.2)

Expand

L†(χv) = χL†v +
(

∂tχ+
∑

j

Aj∂jχ
)

v = χφ +
(

∂tχ+
∑

j

Aj∂jχ
)

v . (6.3)
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The support of the second term is disjoint from K, it follows that for all (t, x) ∈ Br(m) at
least one of the factors

u , ∂tχ+
∑

j

Aj∂jχ, or v,

vanishes on a neighborhood of (t, x). Therefore,

〈

u ,
(

∂tχ+
∑

j

Aj∂jχ
)

v
〉

= 0 . (6.4)

Since χ = 1 on
supp v ∩ suppu ⊃ suppφ ∩ supp u ,

it follows that
〈

u , χφ
〉

=
〈

u , φ
〉

. (6.5)

Combining equations (6.2) to (6.5) yields

〈

u , φ
〉

= 0 .

Therefore u = 0 on Bρ(m).
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